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Abstract 

Vesicles consisting of a bilayer membrane of amphiphilic lipid molecules are 
remarkably flexible surfaces that show an amazing variety of shapes of different 
symmetry and topology. Owing to the fluidity of the membrane, shape transitions 
such as budding can be induced by temperature changes or the action of  optical 
tweezers. Thermally excited shape fluctuations are both strong and slow enough to 
be visible by video microscopy. Depending on the physical conditions, vesicles 
adhere to and unbind from each other or a substrate. 

This article describes the systematic physical theory developed to understand 
the static and dynamic aspects of membrane and vesicle configurations. The 
preferred shapes arise from a competition between curvature energy, which 
derives from the bending elasticity of the membrane, geometrical constraints 
such as fixed surface area and fixed enclosed volume, and a signature of the 
bilayer aspect. These shapes of  lowest energy are arranged into phase diagrams, 
which separate regions of different symmetry by continuous or discontinuous 
transitions. The geometrical constraints affect the fluctuations around these 
shapes by creating an effective tension. 

For vesicles of non-spherical topology, the conformal invariance of the 
curvature energy leads to conformal diffusion, which signifies a one-fold 
degeneracy of the ground state. Unbinding and adhesion transitions arise from 
the balance between attractive interactions and entropic repulsion or a cost in 
bending energy, respectively. Both the dynamics of  equilibrium fluctuations and 
the dynamics of  shape transformations are governed not only by viscous damping 
in the surrounding liquid but also by internal friction if the two monolayers slip 
over each other. More complex membranes such as that of the red blood cell 
exhibit a variety of new phenomena because of coupling between internal degrees 
of freedom and external geometry. 
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1. Introduction 
1.1. Vesicles 

Membranes as studied in this article consist of a bilayer of lipid molecules that 
are composed of a hydrophilic head and two hydrophobic hydrocarbon chains. 
When introduced into an aqueous environment, these amphiphilic molecules 
aggregate spontaneously into two mono-molecular layers held together by weak 
non-covalent forces due to the hydrophobic effect. These membranes form large 
encapsulating 'bags' called vesicles because open sheet-like configurations would 
involve a large energy along the hydrophobic edges. Even though the membrane is 
only a few nanometres thick, the size of these vesicles can reach macroscopic 
dimensions of up to 100 micrometres. Video microscopy reveals both an extreme 
softness of the membrane, since thermally excited shape fluctuations are strong 
enough to become visible, and an amazing variety of different shapes, among which 
shape transformations can be induced by changing parameters like the temperature 
or osmotic conditions. 

Interest in these systems arises from at least three perspectives emphasizing (i) the 
unique material properties of a fluid membrane resulting from its molecular 
architecture (the physical chemistry aspect), (ii) the enormous variety of configura- 
tions exhibited by membranes considered as two-dimensional (2D) surfaces (the 
statistical physics point of view), and (iii) the ubiquitousness of membranes in 
biological systems. Before we return to these aspects later in this introduction, a 
few examples will serve to introduce the physical object of this study. 

The most prominent example of a shape transformation is the budding transition 
shown in figure 1, where the shape change of an initially spherical vesicle is recorded 
with video microscopy. As the temperature increases, the sphere becomes a prolate 
ellipsoid. While this transformation may seem inevitable given that the thermal 
expansion of the area is much larger than that of the enclosed volume, the surprise is 
the occurrence of a pear shape with broken up/down symmetry as the temperature is 
increased further. At even higher temperature, the neck closes, resulting in two 
spherical compartments that are sitting on top of each other but still connected by a 
narrow constriction. In all but the first and last shape, the video exhibits pronounced 
fluctuations which the still pictures, of course, cannot convey. 

The budding transition does not necessarily happen; sometimes the reflection 
symmetry is restored upon further heating, as shown in the re-entrant sequence 
displayed in figure 2. Alternatively, the spherical shape can become oblate after a 
temperature increase. This shape then develops into a discocyte with subsequent 
transformation into a stomatocyte as shown in figure 3. This sequence is particularly 
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(1): T=27.2oc V=12200p.m3 A=2570#m2 (2): T=36.0oc V=122001.tm3 A=2770#m 2 

(3): T=37.5oc V=10800p.m 3 A=2750,u.m 2 (4): T=39.1 oc V=12000t.tm 3 A=2800p.m 2 

(5): T=41.0oc V=I 19001.tm 3 A---2810p.m 2 

I l°~tm I 

(6): T=41.0oc V=12000p.m 3 A=2820p.m 2 

Figure 1. Budding transition. The temperature increases from 27.2, 36.0, 37.5, 39.1, 41.0 to 
41.0°C from left to right and top to bottom (K~is and Sackmann 1991). 
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Figure 2. Re-entrant transition. The temperature increases from 20.7, 32.6, 40.0, to 44.3°C 
from left to right. The theoretical curves have been obtained with the BC model as 
discussed in section 3.10.1 (Berndl et al. 1990). 

~ a ~ s  ~ . . . . . . . .  . . . .  

N N N ~' 

@ 
Figure 3. Discocyte/stomatocyte transition. The temperature increases from 43.8, 43.9, 44.0, 

to 44.1°C from left to right. The theoretical curves show the contour of 
corresponding stationary shapes (Berndl et al. 1990). 

interesting since the discocytes look very much like the rest shape of red blood cells. 
Indeed, the quest for understanding the biconcave shape of the red blood cell 
motivated much of the earlier work on vesicles. 

A significant shape change such as budding illustrates that fluidity is an 
important material property of this system. These shape transformations would 
hardly be possible if the membrane resisted shear. S011, the bilayer structure is quite 
robust; neither mesoscopic pores nor holes are formed, nor does the topology of the 
vesicle change since the buds are usually not fissioned from the mother vesicles. 

Even though the topology remains the same on the timescale of minutes to hours 
on which these shape changes are recorded, vesicles of non-spherical topology do 
exist. Some of the experimentally observed shapes are shown in figure 4 for genus 1 
(one hole), in figure 5 for genus 2 (two holes), and in figure 6 for higher genus, 
respectively. Characteristic for the latter shape are strong fluctuations of the position 
of the necks. 

The dynamics of membrane configurations under non-equilibrium conditions has 
become accessible using laser tweezers. Figure 7 shows how an initially cylindrical 
vesicle hit by a laser spot develops a propagating peristaltic mode which finally 
transforms the cylinder into a sequence of pearls connected by a thin tether. 
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(a) 

(b) 

Figure 4. Toroidal vesicles: (a) a non-axisymmetric torus, (b) an axisymmetrie circular torus. 
The bar denotes 10 ~m (Michalet and Bensimon 1995a). 

Figure 5. Three views of a vesicle with genus 2, the 'button' surface. The bar denotes 10 ~tm 
(Michalet 1994). 

For  a theoretical description on mesoscopic length scales much larger than the 
bilayer thickness, membranes can be considered as 2D surfaces embedded in three- 
dimensional (3D) space. Their configurations, however, are fundamentally distinct 
from interfaces since they are not determined by a surface tension but rather by 
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Figure 6. Vesicles of  higher genus. The arrows point to necks whose positions strongly 
fluctuate. The bar denotes 10 ~tm (Michalet et al. 1994a). 

" . ! ~ , ~  ~ ! ~  ~i ~ ~ ! ~ i ~  i ~ i ~ , ~  ~ .... ~ % ~ i ~  ~ i ~ ! i  ~ ' ~ , ~ v i i ~ ! !  
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(c) 
Figure 7. Laser-induced pearling instability of  cylindrical vesicles. (a) Section of  DMPC 

tube, (b) initial instability upon tweezing marked by the circular reflection. State 
(c) eventually decays back to state (a) if the laser is shut off. The bar denotes 10 Ixm 
(Bar-Ziv and Moses 1994). 
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bending elasticity as introduced independently more than twenty years ago in three 
seminal papers (Canham 1970, Helfrich 1973, Evans 1974). This fundamental 
difference is the reason for the great variety of non-spherical shapes of  vesicles, in 
contrast to the characteristic spherical equilibrium shapes of simple liquids which are 
governed by isotropic surface tension. 

Bending elasticity or, in its mathematical formulation, curvature energy not only 
generates a large variety of shapes, it also leads to different fluctuation or excitation 
spectra of these shapes and different dynamics than is shown by simple liquid 
interfaces. As will be seen, these phenomena require different mathematical tools for 
their description, such as conformal transformations in three dimensions. The fact 
that these mathematical concepts become visible in the microscope definitely 
contributes to the appeal of these systems to statistical physicists. From a different 
perspective, these membranes also have a close resemblance to certain string models 
studied in high-energy physics, since the world sheet of a closed string is akin to a 
vesicle even though the embedding dimension in these string models may be much 
higher than three (Polyakov 1987, Wheater 1994). 

A prime motivation to investigate membranes arises from biology in our 3D 
world. The lipid bilayer is the most elementary and indispensable structural 
component of biological membranes, which form the boundary of all cells and cell 
organelles (Alberts et al. 1989). In biological membranes, the bilayer consists of 
many different lipids and other amphiphiles. Biomembranes are 'decorated' with 
embedded membrane proteins, which ensure the essential functional properties of a 
biomembrane such as ion pumping, conversion from light energy to chemical energy, 
and specific recognition. Often a polymeric network is anchored to the membrane 
endowing it with further structural stability. This stability is particularly spectacular 
in red blood cells which can squeeze through tiny capillaries and still recover their 
rest shape countless times in a life cycle. 

Understanding the physical properties of the bilayer through the study of vesicles 
should provide valuable insight into the physical mechanisms that also govern the 
more complex biomembranes for which, from this perspective, the artificial vesicle is 
a model system. Striking phenomenological similarities between the budding 
transition as shown in figure 1 and exo-cytosis where small vesicles bud off the cell 
membrane encourage a thorough analysis of these artificial membranes. 

Referring to the biological motivation, a distinction has been emphasized 
between classical 'biophysics' and a field which acquired the somewhat fancy notion 
of 'biologically inspired physics' (Peliti 1991). While the former field is concerned 
with the detailed modelling of real biological processes--often at the cost of many 
parameters in a theoretical description--the latter approach takes the biological 
material as inspiration for asking questions biologists often may not even find 
relevant (yet). Even though the present work originates in the latter approach, an 
optimist would hope for a reconciliation of these perspectives in the future. The 
impressive success biomedical applications of vesicles (often called 'liposomes' in this 
field) have already reached in areas like drug delivery (Cevc 1995, Lasic 1995) proves 
that at least some crucial mechanisms of biological systems have already been 
identified correctly by studying these model systems. 

1.2. Overview 
A systematic theory of vesicle configurations is the topic of this article. 

'Configurations' is used here in a broad sense including not only the mean shapes 
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as illustrated above but also the thermal excitations of these shapes, the shapes of 
vesicles adhering to a substrate and dynamical aspects of these configurations. 

To transform the basic concept of curvature energy as introduced twenty years 
ago into a systematic quantitative theoretical description remained a challenge for 
quite some time. In particular, the implementation of the fact that the membrane is a 
bilayer (rather than a structureless monolayer) has been controversial, giving rise to 
various variants of curvature models which will be presented from a unifying point 
of view in section 2. The starting point in this chapter is the trivial level of an almost 
planar membrane to which are introduced complications that arise from the closure 
of the membrane. The relationship between the various variants of the curvature 
model, which appear in the literature, are examined and incorporated under one 
general model. 

In section 3, the methods used to calculate shapes of lowest energy are described. 
For the different variants of the curvature model, these shapes are arranged in phase 
diagrams. Such a systematic study can become the basis for a comparison between 
theory and experiments as is discussed in some detail for the budding transition. 
Other experimentally observed shape transitions are also related to the theory. 

Due to the softness of the membrane, thermally excited shape fluctuations 
('flickering') are visible under a microscope for most mean shapes. In section 4, 
the subtleties of calculating thermal fluctuations around non-trivial mean shapes 
subject to geometrical constraints are discussed. In particular, the fluctuations for 
'quasi-spherical' vesicles, which are spherical in the mean, are addressed. This case is 
important from an experimental perspective since the flicker spectrum yields the 
bending rigidity, which is the basic material parameter of the fluid membrane. 

Section 5 is devoted to the theory of vesicles of non-spherical topology. A variety 
of these shapes for genus 1 have been predicted independently from their experi- 
mental observation. In particular, the theory predicted the prominence of non-axisym- 
metric shapes. For genus 2 and higher, the shape of lowest energy was predicted to 
be one-fold continuously degenerate due to the conformal invariance of the 
curvature energy. Experimental evidence for this phenomenon was found soon after. 

Section 6 deals with a vesicle adhering to a substrate. This configuration has 
fundamental relevance since very often vesicles and membranes are not isolated but 
rather interact with each other through a variety of forces. We focus on the shape 
change induced by adhesion and discuss in particular unbinding transitions caused 
either by the competition between curvature and adhesion or by the interplay 
between entropic repulsion and attractive interactions. 

Section 7 is devoted to the dynamics of fluid membranes. Since the embedding of 
the membrane into the fluid is crucial to all dissipative processes, the full 
hydrodynamics of the coupled system comprising both the membrane and the 
embedding liquid has to be treated. For general configurations, this can become 
quite involved. We focus on the paradigmatic situation of an almost planar 
membrane and examine in particular the role of the coupling between the two 
monolayers on the damping of membrane fluctuations. The discussion of the 
dynamics of a bound membrane is motivated by a promising recent experimental 
development. As an example of a non-equilibrium shape transformation we discuss 
the pearling instability of cylindrical membranes induced by a laser tweezer. 

Section 8 gives a quite subjective selection of more complex membrane systems 
where interesting new effects arise from the coupling between internal degrees of 
freedom and the external geometry. 
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I have attempted to achieve a pedagogical, self-contained, systematic presenta- 
tion rather than following the chronological development. Such an approach risks 
not giving proper reference to earlier or alternative work for which I apologize to the 
respective authors in advance. 

An emphasis on other aspects of the physics of membranes can be found inter 
alia in reviews (Lipowsky 1991, Bloom et aL 1991, Wortis et al. 1993, Michalet et aL 
1994b, Sackmann 1994, Gompper and Schick 1994, Menger and Gabrielson 1995), 
collections (Meunier et al. 1987, Nelson et al. 1989, Lipowsky et al. 1992, Beysens et 
al. 1991), at least three textbooks (lsraelachvili 1991, Safran 1994, Evans and 
Wennerstr6m 1994) and a two-volume handbook containing nineteen review articles 
(Lipowsky and Sackmann 1995). 

1.3. Chemistry and thermodynamics 
Any theoretical treatment has to be aware of a few basic properties of the 

membrane resulting from its molecular architecture. The bilayers discussed in this 
work are formed by so-called lipids, which constitute a particular class of 
amphiphilic molecules. Lipids consist of a polar or negatively charged head group, 
which is highly soluble in water, and a hydrophobic part, which consists of two 
hydrocarbon chains (Cevc and Marsh 1987). The various bilayer-forming lipids 
differ in the length of the hydrocarbon chains, the number of unsaturated bonds 
within a chain, the chemistry of the head group and of the backbone connecting 
chains and head (Marsh 1990). For the mesoscopic configuration studied in this 
work, the molecular details are believed to be largely irrelevant, in the sense that they 
can be subsumed into effective elastic constants of the continuum theory described 
below. 

Phase diagrams for the binary system that consists of lipid and water have been 
studied experimentally with a variety of techniques such as X-ray diffraction, 
electron microscopy, differential scanning calorimetry and NMR spectroscopy 
(Marsh 1990). Quite generally, these phase diagrams are governed by the amphi- 
philic nature of the lipid molecule, which tries to avoid contact of the chain region 
with water. Bilayer formation as one way to achieve this depends crucially on the 
molecular geometry of the amphiphile (Israelachvili 1991). If the chain is too short, 
or the head is too bulky, the amphiphiles prefer to self aggregate into micelles, which 
are spherical (or cylindrical) conformations of a 'monolayer' with no water in the 
interior. 

In figure 8, the phase diagram for dimyristoyl phosphatidylcholine (DMPC)/ 
water is shown. In the large parts of the phase diagram, swollen bilayers are the 
stable phase. This lamellar phase is fluid at high temperature (the so-called L~ phase) 
whereas at low temperature, the bilayers become a 2D gel (LI3,). For DMPC, there is 
also an intervening 'ripple phase' with surface texture (P~,). At very low water 
content, liquid crystalline phases form which may be cubic or hexagonal. The L~ 
phase can take up only a certain amount of water. Adding more water leads to phase 
coexistence between the L~ phase and excess water. 

Vesicles as they will be studied here belong to this excess water phase since 
typically only a very small amount of lipid is swollen with water. The thermo- 
dynamic properties of this excess water phase are not yet well characterized since 
topological equilibration requires too long a time for it to be experimentally 
accessible. One would expect that this phase is characterized by an equilibrium 
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Figure 8. Phase diagram of DMPC/water. L~, L~, and P~, denote the fluid lamellar, the gel 
and the ripple phase, respectively (Janiak et al. 1979). 

distribution of vesicles of different sizes and topologies (Helfrich 1986, Morse and 
Milner 1994, 1995). 

An even richer phase behaviour has been found for tensides, which are single- 
chain amphiphiles, in water at high dilution. Such a system exhibits several vesicular 
phases and also a random bicontinuous phase, the so-called sponge phase, which 
have been identified experimentally (Hoffmann et al. 1992) in agreement with 
theoretical predictions (Roux et al. 1992, Porte 1992). The larger stiffness of 
phospholipid bilayers, however, may prevent the formation of some of these phases, 
such as the sponge phase, by pre-empting the theoretically expected second-order 
transition to this phase with a strong first order transition (Helfrich 1994). 

As interesting as the issue of the global phase diagram may be, the problem of 
thermal equilibrium on very long time scales is fortunately mostly irrelevant as long 
as one focuses on a particular vesicle as seen through the microscope. Our 
'observables' will be quantities referring to this particular vesicle and not quantities 
characterizing a whole ensemble of vesicles. In this sense, the often-made statement 
that 'vesicles are only metastable' is somewhat misleading since it precludes the fact 
that on experimentally relevant time scales (up to at least an hour) a vesicle can be 
considered as a system in a well-defined constrained equilibrium. The constraints 
characteristic for this equilibrium arise from physical properties of the bilayer as 
follows. 

First, due to the strong hydrophobic effect, the concentration of 'free' lipid 
molecules in aqueous solution is tiny, with a typical value of the order of 1-100 
molecules ~m -3 (Marsh 1990). Consequently, the number of lipid molecules within 
the bilayer is constant for a vesicle. This fact implies that the area of a vesicle is also 
constant at constant temperature since it can adjust to its optimal value. Moreover, 
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even the number of molecules within each layer is practically constant since 
interchange of  lipid molecules from one monolayer to the other is slow due to the 
large activation barrier for dragging a polar head group through the hydrocarbon 
chain region. Measurements of this flip-flop rate are somewhat controversial due to 
the various measurement techniques, but there is consensus that for phospholipids 
this time scale is of the order of hours (Homan and Pownall 1988). However, there 
are amphiphilic molecules that can be present as solutes in the bilayer, such as the 
biologically ubiquitous cholesterol, that are known to flip much faster between the 
layers (Backer and Dawidowicz 1981). 

Even though membranes are permeable to water, the enclosed volume of a vesicle 
is typically a constrained variable, too. The reason lies in the presence of  molecules 
to which the membrane is impermeable such as sugar molecules or large ions, that 
are either deliberately added to the aqueous solution, or are inevitably present in low 
concentration due to impurities. In either case, any net transfer of water would 
generate an osmotic pressure that cannot be counterbalanced by the relatively weak 
forces arising from additional bending of the membrane, as will be quantified in 
section 2.4 below. Thus, the enclosed volume of a vesicle is controlled by the 
condition that basically no osmotic pressure builds up (Helfrich 1973). 

2. Curvature models 
In this section, we motivate, in three steps, the energy for any specific vesicle 

shape. First, the concept of  local curvature energy in the classical model (section 2.1) 
is discussed and its basic consequences are recalled (section 2.2). Then, the 
refinement arising from the bilayer nature of the membrane is introduced (section 
2.3) and finally non-trivial effects arising from the closure of  an open bilayer sheet to 
a vesicle is taken into account (section 2.4). Since our treatment does not quite follow 
the chronology, a brief history of  the various variants of the curvature models that 
appear in the literature is presented in section 2.5 to give credit to previous work. 

2.1. Local curvature energy in the classical model 
Three or four orders of magnitude separate the thickness of the bilayer, which is 

about four nanometres, from the overall size of vesicles which are observable 
through the microscope. This separation of length scales suggests a description of 
the membrane as a 2D surface R(Sl,S2) embedded in 3D space. Here, sa and s2 
denote (arbitrary) internal coordinates. Such a surface can locally be characterized 
by its two radii of curvature R1 and R2, as shown in figure 9. From the radii of 
curvature, both the mean curvature 

H =_ (1/R1 + 1/R2)/2 (2.1) 

and the Gaussian curvature 

K =__ 1/(R1R2) (2.2) 

can be derived. 
For  a mathematical definition of these quantities (see, for example, do Carmo 

(1976)), one first introduces the tangential vectors 

Ri = OiR(sl, s2) for i = sl,s2, (2.3) 
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Figure 9. Curvature on a 2D surface. The length scales RI and R2 denote the radii of 
curvature. The vector n denotes the normal. 

from which one obtains the metric tensor 

g~=-Ri'Rj. (2.4) 

Its determinant, g = det(g0), yields the area element 

dA = ~/g dsl ds2. (2.5) 

The normal vector n(sl, s2) is given by 

R1 x R2 
n --  i a  1 X R21" (2 .6)  

Finally, the mean and the Gaussian curvature follow from the curvature tensor 

according to 

and 

h0 = (0i0yR) - n (2.7) 

H = _1  trhj (2.8) 

K ---- det (hi), (2.9) 

where h} = gikhkj and gO are the matrix elements of the (matrix) inverse of  (g~). The 
minus sign in (2.8) ensures a positive mean curvature for the sphere with the usual 
spherical coordinates (sl = 0, s2 = ~b), contrary to the convention used in differential 
geometry. Comparison of  (2.1) and (2.2) with (2.8) and (2.9) shows that the radii of 
curvature are the negative inverse eigenvalues of  the curvature tensor. 

In the classical curvature model for symmetric membranes, the local bending 
energy y~ of  a non-fiat membrane is written as an expansion in the curvature. To 
lowest order, one obtains (Canham 1970, Helfrich 1973) 

)~ = (x/2)(2H) 2 + xGK. (2.10) 
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The two elastic constants ~ and t~G both have the dimension of an energy. They are 
called bending rigidity and Gaussian bending rigidity, respectively. 

A constant term in the energy density (2.10) which would correspond to a 
'surface tension' or chemical potential for area has to be omitted. The fixed number 
of molecules in the membrane ensures a fixed internal area because stretching or 
compressing the membrane involves much larger energies than the cost of bending 
deformations. The absence of a surface tension in the ordinary sense distinguishes 
bilayer membranes fundamentally from liquid interfaces or even Langmuir mono- 
layers, where interfacial area can be created or destroyed at a cost that is given by the 
surface tension. For  an interface, the 'interfacial' particles are the same as the bulk 
particles whereas a membrane consists of  a fixed number of  'particles' each of which 
can assume its preferred area in the conformations studied here. The more subtle 
notion of  an effective tension generated by thermal fluctuations in the presence of  
constraints will be discussed in section 4 below. 

2.2. Almost planar membrane and pers&tence length 
Before we consider vesicles, it is instructive to recall some basic properties of  the 

curvature energy for almost planar membranes. We use a Monge representation for 
the displacements h(x) of the membrane which is oriented in the z = 0 plane, with 
x = (x,y). The mean curvature is then given as (do Carmo 1976) 

2 0  ~ - -  

V2h + (Oxh)ZO2yh + (Oyh)20~h - 20~hOyhO~Oyh 

[1 + (~7h)213/2 = -V2h{1 + O[(Vh)2]}. 

(2.11) 

As will be discussed below, the Gaussian curvature is a total divergence and need not 
be considered here. Introducing a Fourier representation 

r d2q 
h ( x )  - hq exp (iqx), (2.12) 

the bending energy is given by 

t~f d2q 4 • I f  d2q £ , 
(2.13) 

to lowest order, where * denotes the complex conjugate. Here, we have defined the 
'energy' 

Eo(q) = t~q 4 (2.14) 

of  a bending mode. 
The static correlation functions can easily be obtained from (2.13) as 

(hqh*q,) = T (2rc)28(q_q,) = T Eo(q) ~-gq4 (21t)Z6(q - q'), (2.15) 
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where (...) is the thermal expectation value taken with the Boltzmann weight, 
exp ( - F o / T ) .  Boltzmann's constant is set to unity throughout the article. 

It is consistent to neglect the higher-order terms in the expansion (2.13) as long as 
the expectation value ((~7h) 2) is small compared to 1. Using the correlation function 
(2.15), one finds 

2 2 , T [1/a T 
r d q  t d q  , * = - -  d q / q = ~ l n ( L / a ) .  (2.16) 

Here, L is the linear extension of the membrane and a is a molecular cut-off of the 
order of nanometres. Thus, the notion of an almost planar membrane is meaningful 
only if L << Lp where the persistence length (de Gennes and Taupin 1982) 

Lp ~ a exp (2ntc/T) (2.17) 

is also the correlation length for the normals. 
If higher-order terms occurring in the expansion (2.13) are treated perturbatively, 

the result can be formulated as a length-dependent bending rigidity 

~(L) = ~ -  (e/4rt)T in (L/a),  (2.18) 

where L is the length scale on which the membrane is bent. There has been some 
controversy about the correct value of the factor c. Depending on the measure used 
to integrate out the fluctuations, c = 1 has been found for the 'curvature measure' 
(Helfrich 1985, 1986, 1987) and c = 3 for the 'displacement measure' (Peliti and 
Leibter 1985, F6rster 1986, Kleinert 1986). The latter value has recently been 
confirmed by Monte Carlo simulations (Gompper and Kroll 1994). A real-space 
renormalization group scheme yields e - 1.4 and an exponential dependence of the 
bending rigidity on length-scales beyond the persistence length (Mecke 1995). 
Beyond the scale Lp, membrane configurations are characterized by irregular shapes 
for which self-avoidance becomes crucial. 

For phospholipid membranes as studied here, the bending rigidity can be ob- 
tained by different techniques discussed in Appendix A. The typical range of values 
e;_ (10-  25)T leads to an astronomical persistence length Lp ~_ a exp (60-  150). 
This result shows that the concept of a mean orientation of the membrane 
makes sense for these bilayers. A much smaller persistence length applies if so- 
called bola-lipids are added to the membrane (Duwe et al. 1990). The corre- 
sponding vesicles have shown strong fluctuations. However, a naive application of 
the results developed here to this system is dangerous for two reasons. First, bola 
lipids are soluble in substantial fraction so that the concept of a vanishing surface 
tension may break down. Secondly, the local composition in mixed membranes can 
couple to the shape, which leads to spatial inhomogeneities as will be discussed in 
section 8.1. 

2.3. Coupling between curvature and density 
Further analysis of the energy density (2.10) as described in section 3.4 below 

shows that it cannot explain typical phenomena observed in shape transformations 
of vesicles such as the budding transition. The reason for this failure is its lack of any 
signature of the bilayer architecture. In fact, the energy (2.10) would be appropriate 
for a symmetric lipid monolayer for which so far no physical realization is known. 
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Figure 10. Cartoon of a bilayer membrane. The densities ~b ± are defined on the neutral 
surfaces of the two monolayers shown as dashed curves. The projected densities ffp~oj 
and the scaled quantities p± are defined on the bilayer mid-plane (bold curve). 

The bilayer aspect can easily be incorporated by 'decorating' each side of  the 
mathematical surface R(s1, s2) with a fluid of lipids as shown in figure 10. Such a 2D 
fluid can be characterized by its number densities ~b+(Sl,SJ. Deviations from the 
equilibrium density q~0 cost an energy 

f3  = (km/2)(¢±/¢0 - 1) 2, (2.19) 

to lowest order in ~b±/~b0 - 1. Here, k 'n can be interpreted as the elastic compression 
modulus for the 2D fluid within each monolayer. This elasticity acts in the so-called 
neutral surface of each monolayer. The neutral surface is defined by the property 
that bending and stretching are decoupled in energy when both deformations are 
defined with respect to it. The neutral surface of each monolayer is at a distance d 
from the bilayer mid-plane. 

It will be very convenient to have all physical quantities defined on the bilayer 
midplane. Therefore, we project the densities q~± onto this surface. If  the membrane 
is curved, the projected densities ~p:kro j deviate from the densities ~±. To lowest order 
in dH, the relation between both densities is given by 

~± ± O(d2K)). = ~bproj(1 :F 2 dH + (2.20) 

For small curvature, the elastic energy, f~ ,  can thus be written as 

f~: = (km/2)(P + :F 2dH) 2, (2,21) 

where we introduce the reduced density deviations 

:k 
p± = (~bproj/ffo - 1). (2.22) 

The total energy of a symmetric bilayer membrane is thus given by (Seifert and 
Langer 1993) 

/g 2 km [(p+ - 2dH) 2 -~-(p- + 2dH) 2] (2.23) f ----J0 +f~-  + f i -  = $ (2H) + ~GK +-~-  
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We have retained the bending part of the classical model. Physically, it signifies the 
energy stored in the bending of each individual monolayer even if the lateral densities 
are adjusted to the shape in such a way that the contributions f l  + vanish. 

The coupling between the local shape and the densities becomes more evident if 
we introduce the reduced density difference 

and the deviation 

p = (p+ - p-) /2,  (2.24) 

= (p+ + p-)/2 (2.25) 

of the mean density from its equilibrium value. Using these quantities, the energy 
(2.23) can be written as 

t~ (2H) 2 + ~ o K  q-/~[~O 2 + (p -- 2dH)2]. f = ~  (2.26) 

Disregarding the phenomenological 'derivation' of the energy (2.23) or (2.26) 
given here, one could also have postulated this form as following from two 
principles. First, the relevant 'degrees of freedom' are identified, which are the 
'shape' and the two densities of the two monolayer liquids. Then, the energy is 
expanded in the lowest-order terms in these variables taking into account the 
obvious symmetry requirements of a symmetric bilayer. The slight advantage of 
our presentation is the identification of the 'coupling constant' between p and H as 
given by the material parameters kind. Along the same lines, it should be clear that 
there will be all sorts of higher-order terms which are compatible with the symmetry 
of the membrane. For instance, we have not treated any explicit interaction between 
the two layers but rather postulated a fixed distance d. On a more microscopic level, 
one could expect that the local distance or thickness of the membrane depends on its 
local lateral density. Thus, one could introduce a field for the deviations from the 
mean thickness d which, however, would not couple to the shape H nor to p in 
quadratic order by symmetry. 

For a discussion of small displacements about the almost planar shape for the 
bilayer energy, the reduced densities are expanded as 

f d2q 
p±(x) - J ( 5 7 ~  (/~q -4- pq) exp (iqx). 

The total energy of a bilayer membrane, thus, becomes 

fd2q  t d2q (hq) 
F ~ j - ~  -~J~-~7(hq,pq,~q)E(q) pq , 

~q 

with the 'energy' matrix 

£q4 -2kmdq 2 0 ) 
E(q) z -2kmdq 2 2k m 0 , 

0 0 2k 

(2.27) 

(2.28) 

(2.29) 
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where the renormalized bending rigidity £ is defined by 

=- t~ + 2d2k TM. (2.30) 

Minimizing the single mode energy fq in (2.) with respect to & leads to 

min pq (hq)-~-dq2hq. (2.31) 

Using this relation in (2.28), we recover the energy of the classical model: 

fq(hq, min = 0 )  ~ 4- - .  (2.32) pq ,pq = ~ q  nqnq. 

This shows that the classical model implicitly assumes that the densities in each 
monolayer adjust optimally to the local shape, i.e., in the classical model bending 
takes place at a relaxed lateral density within each monolayer. 

For  bending at 'frozen' density p:L = 0, we get 

fq (hq, pq = 0,/Oq ~- 0) = ~/¢ ¢-/-41-nqnq.1-* (2.33) 

Whether the difference between bending at relaxed and bending at frozen densities is 
significant depends on the relative magnitude of ~ and £. For a simple estimate, we 
assume that each monolayer is a homogeneous thin plate of thickness 2d. For such a 
plate, the bending rigidity /~m (with a superscript for 'monolayer' ) and the area 
compression modulus k m are related by (Landau and Lifshitz 1989) 

~rn = Idndz/3. (2.34) 

With the bending rigidity of the bilayer n = 2~ m and (2.30), we find £ = 4n. This 
significant difference shows that lateral relaxation is an important factor in bending 
deformations (Evans 1974, Helfrich 1974a). Two effects can impede this lateral 
relaxation. First, lateral relaxation is effective only if the time scale associated with 
this relaxation is faster than a typical time-scale for the bending relaxation. This 
issue will be addressed in Section 7 below. Secondly, lateral relaxation implicitly 
assumes a reservoir of  lipid molecules at the boundaries. For  closed membranes such 
a reservoir is not available, leading to consequences discussed in the next subsection. 

We close this subsection by quoting the static correlation functions which follow 
from (2.28) 

/gq (hq,, pq,~ 10q,)* = T E - l ( q ) ( 2 ~ ) 2 ~ ( q  - q') 
~q 

=- T t¢ £/2kmt¢ 

~ d q % o 1 / 2 k m  

(27r)28(q-q'). (2.35) 
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2.4. Global energy o f  a vesicle shape 
The energy of a closed membrane configuration follows from integrating the 

energy density (2.26) over the closed vesicle surface. This leads to the total energy of  
a vesicle, 

F=~ 

as a sum of  five contributions which we now discuss in detail. 

2.4.1. Gauss-Bonnet-theorem 
The second integral in the energy (2.36) does not depend on the specific shape of  the 
vesicle. Due to the Gauss-Bonnet theorem (see, for example, do Carmo (1976)), this 
term is the topological invariant ~G4zc(1 - g), where g is the genus, i.e. the number of  
handles, of  the vesicle. For  any fixed topology, this energy can be neglected. We will 
proceed to do so by formally setting n~ = 0. 

2.4.2. Osmotic pressure 
The last term, Fv, in the energy (2.36) arises from the presence of  molecules in the 

solution, such as large ions or sugar molecules, to which the membrane is imperme- 
able on the time scales considered here. With c as the total concentration in moles 
per unit volume of  these osmotically active molecules, there arises an osmotic 
pressure 

II =__ R g T ( n / V  - c), (2.37) 

where Rg ~ 8-31 J (tool K -1) is the gas constant, V is the volume of  the vesicle and n 
is the total number of  moles of these molecules caught within the vesicle. For  
simplicity, an ideal solution was assumed. Such an osmotic pressure leads to the 
energy 

I v R g T c V o ( V  )2.  
Fv(V) -- dV'I I (V ' )  = RgT[n ln(V/Vo)  - c(V - V0)] ~ - 1 

vo 2 Voo 
(2.38) 

The latter approximations holds for small V~ Vo - 1, where 

Vo - n/c (2.39) 

is the volume for which the osmotic pressure vanishes. 

2.4.3. Minimizing with respect to lipid densities 
First, the energy F is minimized with respect to the density variables p and Is, 

taking into account that the number N + and N -  of  lipid molecules within each layer 
is conserved. Using 

dACp~o j (2.40) N ± 
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and the definitions (2.22),(2.24) and (2.25), this conservation implies the integral 
constraints 

J dA/o = J dA [(q~p+oj -{- ~proj)/q ~0 - 1] = (N + + N-)/(2q~o) - A, (2.41) 

where A is the total area of the vesicle and 

(2.42) 

If these constraints are added with Lagrange multipliers to the energy F, minimiza- 
tion at fixed shape (and, thus, at fixed area A) immediately leads to a constant mean 
density given by 

= (N + + N-) / (2~oA)  - 1. (2.43) 

For the local density difference, minimization shows that the density difference 
follows the local mean curvature according to 

where 

fl(S1, S2) - -  2dH(sl, s2) = - 2 d M / A  + (N + - N-)/(2dpoA), (2.44) 

M = ~ dA H (2.45) 

is the total (integrated) mean curvature. The geometrical quantity M also determines 
the actual area difference 

A A  = 4dM + O(d z) (2.46) 

between the neutral surfaces of the two monolayers which will, in general, differ from 
the optimal area difference 

AAo ~ (N + -N- ) /qSo ,  (2.47) 

which is determined by the number of molecules in each layer. 
I f  the expressions (2.44) and (2.43) for the density variables are inserted into the 

energy (2.36), one obtains an energy 

F = (~/2) dA (2H) 2 + (AA -- AAo) 2 ,q. ,,zl 

+ kmA[(N + + N- ) / (2~oA)  - 1] 2 -t 2 ~ - 1 (2.48) 

2.4.4. Effective constraint on area and volume 
A convenient simplification arises from the fact that there are two well-separated 

energy scales present in the four terms of  the energy (2.48). The first and the second 
terms both are, as shown below, of the order t~. The third term depends strongly on 
the total area of the vesicle. For a large vesicle with A = 1000 pm 2, and the typical 
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material constants k = 102 erg cm -2, and n = 1012 erg (Evans and Needham 1987), 
the energy scale of this term, kmA '~ 10%; vastly exceeds the energy of the curvature 
elasticity. Thus, one can determine the area A by the requirement that the third term 
vanishes. This leads to the area constraint 

A = (N + + N-)/(2q~0) =- 4=R~, (2.49) 

given by the mean number of lipid molecules in the two layers. For later reference, 
we define here an equivalent sphere radius R0. 

Likewise, the energy scale involving osmotic differences, R T c V o / 2  ~-- 103~, for 
the typical values R0 = 10 Ixm and c = 10 -4 moi m 3 as a typical sugar concentration, 
shows that only minute concentration differences between interior and exterior 
solution of the order of 10 -7 mol m 3 can be balanced by the curvature energy. To 
an excellent approximation, the volume is thus constrained to the value V0 = n / c  for 
which the osmotic pressure vanishes (Helfrich 1973). Any change in the ambient 
osmotic conditions will lead to an adaption of the vesicle volume such that the 
resulting osmotic pressure difference effectively vanishes again. 

From a theoretical point of view, one could easily proceed without making these 
two simplifications even though they are convenient and well justified for giant 
vesicles. In fact, the theory as developed in the next section also captures the more 
general case where volume and area are subject to the energy terms present in (2.48). 

2.4.5. Area-difference-elasticity model  
If  the terms in the second line of the energy (2.48) are thus replaced by hard 

constraints on the area and volume, one obtains the so-called area-difference- 
elasticity (ADE) model in which the energy of a vesicle is given by (Seifert et al. 
1992, Wiese et al. 1992, Bozic et al. 1992, Miao et al. 1994) 

W = ~ I G + ~ ( a ~  " A A - A A 0 )  2] (2.50) 

with the dimensionless 'local' bending energy 

G = (1/2) ~ dA (2H) 2 (2.51) 

and the dimensionless material parameter 

-- 2kmd2/(  ). (2.52) 

The second term in (2.50) is the so-called area-difference elasticity or non-local 
curvature energy. In the form an ,  the elastic constant in front of this term is 
sometimes called the non-local bending rigidity. If  one assumes that the monolayers 
are homogeneous sheets of thickness 2d, one obtains with (2.34) the estimate 
a = 3 In  ~_ 1. However, it may be advisable to leave the value of a open and treat 
it as an independent material parameter because the ADE model may be applicable 
even if a simple relation like (2.34) breaks down due to the internal structure of the 
monolayer. Corrections to the energy (2.50) can be expected to be of the order of 
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d/Ro, which is the basic expansion parameter of  these curvature models for 
symmetric membranes. 

2.5. A brief history of variants of  the curvature model 
The derivation of  the ADE model given above reflects an evolution of  curvature 

models dating to their first appearance in the early seventies. All these models can be 
cast in a form amounting to special cases of a generalized ADE model. 

In this section, we introduce these variants roughly according to their historical 
occurrence partly in order to assign credit for the essential steps. Considerable parts 
of the literature still deal with these variants, especially since they contain typically 
one less parameter than the ADE model. We will also have to specialize to these 
limiting cases sometimes in later sections. 

2.5.1. Minimal model." local curvature energy only 
The first description of fluid membranes by a curvature model was given 

by Canham (1970), in which the local energy density of the form 
2) = (2H)2 _ 2K was introduced. Since the Gaussian term is irrele- + 1/R 2 

vant for all but topological transformations, this model amounts to retaining just the 
local curvature energy from (2.50). For later reference, we define the energy of  this 
'minimal model' as 

FM = ~G. (2.53) 

From the present perspective, this energy is a faithful description of a vesicle 
which consists of a symmetric bilayer with rapid flip-flop of the lipid molecules. 
While it is known that cholesterol flips quite rapidly between the two layers (Backer 
and Dawidowicz 1981), pure cholesterol does not form bilayers. For vesicles 
consisting of mixtures, however, the presence of two components leads to an 
additional degree of  freedom which has to be taken into account as discussed in 
section 8. Likewise, lipid molecules with two polar head groups connected by 
hydrocarbon chains such as the bola lipids (Marsh 1990) would constitute a model 
system for this minimal model. Again, these molecules can be added to a lipid bilayer 
but they are not able to form bilayers as a single component system. Thus, there is 
not yet a genuine physical realization of  this 'minimal model'. 

2.5.2. Spontaneous curvature model 
Helfrich (1973) in a seminal paper introduced the energy 

Fsc =-- 2 ~ dA (2H - Co) 2 + t~a~ dA K, (2.54) 

where the so-called spontaneous curvature Co is supposed to reflect a possible 
asymmetry in the membrane. The energy (2.54) together with constraints on the total 
area and the enclosed volume defines the spontaneous-curvature (SC) model. The 
physical origin of the spontaneous curvature could be either a different chemical 
environment on both sides of the membrane, or a different chemical composition of 
the two monolayers. In the latter case, however, the fluidity of the lipids'will lead to a 
lateral adjustment of  the local composition to the local curvature, i.e. to the local 
shape, as we will discuss in section 8. The spontaneous curvature then becomes a 
dynamical variable and is no longer constant over the vesicle surface. Indeed, the 
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spontaneous curvature has remained elusive since there seem to be no measurements 
of  this quantity for phospholipid vesicles. Fischer (1993) has recently suggested an 
alternative formulation of  the spontaneous curvature model. 

2.5.3. Bilayer couple model  
In a complementary approach, building on earlier work (Sheetz and Singer 1974, 

Evans 1974, 1980), Svetina and Zeks introduced the so-called bilayer couple (BC) 
model, in which a hard constraint on the area difference AA, i.e. a = c~, is imposed 
(Svetina et al. 1982, Svetina and Zeks 1983, 1989). Thus, this model is defined by the 
energy (2.53) together with the three constraints on area, volume and total mean 
curvature. In view of  the derivation given above for the ADE model, the bilayer 
couple model can be rationalized by assuming the monolayers as incompressible but 
still bendable. Any spontaneous curvature is irrelevant in the BC model since it 
would add only a constant term to the energy at constant AA (Seifert et al. 1991). 

2.5.4. Area-difference-elasticity model 
The physical effect of  the area-difference-elasticity has been appreciated early on 

(Evans 1974, 1980, Helfrich 1974a). The model as defined in (2.50) has been 
introduced independently by three groups (Seifert et al. 1992, Wiese et al. 1992, 
Bozic et al. 1992). The derivation as presented above is related to the one given in 
Miao et al. (1994). 

2.5.5. Area-difference-elasticity model with spontaneous curvature 
The ADE model can also be derived if the two monolayers are asymmetric in the 

first place (Miao et al. 1994). This leads to a systematic spontaneous curvature which 
amounts to replacing (2H) 2 b . ~ ( 2 H -  Co) 2 in (2.50). However, at constant area A 
and optimal area-difference AA0, the latter model is equivalent to the ADE model 
without spontaneous curvature but with a renormalized area-difference AA0 given 
by (Miao et al. 1994) 

AAo =/XA o + 8Code / . (2.55) 

Thus, within the ADE model the spontaneous curvature leads only to a trivial 
modification. Only for the limit a ~ 0 must one include a spontaneous curvature in 
order to end up with the SC model. I f  the limit a --+ 0 is taken in the energy (2.50), 
one recovers the minimal model (2.53). 

2.5.6. Summary  o f  curvature models 
For  later reference, the energy and the applicable constraints on the various 

models are summarized in table 1. It is useful to introduce scaled quantities as 

Table 1. Variants of the curvature models. 

Model Energy without Gaussian part Constraints 

Minimal FM -- ~¢G A, V 
BC F M = ~G A, V, M 
ADE W = ~[G + (c~/2)(m -m0) 21 A, V 
SC Fsc -= n(G - Corn + 2nc~ A, V 
ADE-SC Wsc -- tc[G - com + 2nc o + (a/2)(m - mo) 2] A, V 
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follows. The reduced mean curvature m, the reduced optimal area difference m0, and 
the reduced spontaneous curvature co are defined by 

m =_ M/Ro, mo =- AAo/(4dRo), and co =- CoRo. (2.56) 

3. Shapes and shape transformations 
Vesicles will acquire the shape at which their curvature energy subject to the 

appropriate constraints is minimal. This basic premise of the approach using 
curvature models assumes both that non-equilibrium effects such as convection 
and temperature gradients are small, and that the effect of thermal fluctuations on 
the shape can be neglected except at shape transitions. While the former assertion 
has to be taken care of by the experimentalist, the latter holds to a first 
approximation since the bending rigidity is still large compared to the thermal 
energy. 

Three different approaches have been developed to find the shape of lowest 
energy for given parameters. These techniques are (i) solving Euler-Lagrange 
equations, (ii) using 'trial' shapes within a variational approach, and (iii) minimizing 
numerically the curvature energy on a triangulated surface. The latter two techniques 
will be discussed in section 3.2 below. 

Most work has been done within the first approach. As described in section 3.1, 
solutions of the Euler-Lagrange equations yield the set of stationary shapes for 
which the first variation of the appropriate energy, subject to the applicable 
constraints, vanishes. The set of stationary shapes comprises both locally stable 
shapes and saddle points. Saddle points can be identified by a stability analysis which 
requires considerable numerical effort. However, stability with respect to axisym- 
metric deformations is easy to check by close inspection of the bifurcation diagram. 
We explain this method in section 3.3, where we introduce the crucial concept of a 
continuous and a discontinuous transition. 

These transitions separate different regions in a phase diagram, which shows the 
shape of lowest energy (and sometimes also locally stable shapes of higher energy) 
for a given set of controlled variables such as the reduced volume and the area 
difference. Since both the energy and the relevant parameters depend on the specific 
variant of the curvature model, the phase diagrams and the character of a shape 
transformation differ between the various variants as well. These phase diagrams are 
presented i n  sections 3.4 through 3.7 for the most important variants of the 
curvature model. 

For a comparison of the theoretical results with experimental findings, we discuss 
the notion of temperature trajectories in the phase diagram in section 3.8. In section 
3.9, the budding transition will serve as an example to show how detailed a 
comparison is possible at the present stage. Other shape transformations are 
described in section 3.10. The dramatic shape changes under the action of optical 
tweezers are briefly reviewed in section 3.11. 

3.1. Stationary shapes 
3.1.1. General energy functional and equivalence of the ensembles 

The set of stationary shapes is the same for all variants of the curvature energy 
(except the minimal model which contains only a subset). Consider the general 
variational free energy 
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• [S] = aG[S] + S,A[S] + PV[S] + QM[S], (3.1) 

where the dimensionless local curvature energy G has been defined in equation (2.51) 
and [S] denotes symbolically the dependence on the shape S. The parameters S, P 
and Q will be specified later. The stationarity condition for the functional ~[S] 
formally reads 

6~[S] = no6IG[S] + X81A[S] + P61V[S] + Q6IM[S] = 0, (3.2) 

where 51 denotes the first variation. The set of stationary shapes Se contains all 
shapes which obey this equation as I;, P and Q are varied. In the BC model, X, P and 
Q are Lagrange multipliers chosen such that the area A, the volume V and the 
integrated mean curvature M acquire the appropriate values. These Lagrange 
parameters fulfil the relations 

OG OG OG 
S/t~= , P/n~-- , and Q/n~- . (3.3) 

OAIv,M 0 V[A,M OMIA, V 

We now show that the set S~ contains as a subset the set of stationary shapes Ss 
which belong to the energy B of the general form 

B =-. ~G+g(A, V,M), (3.4) 

where g(A, V, M) is an arbitrary function. Such an energy, for example, has been 
encountered during the derivation of the ADE model where the last three terms of 
the energy F in equation (2.48) are of this type. If there are constraints, g(A, V, M) 
has to include terms of the type I;BA, Pn V and QBM, where, for example, SB is the 
Lagrange multiplier for the area. The stationarity condition for the energy B is 

Og 51A[S] Og 51V[S] + Og 6IM[S] = O. (3.5) 

A comparison of (3.5) with (3.2) shows that any stationary shape of the 
energy B is also stationary for • provided the parameters I;, P and Q are chosen 
according to 

Og Og Og 
= - ~ '  P=--OV' and Q=OM. (3.6) 

Note that the reverse is not quite true. Depending on the specific form of g, there 
may be values of S, P and Q which are not accessible through (3.6). Specializing the 
energy B to the various variants of the curvature models discussed above, we collect 
the interpretation of the parameters X, P and Q for the respective models in table 2. 
In all cases, P is the Lagrange multiplier that ensures the constraint on area. For 
historical reasons, we will often replace Q by -2riCo in the rest of this article. 
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Model g(A, V, M)  - P V  X Q 

Minimal ~TMA XM 0 
BC ZA + a M  S Q 
ADE ZADEA + (a /2)n(M - Mo)2/R~ ZADE at~(M - MO) 
SC 27scA - ~Co m + t;C2a/2 Zsc + ~C2/2 -2~Co 
ADE-SC ~TADE~-scA -- ~CoM ZADE-SE + t~C~/2 -2t~Co + a~(M - Mo) 

+ ~C~et/2 + a/2t~(M - Mo)2/R~ 

3.1.2. Shape equation and scale invariance o f  the local curvature energy 
The formal shape equation (3.2) corresponds to a partial differential equation for 

the shape. This equation can be derived by parametrizing small deviations around a 
stationary shape R0(sb s2) by 

R(s1, s2) = Ro(s1, $2) q- £(s1, s2)n(sl, $2), (3.7) 

where n(sl,s2) is the local normal vector. The stationarity condition 
8~/6e(Sl, s2) = 0 (3.2) then becomes 

P + 2 Z H  - 2n[2H(H 2 - K )  + CoK - AH] = O. (3.8) 

In the original derivation of  this general shape equation a different sign convention 
for H and a shift in the tension X compared to our definition was used (Ou-Yang and 
Helfrich 1989). In equation (3.8), 

A - ( 1 / , / g ) O i ( g U 4 g O j )  (3.9) 

is the Laplace-Beltrami operator on the surface. For  n =  0, equation (3.8) 
corresponds to Laplace's equation which describes the balance of pressure and 
surface tension for soap films. For finite bending rigidity, bending moments 
contribute to this force balance. 

An important general statement about the solutions of the fourth-order partial 
differential equation (3.8) follows from the scale invariance of the local curvature 
energy G. This energy does not depend on the size of the vesicle but only on its shape. 
If  R0(s) is a solution to (3.8), the rescaled shape R0(s) ~ R0(s)/A, with A > 0, is also 
a solution provided X ~ A2Z, P ~ A3P and Co--* AC0 are rescaled properly. 
Writing ), = 1 + e, one obtains from the stationarity condition (3.2), the homo- 
geneity relation 

2XA + 3 P V  + a M = o. (3.10) 

Because of the scale invariance, it is sufficient to consider the solutions of the 
shape equation at fixed Co, where the two possible signs for Co as well as Co = 0 have 
to be considered separately. The solutions to (3.8) then depend only on the two 
parameters ZC0 z, and pC3o . Since for any given value of these two parameters one 
will, in general, find a discrete set of solutions to (3.8), the set of all solutions to (3.8) 
is a 2D manifold with countable degeneracy if trivial rescalings are ignored. Rather 
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than characterizing these shapes by the values of  ZC~ and PC~, we will use two 
geometrical quantities, the reduced volume 

V 
v - ('+/')6"rr'"Ra -< 1, (3.11) 

(where equality holds for the sphere only) and the integrated mean curvature m > 0 
defined in equation (2.56). 

3.1.3. Expansion around the sphere 
The only known analytical solution of  spherical topology of  (3.8) is the sphere. 

Indeed, inserting a sphere with radius R0 into (3.8) shows that it is a solution 
whenever 

PRo + 2Z - t~Co/Ro = 0. (3.12) 

Some insight into the structure of  the solutions to (3.8) can be gained by an 
expansion around the sphere. A slightly deformed sphere can be parametrized by 
spherical harmonics Ytm(O, ~) according to 

R(O,~)=Ro[l+~ut,mYtm(O,O)],l>_o,m (3.13) 

where Iml ~ l and U l _  m = ( - - 1 ) m u ~ , m  . 

Whenever the second variation of ~, 

82~  = (n/2R02) ~ lUl,m]2[l(l + 1) - 2][I(l + 1) - CoRo - pR3/2~],  
l>O,m 

(3.14) 

vanishes around the sphere, stationary shapes bifurcate from it. Here, the station- 
arity (3.12) has been used to eliminate S. The second variation 82q~ does not depend 
on m for symmetry and is identical to zero for the (l = 1) modes which correspond to 
rigid translations of  the sphere. With increasing P, the sphere thus becomes unstable 
with respect to deformations with index l at a critical pressure (Ou-Yang and 
Helfrich 1987, Peterson 1988) 

Pc(l)Rao/X~ _ 2l(l + 1) - 2CoRo. (3.15) 

However, all shapes which result from the sphere by a bifurcation labelled with I > 3 
are unstable with respect to an (1 = 2) deformation (Peterson 1989). According to 
this general result, only the (l = 2) shapes are suitable candidates for local minima 
near the sphere. 

3.1.4. Axisymmetric shapes 
In order to investigate the evolution of  the shapes which bifurcate from the 

sphere at the critical value Pc(l), the fourth-order partial differential equation (3.8) 
has to be solved numerically. In full generality, this task has not yet been 
accomplished. A significant simplification arises if the search for stationary shapes 
is restricted to axisymmetric ones. This restriction is not as severe as it may look in 
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the first place since it turns out that in large regions of the interesting parameter 
space the shape of lowest energy is indeed axisymmetric for vesicles of spherical 
topology. 

For axisymmetric shapes, the shape equation becomes an ordinary differential 
equation of higher order. It can be derived either by specializing the general shape 
equation (3.8) to axisymmetric contours, or by inserting a parametrization of an 
axisymmetric vesicle into the energy functional and then deriving the corresponding 
Euler-Lagrange equations. Shape equations for axisymmetric vesicles have been 
derived and solved using various parametrizations (Helfrich 1973, Deuling and 
Helfrich 1976, Jenkins 1977, Luke and Kaplan 1979, Luke 1982, Peterson 1985b, 
Svetina and Zeks 1989, Miao et al. 1991, Seifert et al. 1991). Recently, there have 
been claims that the shape equations as derived in the cited works are incorrect (Hu 
and Ou-Yang 1993, Naito et al. 1993, Zheng and Liu 1993). In the rebuttal of these 
claims it is pointed out that particular attention has to be given to the variation at 
the boundaries (Jfilicher and Seifert 1994, Podgornik et al. 1995). 

In principle, a systematic procedure can be conceived that exhausts all solutions 
of the axisymmetric shape equations using a shooting method (Seifert et al. 1991). 
Since its practical implementation, however, can become quite time-consuming, one 
rather needs a guided search for solutions. Such a guidance is provided by the 
bifurcations from the sphere, for which the parameters like P and X follow from the 
relations (3.12) and (3.15). These values can be used as good guesses for the shooting 
method. 

For the (l = 2) bifurcation, one thus finds prolate and oblate ellipsoids. Both 
types of shapes constitute a 2D sheet emerging from the sphere which can be 
parametrized by the reduced volume v and the reduced mean curvature m. As one 
follows these shapes away from the sphere, the prolates become continuously more 
dumbbell-like while the oblates become biconcave. Along a 1D curve in this sheet, 
sheets of shapes with broken up/down symmetry bifurcate from these up/down 
symmetric shapes. These are the pear shapes and the stomatocytes, respectively, as 
shown in the scheme in figure 11 (Seifert et al. 1991). 

While the oblates and prolates as well as the pears and the stomatocyte sheets 
have been studied quite exhaustively, little is known about other sheets which 
correspond to bifurcations from the sphere at larger values of l. These shapes are 
unstable close to the sphere (Peterson 1989) but they could become stable for smaller 
reduced volume. 

3.1.5. Limi t  shapes and neck condition 
Sheets of shapes typically end in limit shapes where the contour becomes 

singular. The most prominent limit shape is that for the pears where the diameter 
of the neck has shrunk to zero. In this case, the shape consists of two spheres of 
radius Rn and RB. It turns out that these radii have to fulfil the so-called 'kissing' 
or 'ideal neck' condition (Seifert 1990, Berndl 1990, Miao et al. 1991, Seifert et al. 
1991) 

1/RA + 1/RB = Co. (3.16) 

This condition was first found empirically. It can also be proven by a subtle 
matching procedure (Fourcade et al. 1994). Despite its superficial simplicity, this 
condition has, however, so far evaded any 'simple' proof. A hint to where such a 
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Figure 11. Bifurcation scheme with stationary shapes and their symmetry. 

proof could start follows from the observation that the kissing condition implies that 
the curvature energy density (2H - Co) 2 is the same in both adjacent segments. The 
ideal neck condition applies also to limit shapes for which one segment, say A, is a 
prolate. In this case, RA denotes the curvature of this shape at the pole. 

Other limit shapes include an infinitely thin cylinder (for the prolates), two 
spheres of equal size (also for the prolates), a spherical cavity embedded in a larger 
sphere (for the stomatocytes), as well as shapes which self-intersect along the axis 
(for the discocytes and the stomatocytes) (Seifert et al. 1991). In the latter case, the 
sheets can be extended mathematically beyond the lines of self-intersection. 
Physically, however, such a limit line shows that for those parameters, self- 
interaction of the membrane has to be taken into account. 

3.1.6. Cylinders and unduloids 
Even though the main topic of this paper is that of closed vesicles, a brief look at 

cylindrical shapes is instructive. Cylindrical shapes are axisymmetric and no specific 
boundary condition at the end is implied. Clearly, in the presence of a spontaneous 
curvature Co, cylinders with radii Ro = 1~Co cost no bending energy. Likewise, a 
necklace of spheres with radius Rs = 2/Co has no curvature energy. In the nineteenth 
century, Delaunay found a one-parameter family of constant mean curvature, the 
unduloids, which interpolate smoothly between these two shapes as shown in figure 
12. These shapes resemble the myelin shapes found on the outside of aged red blood 
cells (Deuling and Helfrich 1977). In the absence of a spontaneous curvature, one 
needs a delicate balance of pressure and tension terms to stabilize cylinders. These 
terms can also arise from area and volume constraints (Ou-Yang and Helfrich 1989). 
Analytical expressions of unduloid-like axisymmetric solutions of the general shape 
equations (3.8) with non-constant mean curvature have recently been found (Naito 
et al. 1995). 
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Figure 12. Cylinder, necklace of spheres, and interpolating unduloids. All shapes have 
locally the same constant mean curvature. 

3.2. Complementary techniques for shape determination 
3.2.1. Variational approaches 

Approximation to vesicle shapes can be obtained by minimizing in a restricted 
parameter space. In the apparently earliest paper concerned with shape determina- 
tion of vesicles, Cassini ovals were used to parametrize discocytes in an attempt to 
find red blood cell shapes (Canham 1970). More recently, shapes parametrized by 
spherical harmonics have been used to investigate nonaxisymmetric ellipsoids 
(Heinrich et al. 1993). Certain amplitudes are fixed by the constraints. The 
minimization with respect to the free amplitudes in a subspace l </max is better 
the larger the reduced volume. 

3.2.2. Direct numerical minimization 
Non-axisymmetric shapes can be calculated by direct minimization of the 

curvature energy on a triangulated surface. Starting from some suitable initial 
shape, such an algorithm is supposed to find an adjacent local minimum by down- 
hill minimization. Special care has to be taken to ensure stability and convergence of 
such an algorithm. Reliable results still require considerable computer time. 

Brakke's surface evolver (Brakke 1992) is a quite flexible software package which 
has been used to obtain both vesicles of higher genus as discussed in more detail in 
section 5, and vesicle shapes subject to gravity as discussed in section 6.6 below. A 
somewhat different algorithm has been developed by Wintz to calculate non- 
axisymmetric ellipsoidal shapes (Jaric et al. 1995) and starfish vesicles (Wintz et al. 
1996). 

3.3. Continuous and discontinuous transitions 
Any bifurcation between different branches of shapes can occur as a continuous 

or a discontinuous transition (Seifert et al. 1991). In this section, we discuss the two 
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Figure 13. Continuous (a) and discontinuous (b) transition. Both figures show the energy W 
of the symmetric (s) and asymmetric (a) shapes as a function of the optimal reduced 
area difference m0 ar fixed reduced volume v for (a) large a and (b) small a. Typical 
shapes are sketched along the branches. The dashed curves show the energy of 
unstable shapes. In case (a), all asymmetric shapes are locally stable; the symmetric 
shapes are unstable to the fight of C pear. In case (b), the asymmetric shapes are 
unstable on top of the Gibbs' wing. M pear and the bifurcation point M pr° denote the 
spinodals of the discontinuous transition. The asymmetric branch ends in the limit 
shape L pear (after Miao et al. (1994)). 

variants paradigmatically for the prolate/pear bifurcation. The systematics and 
specific parameters for which each case applies will be given in section 3.6 below. 

In figure 13, the energy W within the ADE model of  the (symmetric) prolates and 
the (asymmetric) pears is sketched for two different values of  a as a function of  the 
reduced area difference m0 while the reduced volume v is kept constant (Miao et al. 
1994). Thus, the same one-parameter family of prolates and pears is involved in both 
cases because at constant v there is only a one-parameter family of prolates and 
pears, respectively. However, the topology of  the energy close to the transition is 
qualitatively different. In the diagram on the left (typical for large a), which 
corresponds to a continuous transition, the symmetric shapes become unstable with 
increasing rn0 beyond the point marked C pea~. In the diagram on the right hand side 
(typical for small a), the symmetric shapes become unstable with increasing m0 
beyond the point marked M pr°. In the latter case, the asymmetric shapes close to the 
bifurcation, however, are also unstable since their energy constitutes the upper part 
of  the 'Gibbs' wing'. This situation corresponds to a discontinuous transition since 
with increasing m0 the symmetric shapes become metastable beyond D pear and 
unstable beyond M F°. With decreasing m0, the asymmetric shapes become 
metastable below Dpear and become unstable below Mp ~ .  In the regime between 
M pear and M pr°, the asymmetric shapes of the upper part of  the Gibbs' wing, in fact, 
correspond to the saddle points (and their energy to the activation energy) of this 
discontinuous transition. The asymmetric shapes close to the bifurcation thus change 
their stability as a function of a. For  large a, they are stabilized by the area- 
difference-elasticity energy, while for small a they become unstable. 

In such a qualitative discussion of the generic feature of  the energy diagrams, 
notions borrowed from thermodynamics have been used. Despite the appeal of  such 
an analogy, it is important to keep in mind that there are fundamental differences 
between a thermodynamic phase transition and a shape transformation of  a vesicle 
which, in fact, more closely resembles a bifurcation. A single vesicle does not form a 
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thermodynamic system in which phases of the same energy could coexist. The vesicle 
is either symmetric or asymmetric but it is not half symmetric and half asymmetric. 
As quantitative energy diagrams show, the activation energy between two locally 
stable shapes is of  the order of n times a numerical prefactor. The shape 
transformation in the case of a discontinuous transition will set in as soon as the 
activation energy between the 'metastable' and the globally stable shape becomes 
comparable to the thermal energy T. Depending on the specific transition, this point 
will be close to the limits of  metastability as given by M pr° and M pear for a 'strong' 
discontinuous transition and may be closer to D pear for a weak transition. In the 
latter case, one may even expect fluctuations of the shape across the weak barrier. 

A bifurcation diagram like figure 13 could easily be mistaken as suggesting too 
simple a view of a discontinuous transition. There is, in general, no guarantee that a 
metastable state will decay to a shape which corresponds to the Gibbs wing of this 
bifurcation if there are several branches of shapes involved (Jaric et al. 1995). 
Knowing what happens after the instability would require formulating properly the 
full dynamics, which is not yet possible even for axisymmetric shapes. 

3.4. A simple model: local curvature energy only 
The simplest model for vesicles consisting of symmetric bilayers is given by the 

local curvature energy G (2.51) and the constraints on area and volume. Because of 
the scale invariance of the curvature energy, this model depends only on one 
parameter, the reduced volume v defined in (3.11). 

The axisymmetric stationary shapes in this model, which can be found by solving 
the shape equations (Seifert et al. 1991), comprise both the oblate ellipsoids (which 
become biconcave discocytes as the reduced volume is decreased) and the prolate 
ellipsoids (which acquire a long cylindrical shape as the reduced volume decreases). 
A third class of stationary shapes are the stomatocytes which bifurcate from the 
oblates through a transition which breaks the reflection symmetry. Both the energy 
of these branches and typical shapes are shown in figure 14. 

Perturbation theory in the spherical limit (Milner and Safran 1987, Heinrich et al. 
1992) shows (i) that the oblates which show up as stationary shapes in the energy 
diagram, in fact, are unstable, and (ii) that there are no stationary (let alone stable) 
non-axisymmetric ellipsoids in this limit. A systematic stability analysis shows that 
the oblates become locally stable for v < v~ b ~- 0-75 (Jaric et al. 1995). The same 
approach also indicates that the prolates remain locally stable for all v. 

Collecting these results, the one-dimensional (1D) phase diagram contains the 
following sequence of absolute minimal shapes with decreasing v as shown in figure 
14: prolates for v > VD ~-- 0'65, oblates for v~ ° < v < VD, with v~ ° ~ 0"59, and 
finally stomatocytes for v < v~ °. The discontinuous prolate/oblate transition has a 
spinodal for the oblates at v~ b, whereas the prolates are (at least) metastable for all v. 
The discontinuous oblate/stomatocyte transition has spinodals at v~ ° _~ 0-66 for the 
stomatocyte and v~ ° ~ 0.51 for the oblate, respectively (Seifert et al. 1991). 

Three facts about this simple model should be emphasized. (i) The biconcave 
discocytes have the lowest energy in a narrow range of reduced volume v. Thus, 
neither a negative spontaneous curvature nor any specific bilayer feature is necessary 
to obtain red-blood-cell-like shapes. (ii) Budding does not occur in this model since 
pears do not show up as stationary shapes in this variant. (iii) So far, there is no 
indication of the presence of locally (let alone globally) stable non-axisymmetric 
shapes in this model for any v. 



46 U. Seifert 

2.5 

G / 8 ~  

2 

1.5 

1 
0 1 

C st  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .N"~... M sto 
stomatocytes -- - D s t ~  

prolates ~ 

0.2 0.4 0.6 0.8 
V 

Dsto 

0 © ©  
0.05 0.3 0.591 

D 

C=C3CzzC3 

0.592 0.651 0.652 0.8 0.95 

Figure 14. Energy G and contours of stationary shapes as a function of reduced volume v. 
All shapes have the same area. D and D ~t° denote the discontinuous prolate/oblate 
and oblate/stomatocyte transition. The oblates and the stomatocytes lose 
metastability at C st° and M st°, respectively. Beyond the diamond, the oblates self- 
intersect (Seifert et al. 1991). 

3.5. Bilayer-couple model 
In this variant, a second constraint is imposed on the reduced mean curvature m 

which gives rise to a 2D phase diagram. A fourth class of axisymmetric shapes, the 
pears, as well as non-axisymmetric ellipsoids, now become relevant (Svetina and 
Zeks 1989, Seifert et al. 1991). 

The axisymmetric shapes show up in two separate regions of the phase diagram 
shown in figure 15. The prolates and the pears occur for larger values of  m, and the 
oblate shapes and the stomatocytes for smaller values of  m. In both cases, the 
reflection symmetry is broken continuously at C st° and C pear, respectively. The pears 
and the stomatocytes are both bounded by a limit line. For  the pears, this limit line 
L p~r is the vesiculation line where the neck diameter connecting the two spherical 
compartments has shrunk to zero. The location of  this line follows straight from 
geometry as (Svetina and Zeks 1989, Seifert et al. 1991) 

v~ear(m) = 1 - 3[m/(4r 0 - 112/2 - [m/(4rc) - 1]3/2, (3.17) 

with 1 _< m/ (4n )  _< x/2.  This limit line starts at the point E where two spheres with 
equal radius sit on top of  each other and ends at the point S of  a sphere. The same 
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Figure 15. Phase diagram of the bilayer coupling model. This phase diagram shows the state 
of lowest energy as a function of the reduced area difference m and of the reduced 
volume v. C pe~r denotes the line of continuous transitions between up-down 
symmetric prolate/dumb-bell shapes and up-down asymmetric pear shapes. Likewise, 
C st° denotes the locus of the continuous transitions between the oblate/discocyte 
shapes and the stomatocytes. L pear and L st° are  limit curves which correspond to 
budding and the inclusion of a spherical cavity, respectively. S corresponds to a 
sphere. In the region between the prolate/dumb-bell and discocyte regime, non- 
axisymmettic ellipsoids have lowest energy. This region is separated by continuous 
transitions C pr° and C °b from the corresponding axisymmetric shapes. E denotes the 
point where two spheres of equal radii are sitting on top of each other. Along the line 
SI st°, the two poles of the shape touch each other. In the shaded areas, the shape of 
lowest energy has not been determined so far. (After Seifert et aL (1991).) 

two points are also connected by the line C pear of continuous transitions between the 
prolates and the pears. 

The stomatocytes are likewise bound by a limit line of  shapes L st° which consist 
of  a sphere that  encloses a smaller sphere. Both spheres are connected by an ideal 
neck. The locus L st° is also given by (3.17) with 0 < m/(4zc) < 1. 

The gap between the prolates and the oblates has been conjectured as filled with 
non-axisymmetric ellipsoids, which are separated by two continuous transitions C °b 
and C pear f rom the axisymmetric shapes (Seifert et al. 1991). This prediction has since 
been verified by the variational approach (Heinrich et al. 1993). 

Significant parts of  the phase diagram have not yet been systematically explored. 
There are three reasons for our lack of  knowledge about  shapes o f  lowest energy in 
these regions. First, there is a region above the oblates and to the left of  v _~ 0.7 
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where shapes with different symmetry, such as starfish vesicles as described in section 
3.10.4, or shapes with only two symmetry planes (Schnitzler 1993), become relevant. 
Secondly, above the limit line L pear and below L st°, two types of shapes can occur 
which have not yet been investigated in detail either. One would expect that either 
the necks remain ideal and one of the spheres becomes a prolate, or that shapes 
which involve three compartments with finite necks occur. From a more physical 
perspective one could consider how the membrane-membrane interaction, such as 
the van der Waals interaction in the region of the necks, becomes a relevant 
parameter for a faithful description of the physics in this region (K~is et al. 1993). 
The same remark applies to a third region which is to the left of the line SI st° where 
the membrane self-intersects. Again, further energy terms should be invoked here. 
One could either apply just self-avoidance of the membrane, or one could allow for 
self-adhesion, in which case at least one more parameter, such as the adhesion energy 
becomes relevant. The latter case has recently been studied in the context of adhering 
vesicles (Kraus et al. 1995). 

3.6. Area-difference-elasticity model  
In this variant, the constraint on the total mean curvature m is relaxed. It 

becomes an elastic energy which arises physically from the relative compression and 
expansion of the two monolayers as derived in section 2.4. In dimensionless units, 
the energy W as defined in (2.50) is given by 

W ( a ,  v, m0) = e;[G(v, m) + a ( m  - m0)2/2], (3.18) 

where the scaled optimal area difference m0 has been introduced in (2.56). Since the 
ADE model contains the three parameters v, m0 and a, its phase diagram is more 
complex than that of the BC model, even though no new shapes occur due to the fact 
that the manifold of all shapes is only (degenerate) two-dimensional. Two fairly 
detailed studies within this model focus on the budding regime (Seifert et al. 1992, 
Miao et al. 1994) and the prolate-oblate transition (Heinrich et al. 1993). A 
comprehensive study presents the phase diagram and stability limits for reduced 
volume v>0.6 and a particular experimentally relevant value of the material 
parameter a (Jaric et al. 1995). 

3.6.1. Mapping property  
As a recurrent theme in the ADE model, transitions which are continuous in the 

BC model (a = 0o) become discontinuous at a tricritical point with decreasing a 
(Seifert et al. 1992, Miao et al. 1994, Heinrich et al. 1993). This phenomenon applies 
to the budding transition, as well as to the oblate-ellipsoid-prolate transition. It 
originates in the equivalence of the ensembles discussed in section 3.1.1, which leads 
to a mapping of the energy diagrams from the BC model to the ADE model. 

As the correspondence between the variants of the curvature model implicit in 
equations (3.3) and (3.5) shows, any particular shape with v and m is a stationary 
shape for all parameter sets which obey the relation 

m~ n) = m (n) + (OG/Om)/o~. (3.19) 
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Here, and in the following, the derivative of the bending energy G(m) (n) is taken at 
fixed v along a branch of stationary shapes labelled with (n). For each stationary 
shape, (3.19) establishes a one-to-one mapping from (m (n), v) in the BC model 
to (m~ n), v) in the ADE model. 

This mapping is very useful for the determination of the phase diagram in the 
ADE model from that of the BC model, since it allows us to map, in particular, the 
location of symmetry breaking bifurcations such as C pear, C pr°, C °b and C st° as well 
as the location of the limit lines L pear and L st° to any finite a subsection. One just 
needs to know re(v) and (OG/Om) = 2c0(v) of these shapes. 

For the limit lines Lpear and L st°, the mapping can be performed analytically since 
re(v) and co(v) of these shapes are known from equation (3.17) and the ideal neck 
condition (3.16) if the latter is written in dimensionless variables. One thus obtains 

mO,L(V) = m(v) + [m(v)/arc]/ {[m(v)/47z] 2 - 1). (3.20) 

The determination of the phase diagram in the ADE model from that of the BC 
model, however, is non-trivial since the mapping (3.19) can become non-monotonic 
as a function of re. Indeed, differentiating 3.19) with respect to m leads to the relation 

Om~n)/Om.= 1+ (02G(n)/Om21v)/OZ , (3.21) 

which shows that with increasing a, the mapping (3.19) becomes non-monotonic 
whenever OZG(n)/Om 2= - G(n)'(v) is negative somewhere along a branch. For an 
illustration of this phenomenon, which ultimately changes the character of a 
bifurcation from continuous to discontinuous, we will consider the prolate-pear 
bifurcation where this mechanism has been studied in detail. 

Numerically established properties of the symmetric and the asymmetric 
branches imply two different scenarios for the prolate/pear bifurcation in the 
ADE model, corresponding to the continuous and discontinuous transitions, C pear 
and O pear, respectively (Miao et al. 1994). (i) For a > aT(v), the mapping (3.19) is 
monotonic for both the symmetric and asymmetric branches, and the topology of the 
energy diagram of the BC model is well preserved, as illustrated in figure 13(a), so the 
symmetry-breaking transition is continuous. The corresponding phase boundary 
C pear is given by 

mo,c = me + G(s'a)t(v, mc)/a. (3.22) 

(ii) When a < aT(v), the mapping (3.19) becomes non-monotonic for the asym- 
metric branch, while it remains monotonic for the symmetric branch. As a 
consequence, a 'wing' structure in the energy diagram, as shown in figure 13(b), 
appears. The position of the cusp on the left side of the wing is determined by 
G(a)"(v, m) = -~ .  This relation determines the spinodal Mpear, for the pears. The 
corresponding discontinuous budding transition occurs at Dpear, the precise location 
of which must be computed numerically. 

The tricritical point T pe~r at which C pear and D pear meet has coordinates (at(v), 
m0,r(a)), where aT satisfies the condition aT = -G(a)'(vr, me), and m0,a- is given 
through the mapping (3.19). 
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3.6.2. Phase diagram f o r  a = 1'4 
The phase diagram of  the ADE model as shown in figure 16 has been obtained by 

using this mapping procedure and the following three methods (Jaric et al. 1995). 
First, axisymmetric shapes were calculated by solving the shape equations. Secondly, 
a systematic stability analysis of  these shapes was performed. Finally, the relevant 
non-axisymmetric shapes were calculated by direct minimization. The choice of  
a = 1.4 corresponds to the measured value for SOPC (Miao et al. 1994, Waugh et aL 

1992). 
While the phase diagram refers to the shapes of  lowest energy only, the stability 

diagram shown in figure 17 plots the regions in (v, m0) over which each of  the low- 
lying stationary branches n are locally stable. These regions, which in general 
overlap, represent the maximum domains of  stability/metastability for each branch 
and include, of  course, the corresponding regions of  the phase diagram. 

m 0 

4 n  

2.0 

1.5 

1.0 

0.5 

0.0 

0.6 0.7 0.8 0.9 1.0 

V 

Figure 16. Phase diagram of the ADE model for a = 1-4. This phase diagram shows the 
state of lowest energy as a function of the reduced equilibrium area difference m0 and 
of the reduced volume v. Between the limiting lines Lpear and L st° and for reduced 
volumes v > l/x/2, the only equilibrium shapes which appear are pears, prolates, 
oblates, stomatocytes, and elliptical non-axisymmetric shapes (has). Other phases 
occur outside the limiting lines and for v < l/x/2, i.e. in the shaded region. 
Characteristic equilibrium shapes are illustrated for each phase and for the two 
limiting lines. First-order, discontinuous transitions (D) are shown as dashed curves; 
second-order, continuous transitions are shown as full curves. At the special point E, 
the radii of the two spheres of the limiting pear shape become equal. T1 and T2 are 
tricritical points, CEP is a special critical endpoint. In the limit v ~ 0% the 
boundaries L pear and D pear/pr° go to plus infinity and the boundaries L st° and D st°/°bl 
go to minus infinity, as may be shown analytically (Seifert et al. 1991, Miao et al. 
1994). Locations of the special points are (v = 1A/2, T1 (v = 0.730), T2 (v = 0-645), 
and CEP (v = 0.827). Note the narrow sector where the non-axisymmetric ellipsoids 
are stable, to the left of CEP between D nas/pr° and C na~/°bl (Jaric et al. 1995). 
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Figure 17. Stability diagram of the ADE model for a = 1.4 over the same region covered by 
figure 16. The textured areas identified by the key indicate the regions of local 
stability of the five phases shown. The limiting lines L and the continuous transitions 
C are the same as in figure 16. In addition, the spinodal lines M mark other limits of 
local stability (Jaric et al. 1995). 

3.7. Spontaneous curvature model 
The phase diagram for the spontaneous curvature model depends on the two 

parameters v and the scaled spontaneous curvature e0 as defined in equation (2.56). 
This phase diagram is shown in figure 18, as obtained by an analysis o f  the 
appropriate energy diagrams of  the stationary shapes (Seifert et al. 1991). So far, 
there is no evidence that non-axisymmetric shapes could be relevant anywhere in the 
phase diagram. 

In the region of  moderate e0, the phase diagram is dominated by four large 
regions of  axisymmetric shapes. For positive e0, these are the pears which are 
separated by a strong first-order transition f rom the prolates. With decreasing co, the 
prolates become oblates via another first-order transition, which becomes weak in 
the spherical limit where it hits the sphere at e0 = -1 .2 .  For  negative co, the oblates 
undergo another  strong first-order transition to the stomatocytes. In fact, all but one 
of the transitions found so far are discontinuous in this model. 

There are significant parts of  the phase diagram where either self-interaction of 
the membrane  has to be taken into account, or where the analysis o f  the 
axisymmetric stationary shapes is still incomplete, which is particularly true in the 
vicinity of  the point E where two spheres of  equal size sit on top of  each other. This 
shape does not cost energy in this model. For large positive c0, a thorough 
investigation shows that a whole sequence of  multiple vesiculated shapes appears 
since the energy now prefers spheres of  radius 2/Co (Miao et aL 1991, Miao 1992). 

3.8. Temperature trajectories 
Any detailed comparison of  the theoretical results with experimental data 

requires an understanding of  how theoretical quantities such as the reduced volume 
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Figure 18. Phase diagram of the spontaneous curvature model. This phase diagram shows 
the shape of lowest bending energy as a function of the scaled spontaneous curvature 
co and of the reduced volume v. The regions where the prolate/dumb-beU, pear- 
shaped, oblate/discocyte and stomatocytes have lowest energy are separated by 
transition lines. The line C pear denotes a continuous transition. All other transitions 
are discontinuous. At E, two spheres of equal size sit on top of each other. The lines 
L st° and L pear correspond to limit shapes with infinitesimal neck. Beyond the lines 
SI °b and SI st°, self-intersecting states occur. In the shaded area, the shape of lowest 
energy has still to be determined. (After Seifert et al. (1991).) 

v or the equilibrium area difference m0 depend on experimentally accessible 
parameters  such as temperature or osmotic conditions (Berndl et al. 1990, Seifert 
et al. 1991). 

An increase in temperature from an initial value To leads to thermal expansion of  
the area of  the two monolayers. I t  will be necessary to admit a small asymmetry 7 of  
the expansion coefficients of  the two monolayers, a n d ,  defined as 

1 0 A  in 1 OA ex 
t i n  _ _ A in OT ---- t3 and flex = A ex OT -- (1 + 7)~. (3.23) 

A typical value is/3 _~ 6 x 10-3K -1 (Evans and Needham 1987), which is one order 
of  magnitude larger than the expansion coefficient for the enclosed aqueous solution. 
The latter can therefore be neglected. For  temperature-independent expansion 
coefficients, the temperature trajectory is given by 

']} (3.24) 

parametrized by an initial point with m0 = mo(To) and v = u(To) on the trajectory 
(Berndl et aL 1990, Seifert et al. 1991). The exponents are given by 
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2 - 3' - 4/3d//3 (3.25) 
q - - - - (2+7) /3  and r =  3 ( 2 + 7 )  ' 

where/3d is the thermal expansion coefficient of  the bilayer. The exponent r can be 
bounded theoretically by the following two limiting cases. (i) I f  the monolayer 
separation 2d does not change with temperature, one has = 0 which leads to r = 1/3. 
(ii) I f  d decreases with temperature in such a way that the bilayer volume as given by 
NAd remains temperature independent, i.e. --- -/3, one has r = 1. Experiments using 
nuclear magnetic resonance indicate that the latter case is a good approximation 
(Nezil and Bloom 1992). Without asymmetry, i.e. for = 0, one obtains the simple 
expression 

mo(v) = too(To) (3.26) 

The dimensionless coefficient b in (3.24), which determines the effect of  an 
asymmetric expansion, is given by 

AeX(T0) 1 R0(r0) 
b = (3.27) 

8 d ( T o ) { x A i n ( T o )  } l/2 - 4 d (To )  " 

For giant vesicles, this coefficient is of  the order of  103-104 , which indicates that 
even a tiny asymmetry of  the order of  10 -3 has an enormous influence on a 
temperature trajectory as demonstrated first within the BC model (Berndl et al. 
1990). The physical basis for this surprising effect is the length-scale separation 
alluded to in section 2. The relevant scale for changes in the optimal area difference is 
dRo, whereas the scale for the absolute change in area is R0 z. Thus, small differences 
in the thermal expansion of  the two layers get 'magnified' by a factor Ro/d. As a 
consequence, if the outer monolayer expands more than the inner one, the additional 
area accumulated in this outer layer will cause budding since the formation of  buds 
increases the area difference. Likewise, a stronger increase of the area of  the inner 
monolayer induces a transition to the discocytes and the stomatocytes. 

This sensitive dependence of  the thermal trajectory in the phase diagram 
indicates that it will be rather difficult in general to reproduce experiments on vesicle 
shape transformations. Presently, the available purity of the lipids does not exclude 
the presence of  residual impurities which could result in an asymmetric expansion of 
the order of  10 -3 . It would be highly beneficial to investigate this effect systematically 
by deliberately adding traces of  a second (miscible) component to one of  the 
monolayers. However, one then has to be aware of  additional effects arising from 
the mixture as discussed in section 8. 

For  a complete prediction of  the temperature trajectory, the initial value 
(too(To), v(To)) has to be known. For  axisymmetric vesicles, the volume, as any 
other geometrical quantity such as the total mean curvature, can be inferred in 
principle from the mean contour of the vesicle, if the orientation of the symmetry 
axis is known. However, thermal fluctuations, as well as rotational diffusion of  the 
vesicle, limit the resolution. The reduced volume ha~thus been obtained within one 
percent accuracy. 

The optimal area difference m0 is not yet accessible to any non-invasive direct 
measurement. According to the present understanding, this quantity depends on the 
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number of  molecules in the two monolayers as the vesicle is formed. If one assumes 
that the vesicles are relaxed with respect to the non-local bending energy right after 
they have been formed, i.e. m = m0 > 0, the dimensionless equilibrium area 
difference m0 would depend on the specific shape the vesicle acquired after closure. 
The difference between, for example, a sphere and a capped cylinder leads to a 
difference of  O(1) in m0 (Miao 1992), which then leads to different temperature 
trajectories even if the thermal expansion is symmetric. Recently, the optimal area 
difference m0 has been measured for vesicles aspirated in micropipettes from which 
thin tethers are extruded (Evans and Yeung 1994, Yeung 1994). The result shows a 
broad distribution of  values around m0 = 0 which would indicate that the area 
difference does not adjust to the shape at the moment of closure. Whether such a 
distribution of m0 is specific to the set-up of that experiment or whether it holds 
generally remains to be seen. 

An indirect way of  measuring the equilibrium area difference has been attempted 
(Drbereiner 1995). Since the manifold of all shapes is one-dimensional for fixed 
reduced volume, measuring the volume and at least one quantity which depends on 
the contour allows us to map an experimental shape on a theoretical shape and thus 
measure the corresponding equilibrium area difference. Drbereiner has chosen to use 
a particular expansion coefficient when the contour of a prolate is expanded around 
a circle. At least two effects complicate such an approach. First, the prolates have to 
be filled with a slightly denser liquid so that they sink to the bottom of the chamber 
to prevent 3D rotational diffusion. Secondly, the measured mean contours deviate 
from the contours of  lowest energy due to the effect of  finite thermal fluctuations. 
Both effects should be included in the theoretical analysis, as discussed in sections 6.6 
and 4.1.4, respectively. 

3.9. Budding transition 
The budding transition is the most thoroughly studied shape transformation. Its 

appeal originates not only in the close resemblance to biologically important 
phenomena such as exo-cytosis or budding of  vesicles at the golgi apparatus, but 
also from conflicting experimental data described below. This discrepancy fostered 
intense theoretical and experimental efforts which finally seem to have reached a 
unifying coherent picture. 

3.9.1. Apparently conflicting experimental scenarios 
Early studies of  temperature-induced budding exhibited two apparently conflict- 

ing results. (i) For  DMPC vesicles, a slow increase in temperature was reported to 
lead to a continuous transition from a prolate to a pear with weak up-down 
asymmetry which upon further temperature change jumps to a vesiculated shape 
with a narrow neck (K/is and Sackmann 1991). (ii) For  SOPC vesicles in sucrose/ 
glucose solutions, discontinuous budding was observed without the pear-shaped 
intermediates (Dtbereiner 1995). A similar sequence has also been obtained for 
DMPC vesicles provided they are kept under some tension before the heating starts 
(K/is and Sackmann 1991). This second scenario is compatible with the theoretical 
prediction within the ADE model for a realistic value of  a. 

An early theoretical explanation of  the continuous transition in the first scenario 
has been given in the context of  the BC model (Berndl et al. 1990). However, the 
apparent transition from a wide neck to a narrow neck is not  even contained in any 
of  the curvature models discussed so far. Further energy terms of  the type 
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q ( m -  m0) 3 could, in principle, provide such a scenario (K~is et al. 1993) but only 
with the ad hoc assumption of an amplitude q of the order of 102. However, one 
expects any corrections to the area difference elasticity (2.50) arising from elastic 
interactions to be of the order of d/Ro "~ 10 -3. This magnitude is not sufficient to 
cause a discontinuous transition between two different neck sizes. 

3.9.2. Spinodal fluctuations 
A thorough experimental analysis in combination with a simple theoretical 

picture provides an attractive resolution to the apparently conflicting earlier 
measurements by interpreting the weak pears of scenario (i) above as long-lived 
spinodal fluctuations (D6bereiner et al. 1995). Pear-like fluctuations in the prolate 
phase thus get more pronounced and take longer to relax as the budding instability is 
approached. These slow fluctuations may have been mistaken as equilibrium shapes 
in the earlier study (K~is and Sackmann 1991). 

Theoretically, the phase diagram of the ADE model (figure 16) predicts a 
discontinuous transition from the prolate to the pear for all values of the reduced 
volume and any reasonable value of a for a single membrane. Thus, the details of the 
temperature trajectory do not matter as long as the trajectory hits the budding 
transition. With decreasing temperature, the prolate first enters the metastable 
regime where the lowest energy shape is pear-like but the prolate remains stable 
against local fluctuations. As the limit of stability at u = Yb(m0), denoted by M pr° in 
figure 17, is approached, the prolates become locally unstable to a pear mode, which 
eventually carries it over an energy barrier and down to the asymmetric minimum- 
energy shape, which is budded. At the Landau-theory level, one can characterize this 
sequence of events by an energy functional (Seifert 1995c, D6bereiner et al. 1995) 

V(a) = a (~ a 2 1 _4 -- 1 _6"~ 
g u / 

(3.28) 

where a is the amplitude of the mode which becomes soft at Vb, and the remaining 
parameters, r, g > 0, and u > 0, are dimensionless. The symmetrical (prolate) branch 
loses metastability as ( u -  u b ) ~  r ~ 0 +. Amplitude fluctuations are given at the 
Gaussian level by (a 2) = k B T / n r ,  which is only expected to be valid when 
(a 2) << r/g, so the non-Gaussian terms may be neglected. Indeed, when this criterion 
is not satisfied, there is significant probability of escape over the barrier. It follows 
that there is a range of reduced volume, gkBT/n  << P << 1, near but not too near the 
budding instability, for which the static fluctuations are predicted to grow as 
( v  - vb) -1 

Such a dramatic increase in the amplitude of pear-like fluctuations has indeed 
been observed experimentally (D6bereiner et al. 1995). Snapshots of the contour 
fluctuations of a prolate fixed to the bottom of a measuring chamber by gravity due 
to a slightly denser interior fluid have been recorded by video microscopy. The 
quantitative analysis is based on an expansion of the angle ~b(s) between the normal 
to the axis and the local tangent to the contour in suitable modes. 

Discussion of the time dependence of the modes requires a dynamical theory, 
which will be introduced in section 7. Since the motion of these length-scales is 
determined by dissipation in the surrounding water, the soft mode should obey a 
dynamical equation of the purely dissipative type (Seifert 1995e, D6bereiner et al. 
1995), 
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Oa/Ot = - r o v /Oa  + ~, (3.29) 

where ~ is the usual noise term. (3.29) simplifies to Oa/Ot = - F n r a  + ~ near a = 0, 
when the Gaussian term dominates. The kinetic coefficient F = c/rlR 3 is dominated 
by the solvent viscosity ~7 = 10 -2 erg s cm 3 for water; the appropriate length scale for 
the unstable mode is the size scale R -~ 10 Ixm of  the vesicle. The numerical factor c is 
of order unity. In the Gaussian regime, (3.29) predicts 

(a(t)a(O)) = (a 2) exp (- t /~-) ,  (3.30) 

with ~- = (Fnr) -1 ,,~ (v - Vb) -~. Such a growing correlation time is consistent with 
observation (D6bereiner et al. 1995). 

Behaviour near such a spinodal that describes the limit of stability of  a 
metastable state is analogous to behaviour near a second-order phase transition. 
However, the analogy with phase transitions should be used carefully (D6bereiner et 
al. 1995). In a true thermodynamic second-order transition, both the characteristic 
fluctuation amplitude and the dominant relaxation time ultimately diverge at the 
transition but with exponents renormalized from their mean-field values by 
cooperative effects due to the many long-wavelength degrees of freedom. For a 
spinodal, on the other hand, this divergence is never achieved because the fluctuating 
state is globally unstable and decays when the fluctuations reach a finite size. 

For  a simple mechanical system like the vesicle, there is only one unstable mode, 
so no renormalization occurs. The attractive feature of this mechanical instability is 
to have a system in which the energy barrier in the metastable state is only a few 
times T, so that significant pretransitional fluctuations can occur, and in which the 
height of the barrier can be controlled delicately on the scale of T. 

While the onset of the budding instabifity can thus be quantitatively understood, 
beyond a more qualitative discussion of the relevant time-scales (Fischer 1994) little 
can be said about the dynamics of the decay of the prolate towards the new pear- 
shaped minimum. Even though the deterministic dynamics of  an axisymmetric 
contour, including the hydrodynamics of the surrounding liquid, can be formulated 
(Langer and Seifert 1996), the numerical solution of these equations is still plagued 
with spurious instabilities. 

3.10. Other shape transformations 
Even though the budding transition has been studied most intensively, there are 

further shape transformation which should also be related to the theory. 

3.10.1. Re-entrant trajectory 
The re-entrant transition, as shown in figure 2, has been reported to show no 

hysteresis at all (Berndl et aL 1990, K~is and Sackmann 1991). This transition could 
be explained within the bilayer-couple model as demonstrated by the theoretical 
contours shown in figure 2 (Berndl et al. 1990). The character of this transition will 
also persist in the ADE model at large enough a, but not for a ~ 1. Taking the 
experiment as well as the theory seriously, there are two possible explanations. (i) 
Vesicles for which this transition has been observed could be multi-lametlar, which 
would correspond to an effectively larger a (Svetina and Zeks 1992). (ii) For small 
reduced volume and a _~ 1, the transition between the prolate and the pears is 
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predicted to be only weakly discontinuous. Experimentally, it may be difficult to 
distinguish such a weak transition from a continuous transition. 

3.10.2. Discocyte-stomatocyte transition 
The discocyte-stomatocyte transition as shown in figure 3, was first reported to 

be continuous (Berndl et al. 1990). However, closer inspection revealed a discontin- 
uous character (K/is and Sackmann 1991). One could expect that the discrepancy can 
be attributed again to slow spinodal fluctuations as discussed above for the budding 
instability. Experimentally, this transition occurs more rarely than budding. This 
fact fits with the theoretical picture Of the ADE model since one either needs a 
considerable negative asymmetric expansion coefficient % or an initial area difference 
mo(v = 1) substantially smaller than the relaxed value 4~, to reach this part of the 
phase diagram. 

3.10.3. Equilibrium area difference as control parameter 
There are two effects which indicate that m0 can be modified by other factors 

than temperature. Firstly, redistributing lipids from one monolayer to another by 
applying a transmembrane pH-gradient induces shape transformations similar to 
those predicted theoretically as one increases m0 (Farge and Devaux 1992, Mui et al. 
1995). Secondly, the effect mentioned above, that precooling leads to budding can, 
somewhat speculatively, also be related to changes in m0. It has been proposed that 
osmotically enforced flow of water through the membrane drags along lipid 
molecules (Boroski et al. 1981). Since precooling also forces liquid to flow through 
the membrane, one could wonder whether such a treatment also causes an increase in 
m0. In the phase diagram, shown in figure 16, this would shift the initially spherical 
vesicle upwards. A temperature trajectory starting at the sphere would then reach the 
budding line for a smaller temperature increase, and the size of the buds should be 
smaller. So far, there are no systematic tests of such a hypothesis. 

3.10.4. Starfish vesicles 
Vesicle shapes at smaller reduced volume than described so far show surprising 

new features. These starfish shapes have first been found in multi-component 
membranes. In a quite comprehensive study (Hotani 1984), various starfish vesicles 
were found for a phospholipid-cholesterol mixture by osmotic deflation. In fact, in 
another study (Duwe 1989), the occurrence of such a shape has been speculated to 
derive from lateral phase segregation within the membrane. More recently, it has 
been shown both experimentally by using single component membranes and 
theoretically by minimizing the curvature energy on a triangulated surface that 
starfish are generic at small reduced volume even for homogeneous phospholipid 
bilayers (Wintz et al. 1996). 

The most striking feature of these shapes, one of which is shown in figure 19 as 
experimentally observed and theoretically calculated, is their construction principle. 
All these shapes are built up using three structural elements. The centre consists of a 
quite flat, nearly axisymmetric core. Attached to this core are cylindrical arms which 
end in spherical caps. The radius of the caps is somewhat larger than the radius of 
the cylinder. The overall shape is quite flat. 

The numerical work shows that the different starfish branches nearly overlap and 
that bifurcations take place in too narrow a region to be unambiguously resolved 
even with very fine triangulation and using substantial computer time (Wintz et al. 
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Figure 19. Seven-armed starfish vesicle. Three perpendicular views are shown of  both an 
experimental and a theoretical shape (Wintz et al. 1996). 
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1996). The systematics of the respective transitions between the different starfish is 
thus too intricate to allow for as complete a picture as was obtained in the high- 
volume region. An experimental consequence of this theoretical finding is an extreme 
sensitivity of the shape transformations to the actual trajectory in the phase diagram, 
i.e. from minute details in the preparation. 

3.10.5. Membranes  in electric f ields 
Shape transformations can also be induced by the action of an electric field. 

Strong fields lead to electroporation of the membrane (Crowley 1973, Dimitrov 
1984, Winterhalter and Helfrich 1987, Needham and Hochmuth 1989), and 
electrofusion of vesicles and cells (Zimmermann 1982, Neumann et  al. 1989, Chang 
et al. 1992). Work on the geometrical aspects of vesicles in moderate fields is scarce. 
Small fields lead to deformations of vesicles (Bryant and Wolfe 1987, Kummrow and 
Helfrich 1991, Hyuga et al. 1991 a, b, Peterson 1992, Niggemann et al. 1995). Electro- 
osmosis can lead to self-propulsion of vesicles if a non-uniform distribution of ion 
pumps can be maintained (Lammert et al. 1996). Non-rigid vesicles will then suffer 
significant deformation. 

3.11. Shape changes induced by optical tweezers 
A very promising new technique used to induce and study shape transformations 

has recently been developed using optical tweezers. The action of a laser spot on a 
bilayer causes quite dramatic shape changes. Three different geometries have been 
studied so far. (i) Cylindrical vesicles, as shown in figure 7, develop a propagating 
peristaltic mode which may finally transform the cylinder into a string of pearls (Bar- 
Ziv and Moses 1994). (ii) Flaccid prolate vesicles become more round and may even 
rupture, thus expelling enclosed smaller vesicles (Bar-Ziv et al. 1995a). (iii) The 
separation profile of two parallel bilayers pinched together locally by the tweezer 
develops a characteristic bulge away from the trap (Bar-Ziv et al. 1995b). 

The physical mechanism behind these phenomena is not yet completely under- 
stood. One effect of the laser seems to be the creation of a lateral tension in the 
membrane due to the dielectric effect. In the frequency range studied, lipid is 
optically denser than water. Thus it gets attracted to the region of higher fields. A 
typical lateral tension can be estimated to be of the order of 10 -3 erg cm 2 (Nelson et 
al. 1995). 

The pearling instability can be quantitatively explained as a modified Rayleigh 
instability induced by such a tension as discussed in sect. 7.6. The rounding of 
vesicles can be understood qualitatively by recognizing that the laser decreases the 
area of the vesicle, thus increasing the reduced volume. A subtle role, however, is 
played by the area pulled out of thermal fluctuations for which a quantitative 
description will have to use the concept of effective tension, as developed in section 
4.2. So far, rupture of the membrane cannot be understood quantitatively by using 
accepted values for the line tension of a hole (Bar-Ziv et al. 1995a). The local 
pinching of membranes can be related to focal adhesion, as discussed in section 6.7. 

4. Fluctuations 
The shape of lowest energy discussed so far does not include any effect from 

thermal fluctuations. For phospholipid membranes, these fluctuations, which reflect 
the remarkable softness of the membrane, are usually not large enough to invalidate 
the notion of a well-defined mean shape. Experimentally, these fluctuations can be 
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analysed by video microscopy. A severe restriction arises from the fact that only 
contour fluctuations in the focal plane are visible. Therefore, only fluctuations 
around a spherical mean shape from which the bending rigidity can be extracted 
are relatively easy to investigate. 

Fluctuations around non-spherical shapes, however, are difficult to analyse 
because rotational diffusion of the shape leads to a drifting focal plane. Reconstruc- 
tion of the 3D fluctuations from such a 2D fluctuating contour has not yet been 
feasible. Rotational diffusion can be prevented by weak adhesion. Thus, the 
fluctuations of adhering red blood cells modelled as discocytes with shear elasticity 
(Peterson et al. 1992, Strey et al. 1995) and prolates (D6bereiner 1995, D6bereiner et 
al. 1995) have been analysed. 

Theoretically, thermal fluctuations around a non-spherical shape of lowest 
energy can be calculated by expanding the curvature energy about this shape. Due 
to the presence of the geometrical constraints, such an expansion is not entirely 
straightforward. Peterson in a series of studies addressed this problem first for the 
spontaneous curvature model (Peterson 1985a, b, c) and later for the bitayer coupling 
model (Peterson et al., 1992, Peterson 1992) applying it in both cases to discocytes. 
Within an alternative scheme all variants of the curvature model can be treated on an 
equal footing (Seifert 1995a). This approach allows us to elucidate the crucial role of 
the constraints in a more transparent way. 

The area constraint restricts fluctuations. This effect can be attributed somewhat 
phenomenologically to an 'effective' or 'entropic' tension (Helfrich and Servuss 1984, 
Milner and Safran 1987, David and Leibler 1991). The small-scale fluctuations create 
an entropic tension for the large-scale deformations since they all have to share the 
fixed total area of a vesicle. For quasi-spherical vesicles such a tension was measured 
by an ingenious experimental set-up using aspirated vesicles (Evans and Rawicz 
1990). A precise quantification of this effective tension and a prescription for how to 
calculate it for a non-spherical mean shape has also been given (Seifert 1995a). 

The discussion starts in section 4.1 with fluctuations around a non-spherical 
mean shape. The emphasis will be on the role of the constraints and on symmetry 
considerations which help us to understand some qualitative properties of fluctua- 
tions and the stability of axisymmetric shapes (Seifert 1995a). The basic expansion 
parameter for thermal fluctuations is the ratio T/n ,  which is considered to be small. 
Such an expansion breaks down in two limits. If a bifurcation or instability is 
approached, one of the shape modes becomes soft. This case has (somewhat 
prematurely) been discussed in section 3.9.2 above for the budding instability. The 
expansion in T i n  also breaks down in the spherical limit, where with the quantity 
1 - u  another small parameter enters. Section 4.2 is devoted to the spherical limit 
and gives a critical assessment of the current theoretical approaches. 

For vesicles with a very small bending rigidity, the notion of Gaussian 
fluctuations around a well-defined mean shape breaks down. These strongly 
fluctuating objects can be investigated by Monte Carlo simulations as briefly 
reviewed in section 4.3. 

4.1. Gaussian fluctuations with constraints 
4.1.1. Mode expansion 

Fluctuations around a locally stable shape R0(sl, s2) can be parametrized by 

R(sl, s2) = R0(sl, s2) + £(S1, s2)n(sl, s2), (4.1) 
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where n(sl, s2) is the local normal vector. The quantities of  interest are both the 
thermal shift of the mean shape (e(Sl, s2)), which does not vanish because of  the 
constraints, and correlation functions like (e(Sl, s2)e(s], s'2) ). The bracket (...) 
denotes the appropriate thermal average defined below. 

The local normal displacement e(sl, s2) is expanded in a set of  basis functions 
a s  

e(Sl, s2) = Z aiei(Sl, s2). (4.2) 
i 

For axisymmetric vesicles, the spherical harmonics 

ei(S1, S2) --= Yl, m(Sg/S*, ~), (4.3) 

with al,-m = (--1)maC, m, are a convenient basis (Peterson 1985a, b). Here, s* is the 
length of  the contour from north pole to south pole. The formal index i has thus 
become a double index (l, m) and the Y]i runs to some cut-off/max. The expansion 
based on (4.2) and (4.3) can deal with any axisymmetric stationary shape, whether it 
is star-shaped or not. In particular, this expansion is not restricted to nearly spherical 
shapes. 

We will first consider the fluctuations in the BC model, the other cases then 
becoming trivial modifications. The geometrical quantities area, volume, mean 
curvature, as well as the bending energy G, can be expanded in the set {ai}. 
Formally, one thus obtains 

G = Go + giai + (1/2)aiGijaj + O(a~), (4.4) 

A = Ao + R~[d} ')ai + (1/2)aiD~l)aj + O(a~)], (4.5) 

V = Vo + Rg[d}Z)ai + (1/2)aiD~2)aj + O(a~)], (4.6) 

and 

M = Mo + Ro[d}3)ai + (1/2)aiD~3)aj + O(a~)], (4.7) 

with summation over double indices implied. 
Specifically for axisymmetric vesicles, the quantities gi, Gij, d~ and D~ can be 

expressed as integrals over the contour. The integrands are quantities such as the 
local curvature and Legendre polynomials and derivatives thereof. 

Thermal expectation values (h{ai}) are now defined as 

1 [% 
(4.8) 

where the partition function Z ensures proper normalization ((1} = 1). 
The crucial issue is to define the measure D{ai}, which should physically 

correspond to an integration over all surfaces close to the stationary shape, not 
counting any surface twice and keeping the numbers of  degrees of freedom constant. 
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Both non-trivial requirements can be satisfied by introducing a Fadeev-Popov and a 
Liouville factor, respectively (Nelson and Powers 1993, Cai et al. 1994). Fortunately, 
these subtleties are absent in lowest order Tits, and one can use just a naive measure 
for calculating the correlation functions (Seifert 1995a). Moreover, one has to 
exclude also the Euclidean rotation and translation modes (Peterson 1985b). 

4.1.2. Correlation functions and effective tension 
We discuss here the explicit expressions for the correlation function (aiaj) 

because it provides an important conclusion about the similarities and differences 
of fluctuations and stability in the different variants of the curvature model, or for 
different values of a within the ADE model. 

After replacing the 6 functions in (4.8) by Fourier integrals, the correlation 
functions can be shown to read (Seifert 1995a) 

(aiaj) = T (sT~l _ do~-l  la/-a3-' ~-l.43"~ (4.9) 

The matrix elements S/j of the stability matrix 

&j = G o + )~ ~ D~j (4.10) 

are obtained from the second variation of both the curvature energy and the 
geometrical constraints. The matrix elements 

da~- ld  3 W~# = ~i -/j ~j (4.11) 

belong to a 3 x 3 matrix with respect to the Greek indices. 
General insight is gained by first classifying the set of modes {E/} according to 

their symmetry properties. Modes that break a symmetry of the stationary shape are 
called symmetry-breaking modes. For an axisymmetric vesicle, all modes with index 
m ¢ 0 are symmetry-breaking. If, moreover, the stationary shape possesses reflection 
symmetry, the modes with m = 0 and l uneven belong to this class, too. By 
symmetry, the first variation in the geometrical quantities and the bending energy 
vanishes identically for these modes, i.e., d~'--gi = 0. The remaining symmetry- 
preserving modes do not change the symmetry of the mean shape and will thus, in 
general, have linear terms d~ ¢ 0 and gi ~ O. 

The stability matrix S/j factors in these two classes and, moreover, within each 
class in different subclasses according to the symmetry of the respective modes. In 
particular, for an axisymmetric mean shape with reflection symmetry, the modes 
with different index [ml do not mix, and neither do those with different parity but the 
same Im[. Therefore, one can discuss the correlations of these two classes of modes 
separately. 

For the symmetry-breaking modes, the simple result 

(aiaj) = T S~ 1 (4.12) 

for the correlation function is remarkable for the following reason. As pointed out in 
Seifert (1995a), the correlation function in the • ensemble (3.1) in which the terms 
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SA + P V  ÷ Q M  count as 'real' energy assuming that the 'fields' Z, P and Q are 
external parameters, is the same as (4.12) since the stability matrix S o . is simply the 
second variation of  the energy @, as follows from (4.10). Thus, the correlations o f  all 
symmetry-breaking modes do not  depend on whether one imposes hard constraints 
or whether one considers the terms ZA + P V  + Q M as contributing to the energy. 
For  all symmetry-breaking fluctuations the Lagrange multiplier ~ thus acts exactly 
like a tension. This statement is non-trivial since the constraint on fluctuations has 
not been implemented by this Lagrange multiplier but rather by an exact 3 function. 
The equivalence of  the fluctuations in the BC model and the @ ensemble is not 
complete since for all modes which preserve the symmetry, i.e. in particular, for 
fluctuations of  the contour of an axisymmetric vesicle, the additional term in (4.9) 
shows that fluctuations in the constrained ensemble are different from those where 
the ZA ÷ P V  ÷ Q M  terms are treated as a real energy. 

The correlation functions in the ADE model and SC model can be obtained 
similarly (Seifert 1995a). For  the ADE model, the result (4.9) still holds after the 
replacement 

S U ~ S/j + ad/(3)43) , (4.13) 

with Greek indices running only through 1 and 2. Since d} 3) -- 0 for all symmetry- 
breaking modes, the correlation functions for these modes are again identical to 
those in the BC model. The difference between the various ensembles shows up only 
in the correlations involving symmetry-preserving modes. 

Numerical results of modes and fluctuation spectra are available only for 
discocyte-like shapes (Peterson et al. 1992). In this study, space-dependent thickness 
fluctuations of  red blood cells were analysed using both the BC and the SC models 
taking into account shear elasticity as a further ingredient. Since thickness fluctua- 
tions do not break a symmetry, the results for the two cases are different. The 
experimental data were in between the two models thus supporting the interpolating 
ADE model. 

4.1.3. Stability 
Any approach which yields fluctuations around a shape will also detect an 

instability of  this shape. Peterson has used his scheme to investigate the stability of  
oblates in the spontaneous curvature model (Peterson 1985b, 1992). The scheme 
discussed above has been used to address the stability of prolates and oblates within 
the ADE model (Jaric et al. 1995). As a corollary to the above-discussed 
independence of  symmetry-breaking fluctuations from a, one should also note that 
an instability of  a shape towards a deformation that breaks a symmetry of  this shape 
does not  depend on the variant of  the curvature model or the value of  a. It is rather a 
property of  the shape (Seifert 1995a). This statement does not hold for instabilities 
that preserve the symmetry. An example are the pears with the weak asymmetry, 
which are unstable for small a and become stable for larger a, as discussed in section 
3.3. 

4.1.4. Thermal shift o f  the mean shape 
The modes that do not break a symmetry of  the stationary shape acquire a finite 

temperature shift to make up for the area--and,  strictly speaking, also for the 
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volume and the mean curvature--stored in the fluctuating modes. This shift reads 
(Seifert 1995a) 

(R(st, s2)) = R0(Sl, s2) + Z(ai )e i (S l ,  s2)n(sl, s2). (4.14) 
i 

with 

1 Td~vr:_l~en~ r ~ e - 1  s~ilCmn). (ai) -- 2 -~ k " "-'m, V"~'k, Cmi + (4.15) 

The latter relation holds only if Liouville factors arising from measure corrections 
are irrelevant (Cai et aL 1994), which has not yet been proven. 

For an axisymmetric vesicle, the thermal shift can be reduced to a shift of the 
mean contour, since ~ i  includes contributions from the (m = 0) modes only. The 
thermal shift is of order T / n  and thus much smaller than a typical fluctuation, which 
s c a l e s  a s  lail ~ (T/~) v2. 

4.1.5. Spherical limit 
As the mean shape around which the expansion has been performed approaches 

the sphere, the fluctuations should become smaller since for a sphere as a T = 0 
shape, there is no area available for fluctuations at constant volume. In the approach 
outlined above, the modes with different l no longer mix in this limit. Therefore, the 
correlation matrix is given by the inverse of the stability matrix S/j, which becomes in 
the spherical limit 

[at,m[ 2 ~ (4.16) 
( l +  2 ) ( l -  1)(12 + l -  6) 

for all variants of the curvature model. 
This expression diverges for the l = 2 mode, which points to an inconsistency. In 

fact, in the spherical limit another small parameter, 1 - u, arises which invalidates 
the naive expansion in T/~.  

4.2. Quasi-spherical vesicles 
4.2.1. Expansion around the sphere 

The spherical limit has to be analysed using a different approach, which allows us 
to keep track of both small parameters, and 1 - v. The fluctuating shape is not 
expanded around the corresponding stationary shape but rather around a sphere 
with the same volume 

4n R3 V - ~ -  v, (4.17) 

which defines Rv.  We consider a fixed area 

A -- (4rr+ A)R 2, (4.18) 

which defines the (dimensionless) excess area A used traditionally as a small 
parameter instead of 1 - v. 

A quasi-spherical vesicle can be parametrized by spherical harmonics 
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R(O,O) = Rv 1 + Z ~ Ut,mYlm(O, O) , 
l>_2 m = - l  

(4.19) 

where [m[ _< l and Ul,_ m = ( -1 )  ut, m. Expanding the geometrical quantities as well as 
the bending energy around a sphere, one has (Helfrich 1986, Milner and Safran 1987, 
Ou-Yang and Helfrich 1989) 

l~a~ l 

a = 8~ + ½ ~  y~  luz,ml2(Z + 2)(• + 1)l(l - 1) + O([u,,m[3), (4.20) 
l>l m = - l  

{ { uo,o12 l } 
A =  R~ 4~ l - f f ~ J  +Z,>I m=-lZ lU"ml2[l +l(l+ l)/2]+O([Ul'm]3) ' (4.21) 

and 

4n [ u0,0 v=R  y 
/max l } 

+ ~ y~ lul,ml z + O(luz,ml 3) . (4.22) 
l>1 m = - l  

The volume constraint (4.17) fixes the amplitude u0,0 as a function of the other 
amplitudes 

/max l 

uo,o = - Z  ~ [Ul'm[2/(4n)l/2' (4.23) 
1>1 m=--l 

where cubic terms have been truncated. If  the relation (4.23) is inserted into (4.21), 
the area constraint (4.18) becomes 

l,,~ l 1) 
Z lu', m[2 (1 + 2)2(l- -- A (4.24) 

1>2 m = - I  

The sum starts with l = 2 since the (l = 1) modes correspond to translations. 

4.2.2. Exact treatment of the area constraint 
The crucial problem is to incorporate the area constraint (4.24). In fact, one can 

calculate the correlation functions of the quasispherical modes treating the area 
constraint exactly by a ~ function (Seifert 1995a). The resulting 1D complex integral 
has to be analysed numerically. Two limiting cases, however, can be isolated 
analytically. 

For T/n << A, one obtains 

= g  ( l + 2 ) ( l -  1 ) ( 1 2 + l - 6 )  +-0(7-) (4.25) 

for l >_ 3, and 
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( lu"ml2)=5 -7-~--"l  2)(• 1)(I 2 + l - 6 ) + 0 ( ' r 2 )  
l>3 ( + - -  

(4.26) 

for l = 2. Here, 

T 
r = - ~  (4.27) 

is the expansion parameter. 
The leading term for l > 3 corresponds to the result found in section 4.1.5 in the 

spherical limit. Thus, the direct evaluation of the correlation functions in the 
spherical limit shows that the expansion performed in section 4.1 corresponds (for 
l _> 3) to the double limit A -~ 0 after ~ O. As the leading term for the amplitude for 
the (l = 2) modes shows, these modes pick up most of the excess area. Of course, the 
distribution of this area among the five (l = 2) modes cannot be obtained in the 
quadratic approximation. Note also that the area constraint is obeyed exactly, as the 
second-order contribution in (4.26) shows. 

In principle, one could continue the expansions (4.25) and (4.26) to higher order 
in 7-. However, this would lead to misleading results since the terms which have been 
omitted in the quadratic expansions (4.20)-(4.22) are more relevant than those 
higher-order terms (Seifert 1995a). 

For A << T/x, all modes shape the available excess area equally, which leads to 
(Milner and Safran 1987, Seifert 1995a) 

([bll,ml2} ~ 2A (4.28) 
N( l+2) (1 -  1)" 

In summary, an analytical calculation of the fluctuations of quasi-spherical 
vesicles taking into account the area constraint exactly is possible for large and 
small 7-. An expansion beyond the leading term for small 7- does not fail due to the 
absence of an analytical scheme but rather due to the relevance of the higher-order 
terms in the expansions (4.20)-(4.22). 

4.2.3. Conventional approach with effective tension 
The conventional approach to fluctuations in the quasi-spherical limit (Schneider 

et al. 1984b, Milner and Safran 1987, Faucon et al. 1989) contains two approxima- 
tions. First, in these works the relevance of the higher-order terms in the expansions 
(4.20)-(4.22) are tacitly neglected. Therefore, this approach inevitably suffers from 
the same deficiencies as the exact approach in this respect. Secondly, the area 
constraint is not treated exactly by a 6 function but rather by a Lagrange multiplier. 

We discuss this approach here for the minimal model since the other variants lead 
to the same result. The mean-square amplitudes in this approach are calculated with 
the Boltzmann factor 

exp [-(t~G + 2A)/T], (4.29) 

where the 'tension' 2 is another, yet free, Lagrangian multiplier to be distinguished 
by the overbar from the Lagrange multiplier X used in calculating the stationary 
shape. After inserting the quadratic expansions (4.20)-(4.22) into energy and area, 
with u0,0 replaced by the volume constraint (4.23), one obtains 
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t~ lm~ l 

mG+ 2A ~ const + ~ y ~  ~ luz,ml=q + 2)(l - 1)[(l + 1)l + #], 
l>_2 rn=-I 

(4.30) 

with the dimensionless effective tension 

-= ZR2 /~. (4.31) 

If this expression is used as a Boltzmann weight for the amplitudes {UX,m}, one 
immediately obtains the mean square amplitudes (Milner and Safran 1987) 

lUl,ml2) T 1 
( l+  2)(1-  1)[(l+ 1 ) l+# l '  

(4.32) 

These expressions for the mean-square amplitudes have been used to determine 
experimentally the bending rigidity t~ from the contour fluctuations of quasi- 
spherical vesicles using phase contrast microscopy combined with fast image 
processing (Schneider et al. 1984b, Engelhardt et al. 1985, Bivas et al. 1987, Faucon 
et al. 1989, Duwe et al. 1990, Meleard et al. 1992, Niggemann et al. 1995). In this 
approach, # is usually either set to 0 or treated as a fit parameter for which one 
typically obtains values in the range 0 G # ~< 100. 

Since the Lagrangian multiplier 2 has been introduced only to enforce the area 
constraint, it should, in fact, be eliminated in favour of the excess area A which is the 
physically meaningful quantity. Inserting the mean-square amplitudes (4.32) into the 
expansion of the area and comparing with the constraint (4.32) yields an implicit 
equation (Bivas et al. 1992, Seifert 1995a), 

tin_& 2l + 1 2A~ -- 2 
(4.33) 

l 2 + l + #(A) T 7-, 

for ~. An analogous relation was first derived for almost planar membranes (Helfrich 
and Servuss 1984). The relation (4.33) shows that ~ depends on the excess area only 
in the combination A n / T  = 1/r. Thus, after elimination of the effective tension, the 
mean-square amplitudes as given by (4.32) depend only on the three quantities, T/R,  
r and the cut-off /max. The experimental study (Haeckl et al. 1995) shows the 
principal feasibility of replacing the tension in favour of the temperature-dependent 
excess area. 

In general, (4.33) has to be inverted numerically to yield e = e(-r,/max). It is 
instructive to discuss limit cases analytically. For small -r, one finds 

,-~ - 6  + ~r + O(r2). (4.34) 

Inserting this value into (4.32), one recovers the exact limits (4.25) and (4.26). 
However, the next-to-leading-order terms in an expansion in r of either (4.32) or 
(4.25) do not coincide. This result shows that treating the area term by a 6 constraint 
is, in principle, different from including it by a Lagrange multiplier. 

The fact that the effective tension is negative for small r may look strange at first 
sight, but becomes clear in view of the relation (3.3). In fact, ZRg/~ = - 6  is also the 
spherical limit of the (dimensionless) Lagrangian multiplier for prolate and oblate 
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ellipsoids. The effective tension for fluctuations is negative, thus promoting fluctua- 
tions, because if area is taken up by the fluctuations with I > 3, the curvature energy 
stored in the (l = 2) modes decreases. For l > 3, the fluctuations with area constraint 
are thus larger than those without an area constraint, which shows again that one 
should interpret the effective tension quite carefully. 

For large r, one obtains from (4.33) 

r 2 (4.35) 6" ~ ~ l~ax, 

which after insertion into the mean-square amplitudes again coincides with the exact 
limit (4.28). 

If  the inversion of (4.33) is performed analytically by replacing the sum with an 
integral, one obtains the exponential dependence of the tension on the excess area: 

12max -+-/max - 6 exp (2/-r) (4.36) 
~ exp (2/7) - 1 

For intermediate values of "r in the range 2 >> "r >> 1/In/max, one thus finds 

# ~ lZmax exp ( -2 / r ) .  (4.37) 

Such an exponential dependence of the effective tension from the excess area was first 
discussed for almost planar membranes (Helfrich and Servuss 1984). It has been 
verified experimentally by micropipette aspiration of vesicles (Evans and Rawicz 
1990). 

The consistency of this approach, where the area constraint is treated by a 
Lagrangian multiplier can be checked by calculating the fluctuations in the 
dimensionless excess area (Seifert 1995a). It turns out that only for small excess 
area, the fluctuations show the ~ 1/x /N behaviour characteristic of large systems 
where N ~ l~a x (Seifert 1995a). The two approaches have also been compared by a 
Monte Carlo simulation in a quite narrow T range for/max = 20 (Bivas et al. 1992). 
As important a comparison between the exact and the conventional approach may 
be, one should always keep in mind that neglecting higher-order terms in the 
expansions (4.20)-(4.22) adds additional errors of the order "r. To include those 
effects would require an expansion in (4.20)-(4.22) beyond the quadratic order (Ou- 
Yang and Helfrich 1989). 

4.3. Monte Carlo simulations of very flexible vesicles 
The concept of a mean vesicle shape with small fluctuations around it breaks 

down if the bending rigidity is so small that the persistence length (2.17) becomes 
comparable with the vesicle size. While for pure phospholipid vesicles only vesicles of 
astronomical size would meet this requirement, vesicles consisting of mixed 
membranes can have significantly smaller persistence length, thus exhibiting strong 
fluctuations (Duwe et al. 1990). Unfortunately, a small bending rigidity usually 
implies higher solubility and thus less integrity of the membrane so that one may 
question the experimental realizability of a strongly fluctuating vesicle of both fixed 
area and fixed topology. 
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Leaving these experimental reservations aside, it is a theoretically challenging 
problem to investigate the behaviour of vesicles in the limit of  small bending rigidity. 
In this regime, analytical methods are replaced by Monte Carlo simulations 
augmented with scaling arguments. 

4.3.1. Two-dimensional 'vesicles' 
Fisher and co-workers in a series of papers (Leibler et al. 1987, Camacho and 

Fisher 1990, Maggs et al. 1990, Camacho and Fisher 1991) investigated 2D vesicles 
which would more appropriately be called stiff ring-polymers. In the limit of large 
bending rigidity, 2D vesicles show only one (elliptical) branch of shapes (Seifert 
1991 a). The two dimensions support neither a non-trivial spontaneous curvature nor 
budding since there is only one radius of curvature which necessarily leads to a 
diverging bending energy for necks. As Monte Carlo simulations for small bending 
rigidity show, a broken symmetry stomatocyte-like shape is stabilized by the self- 
avoidance of the membrane (Leibler et aL 1987). In the limit of zero bending rigidity, 
the shape becomes a closed self-avoiding random walk. A finite pressure difference 
between the inside and the outside pushes this shape either towards a collapsed 
branched polymer configuration (Camacho and Fisher 1990) or towards an extended 
shape (Maggs et al. 1990) whose circumference corresponds to a stretched polymer 
(Pincus 1976) depending on the sign of the pressure. 

4.3.2. Three-dimensional vesicles 
Corresponding studies of 3D highly flexible vesicles require significantly larger 

conceptual and numerical effort. Firstly, one has to find a suitable representation of 
such a vesicle by a tethered surface consisting of beads with connecting bonds or 
tethers. Secondly, the fluidity of this membrane is ensured by a dynamical bond flip 
algorithm (Boulatov et al. 1986, Billoire and David 1986, Ho and Baumg/irtner 
1990). For vanishing bending rigidity, vesicle configurations correspond to those of 
branched polymers if the enclosed volume can fluctuate freely (Kroll and Gompper 
1992, Boal and Rao 1992a). A finite pressure difference between interior and exterior 
leads through a phase transition to a more extended spherical shape whose surface 
consists of crumpled 'blobs' of membrane patches with non-trivial scaling properties 
(Gompper and Kroll 1992a, b). 

For finite but small bending rigidity, simulations show the renormalization of the 
bending rigidity according to (2.18). (Gompper and Kroll 1994, 1995b). Contact 
with the shapes as calculated with shape equations has been made for larger bending 
rigidity which leads to prolates and stomatocytes. The transition between these 
shapes is fundamentally different from the transition at small bending rigidity. The 
latter one is a true thermodynamic phase transition with an activation barrier that 
grows with the size of the vesicle while the former is a transition between two shapes 
with a finite activation barrier. 

Monte Carlo simulations have also been used to investigate the shape changes of 
vesicles in elongational flow (Gompper and Kroll 1993) and the forced flow of 
vesicles through narrow pipettes (Gompper and Kroll 1995a). 

5. Vesicles of non-spherical topology 
Topology has not yet played any role in this investigation since, as argued in the 

introduction, topological changes seem not to occur on the experimentally accessible 
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time scales. Still, vesicles of non-spherical topology do exist if the bilayer sheet closes 
in this topology during the poorly understood swelling process. In fact, shapes of 
vesicles of toroidal topology have been predicted theoretically (Ou-Yang 1990, 
Seifert 1990, 1991c) and, at the same time, toroidal vesicles have been found 
independently in experiments (Mutz and Bensimon 1991). While one may first 
suppose that the different topology does not play any significant role, quite the 
contrary is true. For vesicles with more than one handle or hole, i.e. for genus g > 2, 
the ground state can be degenerate. The reason for this degeneracy is the conformal 
invariance of the curvature energy, which has non-trivial consequences only for 
g > 2, even though this invariance is a general property that is not restricted to any 
topology. Based on this invariance, it was theoretically predicted (Jiilicher et aL 
1993a) that these vesicles should exhibit a novel diffusion process in shape-space 
called conformal diffusion, which has recently been found experimentally (Michalet 
1994, Michalet and Bensimon 1995b). 

The following three sections are devoted to the mathematical notions that are 
used for the theoretical description of these phenomena. In section 5.1, we discuss 
conformal invariance of the curvature energy. In section 5.2, Willmore surfaces and 
the Willmore problem are defined and discussed for each topological class. The role 
of the geometrical constraints under conformal transformations is derived in section 
5.3. Based on these concepts, in sections 5.4, 5.5 and 5.6, the theoretical predictions 
for vesicles of genus 1, genus 2, and higher genus, respectively, are presented. Each of 
these sections contains a discussion of the experimental data available at present. 

5.1. Conformal invariance of the local curvature energy 
The central concept necessary for understanding the new features of vesicles of 

non-spherical topology is the conformal invariance of the local curvature energy G 
(2.51), which is a stronger property than the scale invariance referred to in section 
3.1.2. While the conformal invariance of G has been known to mathematicians for a 
long time (Thomsen 1924), it has entered the physical literature on vesicles only 
recently (Duplantier 1990, Duplantier et al. 1990). Conformal transformations in 
three dimensions comprise a ten-parameter group, which consists of translations 
(three parameters), rotations (three parameters) and scale transformations (one 
parameter), all of which do not change the shape in any non-trivial fashion. The 
non-trivial conformal transformations are the inversions in a sphere which map R to 
R' with 

R' = Ro + (R - R o ) / ( R  - Ro) 2. (5.1) 

The centre R0 of the sphere yields the remaining three parameters. The local quantity 
(H 2 - K) dA is invariant under conformal transformation in three dimensions as can 
be shown by inserting the mapping (5.1) (for R0 = 0) into the expression given in 
section 2.1 for H, K and dA, respectively. Since the topology of a closed surface and 
thus of 5~ dA K does not change under a conformal transformation, the energy G is, 
in fact, a conformaI invariant. 

Rather than using inversions, it is more convenient for many applications to 
work with special conformal transformations. Such a transformation consists of an 
inversion in a unit sphere at the centre of origin R ~ R / R  2, a translation by a vector 
a and another inversion in a unit sphere at the centre of origin. Every point R is thus 
transformed to R', with 
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R' = R/R2 + a 
( R / R  2 + a) 2 . (5.2) 

Two successive special conformal transformations (5.2) with translation vectors al 
and a2 are equivalent to one special conformal transformation with a = al + a2, i.e., 
the special conformal transformations form a commutative three-parameter sub- 
group. Since for a ~ 0, the special conformal transformation becomes the identity, 
an expansion in a is feasible, which is the main advantage of using special conformal 
transformations. 

5.2. Willmore surfaces and the Willmore problem 
Willmore surfaces are defined as the stationary points of  the curvature energy G, 

i.e. a shape is a Willmore surface if it obeys 61G = 0 (Willmore 1982, Pinkall and 
Sterling 1987). I f  the surface is free of self intersections, it is called embedded. The 
Willmore problem consists of finding the embedded Willmore surface Sg of lowest 
energy G for any given genus g irrespective of any further constraints, i.e. in finding 
the absolute minimum of G for given topology (Willmore 1965, 1982). For  any shape 
Sg that is a solution to this problem, all conformal transformations of t.~g are 
solutions too. 

5.2.1. Genus 0 
For spherical topology, one can prove that the sphere with G _= Go = 8re is the 

only embedded Willmore surface (Bryant 1984). Since spheres remain spheres under 
conformal transformations, the Willmore problem has a unique solution for 
spherical topology. 

5.2.2. Genus 1 
For toroidal topology, there is as yet no definite answer to the Willmore problem. 

Willmore (1965, 1982) himself conjectured that the Clifford torus shown in figure 20 
minimizes G. The Clifford torus is an axisymmetric torus, which can be parametrized 
by 

R ( 0 ,  q~) = 

(V/2 + sin 0) cos ~b 

(~/2 + sin 0) sin ~b/ '  

c o s 0  ] 

(5.3) 

where 0 < 0, q~ < 27r. Its curvature energy is G = G1 = (Tr/2)87r and its reduced 
volume is ~_~ 0.71. Among the evidence for Willmore's conjecture is the fact that 
the Clifford torus is proven to be the shape of  lowest G among all axisymmetric tori 
(Langer and Singer 1984). 

Conformal transformations of the Clifford torus generate a one-parameter family 
of non-axisymmetric shapes. This can be seen by applying a special conformal 
transformation (5.2) to the Clifford torus as given by (5.3) (see figure 20 for an 
example). A special conformal transformation with vector a(s) = (scos 4~, s sin~b, 0) 
generates a one-parameter family of non-axisymmetric shapes with varying reduced 
volume Vol < v(s) < 1. This family of shapes can be described in a closed analytical 
form (Fourcade 1992). For s = 21/4v/ff/(v/2 -k- 1), it ends up at a limit shape with 
v = 1, which consists of a sphere with an infinitesimal handle. 
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Figure 20. Clifford torus and a shape generated by a conformal transformation (Jtilicher 
et al. 1993b). 

A special conformal transformation with a = (0, 0, az) applied to the Clifford 
torus does not generate any new shape but is rather equivalent to a scale 
transformation due to the special ratio x/2 of  the generating radii of  the Clifford 
torus. In contrast, for a general axisymmetric toroidal shape with a reflection plane, 
a conformal transformation (5.2) with a = (0, 0, az) would generate a shape with 
broken up--down symmetry. Thus, even though the special conformal transforma- 
tions involve the three parameters (ax, a t ,  az), there is only a one-parameter family 
of  special conformal transformations which produces new shapes when applied to 
the Clifford torus due to its special symmetry properties. 

Apart  from the Clifford torus, there are further embedded Willmore surfaces, but 
these turn out to be unstable stationary points of  the functional G (Pinkall 1985, 
Kusner 1994). 

5.2.3. Genus 2 
For  genus 2, the Willmore problem is solved tentatively by Kusner's (1989) 

conjecture, that the so-called Lawson surface shown in figure 21 is the shape of  
minimal curvature energy. The rationale behind Kusner's conjecture arises from a 
connection between minimal surfaces in S 3, which is the 3D unit sphere in R 4, and 
Willmore surfaces in R3: any compact minimal surface in S 3 becomes a Willmore 
surface when projected stereographically from S 3 to R 3. The value of  the curvature 
energy G is twice the respective area in S 3 (Pinkall and Sterling 1987). The reverse 
does not hold: a Willmore surface in R 3 does not need to be a minimal surface in S 3. 

Lawson (1970) has found a whole family ~m,k (with m > k > 0 and genus g = mk) 
of  minimal surfaces in S 3 by first solving Plateau's problem for a certain geodesic 
quadrilateral in S 3. If  the resulting surface is extended by reflections across its 
geodesic boundary arcs, a compact minimal surface ~m,k in S 3 is obtained, which 
after projection to R 3 yields a Willmore surface also called ~m,k. The Clifford torus is 
the particular member ~1,1 while all ~m,o correspond to a sphere. The Lawson surface 
as shown in figure 21 is the member ~2,1, which has been shown to have a quite small 
area in S 3 and which is thus a good candidate for Willmore's problem (Kusner 1989). 

In general, there is no analytical description known for the minimal surfaces ~,n,k 
in S 3 and thus no explicit representation of the corresponding surface in R 3. 
However, there are surfaces Em,k in S 3 which can be considered as approximations 
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Figure 21. Lawson surface L and some shapes obtained by conformal transformations, 
including the 'button' surface B. The other labels refer to the phase diagram of figure 
23 (Jtilicher et al. 1993a). 

to these minimal surfaces since they contain the same geodesic arcs. The surfaces 
E,n,k are defined by (Lawson 1970) 

Z(z re+l) + Iwlm-kZ(wk+b = 0, (5.4) 

using the representation $3=  {(z, w), Izl2+lwl2= 1} and z, w are complex 
numbers. 

The Lawson surface as it is shown in figure 21 was obtained by first mapping the 
surface E~,I from S 3 to R 3 by a stereographic projection. The resulting shape was 
then triangulated and used as an initial shape for a further numerical minimization 
of G (JLilicher et al. 1993a). The shape thus obtained should be a close approximation 
to the Lawson surface. In fact, this algorithm yields the energy G = G2 -~ 1.75 x 8rt 
thus corroborating an earlier result (Hsu et al. 1992), for which a different algorithm 
(Brakke 1992) was used. 

The Lawson surface has a threefold symmetry axis and a mirror symmetry plane 
perpendicular to this axis. Moreover, it is invariant under inversions at the centre. 
The conformal transformations of the Lawson surface comprise a three-parameter 
family of shapes. This family can be parametrized by the vector a of the special 
conformal transformation which must be applied to the Lawson surface (centred 
at the origin) in order to generate this specific shape. The topology of this space 
W of shapes is that of the Lawson surface itself, since whenever the vector a 
approaches the Lawson surface the resulting shape becomes a sphere with two 
infinitesimal handles (J(ilicher 1993). Whenever the vector a of the special conformal 



74 U. Seifert 

transformation applied to the Lawson surface points along an axis of  high 
symmetry, the resulting shape has higher symmetry, too. Some of  these shapes are 
shown in figure 21. In general, a conformal transformation of  the Lawson surface 
has no obvious symmetry left. Again, there exist other embedded Willmore surfaces, 
but  so far no stable ones are known (Kusner 1994). 

5.2.4. Genus > 3 
For higher genus, little is known about the solution of  Willmore's problem. 

Supported so far by limited numerical results (Hsu et al. 1992), Kusner's conjecture 
states that the global minimizer for G is given by the stereographic projection of  the 
shape ~g,1 from S 3 to R 3 (Kusner 1989). 

As an exact result, a strict upper bound to the minimal energy, Gg < 16n, can be 
proven for any genus (Kusner 1989). An informal motivation for this result follows 
from considering two concentric spheres connected by narrow necks. The two 
spheres contribute an energy 16~ while the necks can be made of  catenoids, which 
are minimal surfaces with no energy. The subtlety, of course, lies in the appropriate 
matching of the necks with the spheres in such a way that Gg < 16n. 

For  g >_ 3, further locally stable embedded Willmore surfaces are known besides 
~3,1 (Karcher etaL 1988, Hsu et aL 1992). 

5.2.5. Energy of handles 
The solutions, or more precisely conjectures, on Willmore' s problem can be used 

to comment on the energy of  handles. In the limit v ~ 1, the conformal transforma- 
tion of  the Clifford torus becomes a sphere with a small handle attached to it. One 
thus obtains the minimal energy of  a handle Gh a s  G h  = G 1 -  Go = ( n / 2 -  1)8n 
(Seifert 1991c). 

Likewise, in the limit u ~ 1 which can be approached along various paths, the 
conformal transformation of  the Lawson surface always becomes a sphere with two 
handles close together. The energy 'stored' in the two handles, G2 - Go -~ 0.75 x 8re, 
is less than the energy 2Gh of  two independent handles. Thus, the two handles 
obtained in this way 'interact' and lower their energy. A similar statement holds for n 
handles whose energy can be bounded by Gn - 8~ < 8n for optimal interaction. 

5.3. Constraints and conformal invariance 
The mathematical results described above cannot immediately be carried over to 

real vesicles since these are determined not only by the minimum of  G but also by 
additional contributions to the energy, such as the area-difference elasticity, as well 
as by the geometrical constraints. Neither the area, nor the volume and the mean 
curvature are conformal invariants. 

5.3.1. Expansion for special eonformal transformations 
The effect of  special conformal transformations on the geometrical quantities A, 

V and M can be worked out analytically for small [al << 1 (Seifert 1991b). A 
special conformal transformation acting on a surface S with initial values V = V1, 
A = A1, and M = M1 generates a new shape with 

A(a) = A1 [I - 4R A • a + O(a2)], (5.5) 
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and 

V(a) = VI[1 - 6R v.  a + O(a2)], 

M(a) = MI[1 -- 2R M- a + O(a2)]. 

(5.6) 

(5.7) 

Here, R ~ = (~ dAR) /A  is the centre of  area, R v ~ (J" d V R ) / V  is the center of 
volume and R M = (~ dA H R ) / M  is the centre of mean curvature. 

From the expressions (5.5) to (5.7), one derives for the reduced variables the quite 
similar relations 

v(a) = vl[1 + 6(R A - RV)) • a + O(a2)] (5.8) 

and 

m(a) = vl [1 + 2(R A - RM). a + O(a2)]. (5.9) 

The terms of order a 2 are also known explicitly for axisymmetric shapes (Seifert 
1991b). 

5.3.2. Symmetry of stationary shapes 
For small a, a special conformal transformation induces a first variation of the 

shape under which the functional ~ (3.1) should be invariant for any stationary 
shape. This condition together with the small a expansion given above implies a 
surprising symmetry property of any stationary shape. If the linear terms from the 
expansions (5.5) to (5.7) are inserted as first variation into the general stationarity 
condition (3.2), one immediately obtains the relation 

2XAR A + 3PVR v + QMR M = 0, (5.10) 

which has to hold for any stationary shape of the functional ~. This relation is the 
conformal equivalent of the homogeneity relation (3.10) derived from the scale 
invariance of G. The homogeneity relation can, in fact, be used to eliminate one 
Lagrangian multiplier in (5.10) in favour of the other two. One thus obtains (Seifert 
1991b) 

3PV(R v - R A) + QM(R m - R a) = 0, (5.11) 

which shows that one of the following two propositions holds true for any stationary 
shape of 4. (i) the end points of the three vectors R A, R v, and R M are collinear, or 
(ii) E = P = Q = 0, i.e. the shape is a Willmore surface and thus a stationary shape 
of G. 

Since there are no other Willmore surfaces of spherical topology besides the 
sphere, the first proposition has to hold for any other stationary shape of spherical 
topology. By symmetry, collinearity holds for all shapes which have at least an n-fold 
axis of symmetry and thus, in particular, for axisymmetric shapes and for ellipsoids. 
Consequently, one expects that the ground state for these cases in any of the 
curvature models has generically at least an n-fold axis and one can thus exclude 
whole classes of shapes as candidates for the ground state just by symmetry (Seifert 
1991b). There is a caveat to this statement since it is conceivable that there are shapes 
without symmetry but which still have the property that the end points of the three 
vectors are collinear. Generically, however, shapes without this minimal symmetry 
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are not stationary and, in fact, no stationary shapes with less than a two-fold axis of 
symmetry have yet been found for spherical topology. 

5.3.3. Stability with respect to special conformal transformations 
Special conformal transformations can be used to derive a necessary (but, in 

general, not sufficient) criterion for stability of a stationary shape (Seifert 1991b). 
The idea is to apply a special conformal transformation to a stationary shape and 
then to compare the energy of the shape thus obtained with the energy of a 
stationary shape on the same branch at the same reduced volume and mean 
curvature m (or m0 in the ADE model). This criterion, which can be formulated 
in terms of the second-order expressions of (5.8) and (5.9), is easy to check for 
axisymmetric shapes by a simple numerical integration of geometrical quantities over 
the contour. 

With this technique, the stability of the prolates and the oblates with respect to a 
symmetry-breaking deformation towards pears and stomatocytes, respectively, has 
been checked (Seifert 1991b). Surprisingly, within a large region of parameters, the 
instability obtained in this way is extremely close to the 'true' instability as found by 
solving the shape equations for the pears and the stomatocytes directly. This result 
indicates that the special conformal transformations are a very good approximation 
to the true unstable mode. This positive result encourages the use of special 
conformal transformations for an efficient approximate stability analysis with 
respect to breaking the axisymmetry. The implicit assumptions, however, are 
twofold. First, the symmetry of the instability has to be accessible by a special 
conformal transformation. An example for an instability which cannot be accessed 
by special conformal transformations is the breaking of the axisymmetry of prolates 
and oblates towards non-axisymmetric ellipsoids (Seifert 1991b). Secondly, the true 
instability and the one with respect to special conformal transformations have to be 
still close together for cases for which an independent check has not yet been 
performed. 

5.4. Shapes and phase diagrams for genus 1 
5.4.1. Phase diagrams 

The phase diagrams for vesicles of toroidal topology have been investigated 
theoretically by a combination of two techniques. Firstly, the axisymmetric 
stationary shapes are determined by solving the appropriate shape equations (Seifert 
1990, 1991c, Jiilicher et aL 1993b). The solutions to these coupled nonlinear 
differential equations are a discrete set of sheets. Secondly, the stability of the 
axisymmetric shapes of lowest energy with respect to special conformal transforma- 
tions is investigated. 

Three different sheets of axisymmetric shapes can be distinguished: (i) the sheet of 
sickle-shaped tori, (ii) the sheet of discoid tori, and (iii) the sheet of toroidal 
stomatocytes, which do not have a symmetry plane perpendicular to the symmetry 
axis. Both the discoid toil and the sickle-shaped tori have reflection symmetry. They 
can be distinguished from each other as different sheets since they are separated, 
except for one shape which is that of the Clifford torus. Therefore, starting with the 
Clifford torus, which has an exactly circular cross-subsection, the two different 
ellipsoidal deformations of the contour lead to the sheets of discoid and sickle- 
shaped tori. The sheet of toroidal stomatocytes bifurcates from the sheet of sickle- 
shaped tori and from the sheet of discoid toil, thus connecting these two sheets. 
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Various types of  limit shapes, where the sheets end and the shape becomes 
singular, can be distinguished. For  all three sheets, one class of limit shapes occurs 
where the hole diameter vanishes. Formally, these shapes represent a connection to 
the spherical topology and are denoted by Lsick, Ldisc and Lsto. Other classes of limit 
shapes include tori with exactly circular cross subsection Lcirc and shapes with 
diverging hole diameter. A detailed discussion of the limit shapes is given in 
Appendix B of  (Jtilicher et al. 1993b). 

In a second step, the stability of these shapes with respect to special conformal 
transformations is checked (Jiilicher et al. 1993b). If, for a given set of parameters, 
the axisymmetric shape of minimal energy is found to be unstable, the ground state 
must be non-axisymmetric for these parameters. Even though one cannot expect to 
obtain the region of the non-axisymmetric ground states exactly, this method gives at 
least a lower bound on the extension of this region. This lower bound should be a 
reasonable approximation since (i) it becomes exact in the neighbourhood of  the 
Clifford torus, and (ii) the same approximation works excellently for the prolate/pear 
and oblate/stomatocyte bifurcation for vesicles of spherical topology as mentioned 
above. The phase diagram obtained in this way within the ADE model for a -- 1 is 
shown in figure 22. The phase diagrams for the BC and the SC model can be found in 
(Jiilicher et al. 1993b). 

Typical for this phase diagram is the large region of non-axisymmetric shapes 
which are separated from the axisymmetric shapes by the instability line C*. This 
large region is reminiscent of the degeneracy of  the Willmore problem since in the 
BC model, in particular, the conformal transformations of the Clifford torus lie 
along a curve from the Clifford torus to the sphere. For m slightly above or below 
this curve, the ground state is, of course, still non-axisymmetric. 

2 

E ~ 

0.5 v 1 

Figure 22. Phase diagram for toroidal veicles in the ADE model with a = 1. Three 
axisymmetric regions which are separated by continuous shape transformation lines 
C~ick and Cdi~¢ can be distinguished: (i) discoid tori, (ii) sickle-shaped tori and (iii) 
toroidal stomatocytes. The line Ldisc represents limit shapes with vanishing hole 
diameter. The instability with respect to axisymmetry breaking conformal 
transformations is denoted by C*. Within the region of axisymmetric shapes with 
reflection plane, discontinuous shape transformations from circular tori to discoid 
tori occur along the line D. This line ends up in a critical point Dep. The Clifford 
torus is the shape of minimal energy along the dotted line (Jiilicher et al. 1993b). 
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5.4.2. Experiments 
All classes of shapes predicted by the theoretical work except for the sickled- 

shaped tori have been found in experiments. The first observations of toroidal shapes 
reported mainly Clifford tori (Mutz and Bensimon 1991). In this case, however, the 
membrane was partially polymerized, which should become a relevant perturbation 
of the fluid membrane considered here at least beyond the percolation threshold. In a 
subsequent study (Fourcade et al. 1992), shapes of quasi-circular cross-subsection, 
which theoretically belong to the discoid sheet, have been found, as well as non- 
axisymmetric shapes which resemble conformal transformations of the Clifford torus 
(see the experimental figure 4). 

In a comprehensive work (Michalet and Bensimon 1995a), four types of tori have 
been found: (i) tori with quasi-circular cross-subsection for a volume range 
0.3 < v ~ Vcl, (ii) non-axisymmetric shapes resembling conformal transformations 
of the Clifford torus in the range Vol < v < 0"92, (iii) discoid tori with and without 
axisymmetry and (iv) non-axisymmetric toroidal stomatocytes. All but the fourth 
observation are compatible with the phase diagram. The occurrence of non- 
axisymmetrie toroidal stomatocytes is in discrepancy with theoretical work for 
two reasons. First, the axisymmetric toroidal shapes from which such a shape would 
have to bifurcate are all stable with respect to special conformal transformations. 
Secondly, as discussed in section 5.3.2, the occurrence of such shapes with only one 
symmetry plane as ground state (or even metastabte state) can be expected to 
indicate, generically, that the corresponding shape is a Willmore surface for which 
there is neither theoretical nor experimental evidence. 

5.5. Shapes and phase diagram for genus 2 
5.5.1. Conformal diffusion 

The threefold degeneracy for the Willmore problem for genus 2 has profound 
consequences for the phase diagram which becomes qualitatively different from the 
phase diagram for spherical or toroidal topology (Jiilicher et al. 1993a). The new 
features are most easily described within the BC model. 

The 3D space W of conformal transformations of the Lawson surface can be 
projected onto the two-dimensional (v, m) plane. This leads to a region W in the 
phase diagram where the ground state is 1D degenerate, as shown in figure 23. A 
quantitative expression for the conformal mode which corresponds to this degen- 
eracy can be obtained from the expressions (5.8) and (5.9) for special conformal 
transformations with small a. Thus, the conformal mode that conserves both v and 
m can be identified as the special conformal transformation with a obeying the 
differential equation (Jiilicher et al. 1993a) 

da/ds = (R A - R  v) × (a" -RM),  (5.12) 

where s parametrizes the path in the space W. In general, the conformal mode a(s) 
that solves (5.12) destroys all symmetry planes of the shapes in the region W. 
However, along the path a(s) which is a closed loop within W, there are two different 
shapes which have one symmetry plane left. These shapes are shown in figure 24 for 
the conformal mode with (v, m ) =  (0.78, 1.027) as they have been obtained by 
numerical integration of (5.12) (Jiilicher et al. 1993a). 

The boundary of the region W in the phase diagram is obtained by mapping out 
the conformal transformations of the Lawson surface along the high symmetry 
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Figure 23. Phase diagram for genus 2 in the BC model. The letters along the boundary 
of the region of conformal degeneracy refer to the shapes shown in figure 21 (Jtilicher 
et al. 1993a). 

Figure 24. Shapes along a trajectory of conformal diffusion. All shapes have the same area, 
volume and integrated mean curvature (Jtilicher et al. 1993a). 

directions. There is one special shape with high symmetry on this boundary, which is 
called the Button surface, also shown in figure 21. It has three orthogonal mirror 
symmetry planesand inversion symmetry. The shapes along CBs, CBL, and CLS as 
shown in figure 21, constitute the boundary of the region W since these shapes have 
at least two mirror planes, which implies that R a, R v and R M are collinear and there 
is no conformal mode left, as can be seen from (5.12). 

The existence of the phase W persists in the ADE model for arbitrary a > 0. 
Whenever m0 lies in the range of m values which span the phase W at constant u, the 
area-difference elasticity is zero and the ground state in the ADE model also shows 
this one-fold conformal degeneracy. 

The degeneracy of the ground state in the phase W has been predicted to have 
observable consequences whenever u and m0 of a vesicle belong to this phase. 
Because of thermal excitation its shape will permanently change within a diffusion 
process along the conformal trajectory. In analogy to rotational and translational 
diffusion, this phenomenon has been called conformal diffusion (Jiilicher et al. 
1993a). 

Experimentally, conformal diffusion has indeed been found subsequently 
(Michalet 1994, Michalet and Bensimon 1995b). Very slow shape transformations 
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of shapes similar to those shown in figure 24 were recorded. The typical time scale tel 
of the order of a minute corresponds indeed to the typical diffusion time expected, 
since by dimensional analysis tel = ~R3/T = (n/T)tb ~ 25tb (Jtilicher et al. 1993a). 
Here, tb ----- ~TR~/n is the time scale for long-wavelength bending fluctuations, which is 
of the order of a second, and ~7 is the solvent viscosity. 

The experimental verification of conformal diffusion yields strong support for 
the energy G as the appropriate energy for vesicles. However, its manifestation 
does not directly confirm the ADE term since any energy B which can be written 
in the form (3.4) leads to this degeneracy for those parameters for which 
Og/OA = Og/OV = Og/OM = 0. Note that for the SC model Og/OM = -2C0 and, 
thus, there is no conformal diffusion in this variant for Co ~ 0. Strictly speaking, the 
observation of conformal diffusion rules out the spontaneous curvature model by 
this very general argument. 

From a theoretical point of view, there are two subtleties related to conformal 
diffusion. First, there definitely will be correction terms to the energy W of the order 
of O(d/R). These terms, however, are much smaller than the thermal energy and will 
therefore not be strong enough to prevent this phenomenon from happening. 
Secondly, conformal diffusion could be broken by thermal fluctuations analogous 
to the breaking of the scale invariance, which leads to a length-scale dependent 
renormalization of the bending rigidity (2.18). How relevant such an effect is 
compared with the thermal energy available for overcoming small perturbations 
remains to be investigated. 

5.5.2. Phase diagram beyond the conformal phase 
Outside of the degenerate conformal phase W, the shapes of minimal energy are 

no longer Willmore surfaces with constant energy G = G2, but rather unique shapes 
with an energy G = G(v, m) > G2, which can also be classified by their symmetry 
properties (Jiilicher et al. 1993a). The topology of the phase diagram beyond W can 
be deduced by extending the symmetry of the shapes along the boundary of W as 
shown in figure 23. The phases thus obtained are in accordance with the rule of 
collinearity discussed in section 5.3.2. They can all be separated by continuous 
transitions according to the expectation that in the BC model all transitions are 
indeed continuous. The precise location of these transitions in the BC model is not 
known, nor do we know at present whether some of these transitions are pre-empted 
by first-order transitions for the ADE model as one could expect for small enough a. 
The shapes and shape transitions outside of W could be calculated with a numerical 
minimization of triangulated surfaces taking into account the appropriate con- 
straints, but this has not yet been done comprehensively. 

The first experimental observation of genus 2 vesicles reported a shape very 
similar to the button surface shown in figure 21 (Fourcade et al. 1992). In the 
comprehensive study of Michalet and Bensimon (1995a), several button shapes have 
been found, one of which is shown in figure 5, as well as shapes which have the 
symmetry of the phases adjacent to the conformal phase W. 

5.6. Vesicles of higher genus 
The theoretical prediction of conformal diffusion holds for higher genus as well, 

since, for g _> 2, the solution to the Willmore problem is threefold degenerate with 
respect to conformal transformations (Karcher et al. 1988, Hsu et al. 1992). In 
addition, for higher genus, there occur further locally stable embedded Willmore 
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surfaces which will give rise to degenerate local minima and even degenerate saddle 
points. In the (u, m) phase diagram, the resulting degenerate phases may overlap and 
be connected by 'regular' non-degenerate sheets. Obviously, a whole variety of 
interesting transitions can be expected in these systems, which as yet have only been 
rudimentarily investigated. 

Experimentally, several shapes of higher genus have been found (Michalet et al. 
1994a). A striking phenomenon is the occurrence of strong fluctuations of the 
position of the necks in shapes shown in figure 6, which correspond to those in the 
lower left corner of the phase diagram for genus 2. Even though these fluctuations do 
not correspond to conformal diffusion, their energy is quite small and, indeed, 
vanishes for u--~ 0, which can be understood with a simple scaling estimate as 
follows (Seifert 1995b). 

For two concentric spheres of distance d connected by N necks, the linear 
distance L between necks scales as L ~ R /v /N .  For a neck connecting two planar 
sheets a distance d apart, the curvature energy scales as n(d /L)  2, where L is the 'size' 
of the circular patch where the neck is supposed to match the sheets (Michalet et al. 
1994a). This power law anticipates a long-range interaction between necks. Displa- 
cing one neck a distance eL from its mean position in a lattice of necks costs an 

2 2 energy n(d /L)  e . Thus, the mean square amplitude of the position of the neck in 
units of mean neck separation becomes @2) ~ (T/e;)(L/d)2 ,~ ( T / ~ ) ( R / d ) 2 / N .  As 
a criterion for strong fluctuations, one can take that (e 2) ~ 1. Thus, one expects 
strong fluctuations whenever 

N ~ 2 ~ 2 (5.13) 

This result differs qualitatively from the one presented in (Michalet et al. 1994a) 
where it is argued that the necks behave like a gas of free particles with a hard core 
radius ~(dL)  1/2. Such a description leads to a criterion for strong fluctuations, 
N < 1/u ~ R /d ,  that does not involve temperature. 

A refined theory should include the interaction between many necks, which is 
certainly important in the same way as the energy of n interacting handles is different 
from n times the energy of one handle as pointed out in section 5.2.5. Likewise, for 
small d, one could include the interaction between the 'spherical' parts of the shape, 
as has been done for necks connecting planar bilayers (Goos and Gompper 1993). 
Finally, one may ask whether in the limit R, N ~ cx~, with R2/N  fixed, a regular 
'lattice' of necks exists. Such an ordered state would require an effective long-range 
curvature interaction in order to beat the Mermin-Wagner theorem, which rules out 
2D 'crystals' for systems with short-range interactions (Mermin and Wagner 1966). 

6. Adhesion 
The previous sections dealt with the configurations of an isolated or free vesicle. 

Such a vesicle is a theoretical model system which is quite a challenge in terms of 
detailed quantitative studies from an experimental perspective. Except for the 
analysis of quasi-spherical fluctuations, the permanent rotation and (less so) the 
translation of the vesicle in a measuring chamber render a quantitative analysis of 
both the mean shape and the fluctuations difficult, as long as the experimental 
recording techniques are confined to a single focus plane. With the advent of more 
sophisticated equipment like confocal laser scanning microscopy, this restriction 
may become less severe. 
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Experimentalists, however, have designed various set-ups by which vesicles can 
be spatially confined and manipulated so that the Brownian rotation becomes less of 
a problem. Among these techniques are binding a vesicle to a substrate either 
through attractive forces or through gravitation by filling it with a slightly denser 
liquid than the surrounding solution. Such a vesicle no longer exhibits significant 
translational diffusion. Therefore, its shape fluctuations, in particular those of its 
bound part, are accessible to much more sensitive techniques such as reflection 
interference contrast microscopy (Zilker et al. 1987, R/idler 1993, R/idler et al. 1995). 

In fact, adhesion or interaction of membranes is an important topic not only as a 
means of orienting a vesicle but rather for its ubiquitous occurrence in biological, 
biochemical and biophysical processes. In biology, adhesion of a vesicle represents 
an essential step for many processes such an endo- and exo-cytosis or fusion of cells 
(Alberts et al. 1989). Efficient drug delivery by small vesicles requires an under- 
standing of the interaction of the liposomes with cell membranes (Lasic 1995). 
Biosensors are based on the binding of membranes to substrates. 

Studying the adhesion of membranes and vesicles will thus lead to important 
insights into the interactions of these soft systems. This section deals with the 
theoretical approaches with an emphasis on the specific effects that arise for the 
adhesion of (finite closed) vesicles in contrast to the adhesion of (infinite open) 
planar membranes. 

We begin with a list of the available experimental techniques in section 6.1, 
section 6.2 is devoted to a brief review of the adhesion of (infinite) almost planar 
membranes. Here the crucial role of steric repulsion due to thermal fluctuations is 
discussed (Helfrich 1978, Lipowsky and Leibler 1986). Vesicle adhesion is considered 
in section 6.3, where the microscopic potential is replaced by a phenomenological 
contact potential. The shape of a bound vesicle in such a potential is governed by the 
competition between adhesion and bending energies. As a central result, this 
competition leads to an adhesion transition (Seifert and Lipowsky 1990). The effect 
of the finite range of the potential is discussed in section 6.4, section 6.5 is devoted to 
a self-consistent theory for bound vesicles which treats the adhesion potential and 
the fluctuations on the same footing (Seifert 1995d). This theory allows us to address 
the question of whether or not genuine tension-induced adhesion (Servuss and 
Helfrich 1989) is possible for vesicles. In section 6.6, the effect of gravity on vesicle 
shape is discussed. Section 6.7 is devoted to a brief review of recent work on focal 
adhesion induced either by specific molecules or laser traps. 

6.1. Experimental methods 
The interaction of membranes and vesicles has been studied by using different 

experimental techniques which will be very briefly reviewed in this section. More 
detailed descriptions can be found in recent reviews (Lipowsky 1995, Parsegian and 
Rand 1995, Helfrich 1995). Conceptually, one should distinguish the interaction of 
almost planar membranes, whose lateral extension is assumed to be infinite, from the 
study of vesicle adhesion for which the closure of the vesicle can lead to additional 
effects not present for planar membranes. 

6.1.1. Force apparatus 
Bare interaction between membranes can be studied with the surface force 

apparatus developed by Israelachvili and co-workers (Marra and Israelachvili 
1985, Israelachvili 1991). In this technique bilayers are deposited on thin mica sheets 
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which are glued to glass cylinders. This technique can be used to measure the force 
versus distance relation. Since the membranes cannot fluctuate, one obtains 
information about the bare forces. 

6.1.2. Osmotic stress method 
This technique (Parsegian et al. 1979, Rand and Parsegian 1989, Parsegian and 

Rand 1995) applies to lamellar membrane stacks which are separated by a water- 
permeable membrane from a polymer solution. By changing the concentration of the 
polymers one can vary the osmotic stress that affects the intermembrane distance 
between the bilayers. This distance is measured by X-ray or neutron scattering. The 
force versus separation relation includes the effect of membrane fluctuations. 

6.1.3. Optical microscopy 
Optical studies of  dilute membrane systems (Servuss and Helfrich 1989, Helfrich 

1995) are conceptually in between experiments on planar membranes and on vesicles. 
These membranes are part of large vesicles whose topology, however, cannot be 
resolved. Studying the region of  contact between different sheets, one obtains 
information on the interaction energy and lateral tensions in the membrane. 

6.1.4. Micropipette aspiration 
Evans has perfected the use of  micropipettes to manipulate vesicles (Evans and 

Metcalfe 1984, Evans 1990, 1995a). This set-up is particularly useful in studying the 
adhesion of two vesicles, each one of which is sucked into a pipette. By changing the 
suction pressure in one of the pipettes, one can change the area of adhesion between 
the two vesicles. Balancing the energy gained by a larger adhesion area with the cost 
paid in work against the pressure, a value for the effective contact energy can be 
extracted. 

6.1.5. Reflection interference contrast microscopy 
This technique (Zilker et al. 1987, 1992, R/idler and Sackmann 1992, R~idler et al. 

1995) can be used to measure distances from a coated substrate with a resolution of  
the order of a nanometre, whereas the lateral resolution is confined to an optical 
wavelength. I f  a vesicle is put on such a substrate, one can measure the fluctuations 
of its bound part as well as the rounding in the region where the vesicle is forced to 
detach from the substrate because of its topological closure constraint. 

6.2. Bound planar membranes 
Before we turn to bound vesicles, we have to review briefly in this section some of 

the extensive work on the adhesion of planar membranes in microscopic potentials 
for four reasons. (i) It is instructive to discuss an almost planar adhering membrane 
along the same lines as we discussed the fluctuations of an almost planar free 
membrane in sections 2.2 and 2.3. (ii) The contact potential approach discussed in 
section 6.3 leads to a curvature-driven adhesion transition from a bound to a free 
state for closed vesicles (Seifert and Lipowsky 1990). Since planar membranes can 
undergo a thermally driven unbinding transition (Lipowsky and Leibler 1986, Mutz 
and Helfrich 1989), it is important to discuss the interplay of these two mechanisms. 
(iii) A self-consistent theory of vesicles adhesion requires a knowledge of the 
adhesion of planar membranes under tension. (iv) In the next section, the dynamical 
fluctuations of a bound almost planar membrane are investigated. In order to 
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classify the various regimes, an understanding of the static equilibrium fluctuations is 
a prerequisite. 

6.2.1. Direct interactions 
The surface force apparatus and the osmotic stress method described above give, 

in principle, the interaction potential V(1) between two planar membranes a distance 
l apart. Likewise, one may consider a membrane at a distance l from a rigid 
substrate. Conceptually, it is helpful first to assume that the effect of fluctuations 
can be neglected. Thus, one deals with the so-called direct interaction Vd (1), which 
comprises the following forces reviewed in detail with their l dependence elsewhere 
(Israelachvili 1991, Lipowsky 1995). 

For charged membranes, the Coulomb interaction provides a long-range 
potential Vd(/) ~ 1/l. On length scales beyond the Debye length, which depends 
on the salt concentration, this interaction becomes exponentially screened. Even for 
an uncharged membrane, the fluctuating dipoles lead to the van der Waals 
interaction which decays like a power law with various regimes depending on the 
separation. I f  the membrane is impermeable to large molecules, these molecules can 
be used to build up an osmotic pressure which pushes a membrane towards a 
substrate, yielding a linear potential in l. Finally, there are short-range repulsive 
interactions. These include the 'hydration forces', which are supposed to arise from a 
local rearrangement of hydrogen bondings near the membrane (Rand and Parsegian 
1989). More recently, the effect of local protrusions of the lipid molecules has also 
been shown to lead to a short-range potential (Israelachvili and Wennerstr6m 1990, 
Lipowsky and Grotehans 1993). 

If  all these forces are summarized in a potential Vd(/), the energy of an almost 
planar bilayer membrane at a local distance l(x, y) from a substrate is given by 

Z 
(6.1) 

where we drop the subscript d in Va(l). For an almost flat membrane, the tension Z 
can be considered as externally given. For the bound part of a large vesicle, it will 
arise physically from the area constraint, as will be discussed in section 6.5. Using the 
energy (6.1), the membrane is described within the classical model. Including the 
bilayer aspect along the lines of section 2.3 leads to new effects for static problems 
only if a coupling between the separation l and the monolayer densities q~+ is 
introduced. Such a coupling, which could arise from the van der Waals interaction, 
remains to be explored. 

As a first step, the potential V(l) is replaced by its harmonic approximation 
around the minimum l0 with curvature 

~2 ~ d 2 V/dl2[l=lo. 

For a small local displacement, 

(6.2) 

h(x, y) =_ l(x, y) - lo, (6.3) 

of the membrane from the minimum, the free energy F~ of an adhering bilayer 
membrane is given by 
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2J h. o(q)hq, (6.4) 
d ~,Z~) 

where the latter relation defines the 'energy' E~). 
Depending on the strength of  the tension Z, two cases must be distinguished 

theoretically. 

(1) For weak tension (Z << 2(Qt~)l/2), the tension term never dominates the 
energy E~ which thus exhibits only one cross-over length scale at 

~_ (~;/O) 1/4. (6.5) 

For q < 1/~, the fluctuations of  such a membrane are dominated by the 
potential, while for q > 1/~ they are governed by bending elasticity. 

(2) For strong tension (Z >> 2(t2~)1/2), the tension dominates the energy in an 
intermediate range ~z 1 < q < ~-1, with the two crossover length scales 

~s = (2:/0) a/2 and (~ ~ (~/~,)1/2. (6.6) 

The static height-height correlation functions are given in harmonic approximation 
as  

/ . \ T (2rc) 2~(q 
\hqhq, / -= mq4 + Zq2 + (2 ql). (6.7) 

From this correlation function, one obtains the mean roughness of  the membrane as 

[ d2 q f d2q, 8(~O)1/2 , for ~ = 0, 
(he) = J'~---~'2J "~'2(hqh*q~(zr~) (zrc) - - ~ (6.8) 

4~s ln  (1 + S/f2a2), cr = O, for 

and a somewhat longer expression in between the two limiting cases (Lipowsky 
1995). Here a is a short-distance cut-off. 

6.2.2. Steric interaction in the presence of lateral tension 
The Gaussian approximation described above ignores the presence of  the hard- 

wall constraint, l(x, y) > 0, which can restrict the fluctuations of the membrane even 
further than the direct repulsive interaction. Two approaches have been invented to 
include this effect. In the phenomenologieal superposition approach, one adds the 
effect of  the hard wall as a fluctuation potential Vf(l) to the direct interaction Vd(l). 
Once Vf(I) is known, one proceeds as above and calculates the mean separation 10 
and fluctuations (h 2) replacing V(I) with Vd(l )+ Vf(l). Within the systematic 
renormalization group approach (Lipowsky and Leibler 1986, Lipowsky 1995), 
fluctuations on short length scales are iteratively integrated out to yield an effective 
or renormalized potential on longer length scales. Depending on the details of  the 
direct interaction, the renormalization group results either vindicate or falsify results 
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from the superposition approach. In this section, we discuss the superposition 
approach and comment on its failure. 

The steric or fluctuation potential can be motivated or derived by slightly 
different methods in various geometries. One may consider either one membrane 
between two rigid walls, one membrane pushed by a linear potential, i.e. a pressure, 
towards a rigid substrate or a membrane stack pushed towards a wall. The basic idea 
is to replace the hard constraints imposed by the walls or a non-crossing condition 
among the membranes by a soft potential whose form or value is determined self- 
consistently (Helfrich 1978). 

The derivation presented here (Seifert 1995d) applies to a membrane subject to a 
pressure pushing it towards a rigid substrate. It starts by expressing the increase in 
free energy due to the confinement of fluctuations as (Helfrich 1978, Lipowsky 1990) 

Vf(l) = bT/{( l )  2, (6.9) 

where T is the temperature in units of energy, b is a numerical factor to be 
determined later and ~(l) is the lateral correlation length that depends on the 
separation l. The correlation length is defined by the condition that beyond this 
length fluctuations are no longer determined by the membrane elasticity but rather 
by the effective potential Vf(l), which mimics the effect of the hard wall. Equiva- 
lently, membrane patches of linear size ~(l) can be regarded as essentially 
uncorrelated fluctuating units each of which carries a free energy T. Using (6.2) 
and the correlation function (6.7), a sensible definition of ~(l) is 

~/~( / )4  _~_ z~/~(/)2 --_~ V~(l). (6.10) 

Replacing 1/{(l) 2 from (6.9) by Vf(l)/bT, a nonlinear differential equation for the 
fluctuation potential is obtained: 

t~Vr(l)Z/(bT) 2 + S V f ( l ) / b T  = V~(l). (6.11) 

If  Vf(l) is required to vanish at infinity and diverge for l ~ 0, the unique solution is 
given by (Seifert 1995d) 

6b2T 2 y2 (6.12) 
Vr(l) = M2 sinh 2(y) ,  

with 

y = (~/bT)l/21/2. (6.13) 

In the tensionless case, X ~ 0, or for small separations 10 ~ 0, the scaling variable y 
goes to 0. One then recovers with Vf(l) = 6b2T2/nl 2, the famous Helfrich potential 
(Helfrich 1978) of a tensionless membrane. The numerical prefactor has been 
determined by Monte Carlo methods as b--b l - - -0 .1  for a single membrane 
(Lipowsky and Zielinska 1989, Netz, 1995) or from membrane stacks (Janke and 
Kleinert 1987, Gompper and Kroll 1989, Netz and Lipowsky 1993, 1995). 

For  l ---+ ee, the effective potential derived above leads to an exponential decay. 
The decay length agrees with renormalization group results (Lipowsky 1995) if the 
numerical factor b is chosen as b = b2 = 1/2ft. 
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The above derivation of  the effective potential in the presence of lateral tension 
seems to be the simplest one which agrees with more systematic renormalization 
group results in both limits y--~ 0, c~. An alternative derivation of the steric 
potential in the tensionless case starts from assuming a form Vf(/) = A/U with yet 
unknown A and r. Adding the pressure term pl to this potential yields the minimum 
at l0 = (A'r/p) 1/r. Expanding the effective potential around this minimum at l0 leads 
to f2 = r('r + 1)A/l~ +2 from which one obtains the roughness 

= \ A - , - ( - , -  + i)} " 
(6.14) 

The self-consistency requirement (h 2} N l~ fixes the exponent r =  2 and the 
amplitude A = T2/t~ up to a numerical prefactor. The rationale behind this self- 
consistency requirement is the idea that if {h 2 ) << l02, one has overestimated the effect 
of the hard wall, while for (h 2) >> l~, one has underestimated it. As attractive as such 
a reasoning may look, it fails in the presence of tension where h 2 and l 2 scale 
differently since (h 2) ~lo(T/S) 1/2 according to renormalization group results 
(Lipowsky 1995). Consequently, attempts to derive the effective potential which 
do not recognize this different scaling fail to predict the correct exponential 
asymptotic decay of the fluctuation potential for large l and rather yield a Gaussian 
decay (Evans 1991). 

6.2.3. Unbinding transition 
The most important qualitative feature of a membrane interacting with a 

substrate or with other membranes is whether or not the membrane is bound. 
Clearly, the direct potential Vd(l) should have a minimum with finite depth as a 
necessary condition for such a bound state. Within the superposition approach the 
sufficient condition is that such a minimum at 10 with V(lo) < 0 is still present after 
the fluctuation potential (6.12) has been added to the direct potential. As a physical 
parameter, e.g. temperature, is changed, the depth of  this minimum can decrease. 
Two possibilities arise theoretically as sketched in figure 25. (i) The position l0 of the 
minimum remains finite even when V(lo)= 0. In this case, one expects a dis- 
continuous transition from a bound state to the unbound state as temperature 
increases. (ii) As the minimum gets more shallow, its position may approach infinity. 
In this case, the unbinding transition is discontinuous. 

Prediction of the order of the unbinding transition based on the superposition 
approach is vindicated by the more systematic renormalization group in the 
following cases (Lipowsky 1990). For tensionless membranes, the attractive part 
of the direct interaction should decay slower than 1/12. If the attractive part decays 
faster than 1/l 2 for large l, the effect of the hard wall is non-trivial, and superposition 
of direct interaction and fluctuation potential fails. In this regime, either renormal- 
ization group methods or Monte Carlo simulations are required to determine the 
effective fluctuations properly (Lipowsky 1990, Lipowsky and Zielinska 1989). 

The effect of a non-zero tension on the membrane is to suppress fluctuations 
(Helfrich and Servuss 1984). Therefore, superposition is valid for a larger class of 
potentials. In fact, it turns out that all direct potentials whose attractive and 
repulsive parts decay like power laws can be treated by superposition. For  
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Figure 25. Adhesion potential V(I) at the unbinding transition within the superposition 
approach. The full curve sketches a potential in which the membrane is bound. If as 
the temperature is increased the potential assumes the dashed form, the unbinding 
transition is discontinuous. If the potential deforms towards the dotted form, 
unbinding takes place continuously. 

exponential direct interactions, the effect of  the hard wall is extremely subtle and 
details of  the direct interaction become crucial (Lipowsky 1990). 

However, even in cases where superposition fails to predict the correct order of  
the unbinding transition, it may still give a reasonable quantitative estimate for the 
effective potential of a bound state where fluctuations are not yet as pronounced as 
they are close to the unbinding transition. 

Experimental evidence for a thermally driven unbinding transition in bunches of  
membranes has been found by optical microscopy (Mutz and Helfrich 1989). Since 
the perspective of  this article is on vesicle adhesion, we will not discuss the theoretical 
subtleties which can arise when stacks of  membranes unbind. This phenomenon has 
been studied by mean field theories (Milner and Roux 1992, Helfrich 1993), extensive 
Monte Carlo work (Cook-R6der and Lipowsky 1992, Netz and Lipowsky 1993) and 
various scaling pictures (Lipowsky 1995). 

6.3. Adhesion in a contact potential 
6.3.1. Contact potential and contact curvature 

After the discussion of  infinite bound membranes we turn to the focus of this 
section, which is the adhesion of  closed vesicles. For  such a vesicle one may, as a first 
step, take advantage of  the effective length-scale separation between the size of  the 
vesicle and the range of  the interactions which is of the order of  several nanometres. 
Thus, one replaces the total potential V(I) by an effective contact energy 
W = -V( lo )  > 0, which can be identified by the value of  the effective interaction 
potential at the mean separation 10 of  the membrane from the substrate. If the vesicle 
and the wall have contact area A*, the vesicle gains the adhesion energy (Seifert and 
Lipowsky 1990) 

Fa = - W A * ,  (6.15) 

which must be added to the curvature energy. 
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Such a contact potential does not alter the shape equations found for free 
vesicles. It rather enters the boundary condition at the point of contact. First, the 
contact angle is necessarily n since any sharp bend would have an infinite curvature 
energy. This implies that the membrane is curved only in one direction, and 1/R~ = 0 
along the line of contact. Second, the contact curvature 1/R~ is determined by 
(Seifert and Lipowsky 1990) 

1/R~ = ( 2 W / n )  1/2, (6.16) 

which follows from minimizing with respect to the area of contact. This boundary 
condition, which does not depend on the area of  the vesicle, holds for all variants of  
the curvature model. 

The different experimental methods described in section 6.1 give, in general, 
different values for the effective contact potential W, which are in the range 10 -4-  
1 mJ m -2. For  rough estimates in this section, we will use the value of 1 mJ m -2 for 
strong adhesion, and the value o f  10 -4 mJ m -2 for weak adhesion. The contact 
curvature 1/R~ expected from these estimates span 1/R~ ~_ 1/(10 nm) for strong 
adhesion (using n = 10 -19 J) and 1/R~ _--- 1 gm -1 for weak adhesion. The latter value 
is clearly accessible by light microscopy. In fact, R/idler et al. (1995) using reflection 
interference contrast microscopy (Zilker et al. 1987, 1992) measured distances from a 
coated substrate with a resolution of the order of a nanometre, whereas the lateral 
resolution is confined to an optical wavelength. With this technique, a contact 
curvature of the order of 1/(10 gin) has been reported, from which the contact 
energy has then been determined. Similar values have also been found in dilute 
membrane systems (Servuss and Helfrich 1989). 

6.3.2. Curvature-driven adhesion transition 
Solving the shape equations for axisymmetric shapes with the boundary 

condition (6.16) leads to a variety of bound shapes which can be arranged in a 
phase diagram, as in the case of  free vesicles. The basic physics behind the 
competition between adhesion and curvature energy already becomes evident in a 
minimal model, which contains only the local bending energy G (2.51), the adhesion 
energy Fa (6.15), a constraint on the total area A = 4rcR~, and no votume constraint. 
Such a model depends only on the reduced potential strength 

w =_ WR~/. (6.17) 

Several shapes for different w are shown in figure 26. With decreasing strength of the 
contact potential w, the area of  contact A* also decreases and vanishes for 
w = Wa = 2. For  the unscaled potential strength W, the area of contact vanishes at 
the size-dependent value 

Wa = 2~/R~. (6.18) 

For  W = Wa, the bound shape resembles the free shape corresponding to the same 
constraint, which is a sphere except for the fact that the contact curvature 
1/R~ = 2/Ro is twice the curvature of  the sphere. However, the contact mean 
curvature H * =  _ (1/R~ + 1/R~)/2-= 1/Ro is equal to the mean curvature of  the 
sphere. For  W < Wa, an attractive potential does not lead to a bound shape with 
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Figure 26. Shapes of bound vesicles which all have the same area for reduced adhesion 
energy, w = 2.0, 2.9, 4.1, 6.4 and 10-2 (Seifert and Lipowsky 1990). 
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Figure 27. Schematic phase diagram with free and bound shapes at constant area and 
volume. The bold curves show the adhesion transition at w = xa(y), which can be 
discontinuous (D pr° ob l'~sto'~ - - - a  , D a  and or continuous (CSt°~ In the dashed region, non- - - a  -' a J '  

axisymmetric bound shapes are relevant. The dashed straight lines across the shapes 
denote the axis of symmetry (Seifert and Lipowsky 1993). 

finite area of  contact. Thus, the vesicle undergoes a continuous adhesion transition at 
W -- Wa (Seifert and Lipowsky 1990). 

A somewhat  more complex situation arises when, in addition to the area, the 
enclosed volume is also kept constant. The phase diagram becomes two-dimensional, 
and depends on v and w. This phase diagram is shown in figure 27, together with 
some bound shapes (Seifert and Lipowsky 1993, Lipowsky and Seifert 1991b, 
Lipowsky and Seifert 1991a). Its main characteristic is the line of  adhesion 
transitions Wa(V) which separates bound from free states. The transition can be 
continuous or discontinuous depending on the reduced volume. The energy 
minimization yields a numerical relation 

~,(W) = W/7(v  , w) (6.19) 
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between the Lagrange multiplier Z used to implement the area constraint and the 
contact potential W which will be needed below. 

The character of the adhesion transition depends on the ensemble. If the area is 
subject to a constant surface tension, a discontinuous curvature-driven adhesion 
transition has been found in a model for adhesion and rolling of leucocytes 
(Bruinsma 1995). 

The 4D phase diagram for adhesion with explicit inclusion of the area-difference- 
elasticity energy has not yet been studied. In analogy to the free case, one expects 
that the non-local energy favours continuous adhesion transitions and the occur- 
rence of non-axisymmetric shapes. Non-axisymmetric shapes are more relevant than 
in the case of free vesicles, since the axisymmetry of free prolates is broken if these 
shapes adhere with their long axis parallel to the substrate. Such a bound shape can 
no longer be obtained by solving the axisymmetric shape equations, but it is 
accessible by direct minimization, as described below. 

Experimentally, there has not yet been any direct evidence for a curvature-driven 
adhesion transition for vesicles. Two different approaches are conceivable in order to 
observe this transition. (i) Changing the temperature will affect both the reduced 
volume and the scaled adhesion potential w = WRy~ via the area expansion. A 
temperature decrease also decreases w and increases v. Therefore, a bound vesicle 
may become free upon cooling provided its initial state at the higher temperature is 
already sufficiently close to the adhesion transition. Likewise, osmotic deflation or 
inflation, which does not affect w, can induce a crossing of the adhesion transition 
in the phase diagram (figure 27). (ii) A more indirect but quite elegant confirmation 
of the theory described above could make use of the characteristic size dependence of 
the adhesion transition as expressed in (6.18). This relation implies that, for fixed W, 
in an ensemble of vesicles, only those with Ro > Ra =-- (2/Wa) 1/2 are bound to the 
substrate. 

6.3.3. Strong adhesion: effective contact angle 
For strong adhesion, or, equivalently, for large vesicles, a simplification occurs 

because the scale-invariant curvature energy becomes irrelevant compared with the 
gain in contact energy. In this limit, R0 >> Ra, or W >> Wa, the shape of the bound 
vesicle approaches a spherical cap configuration. If only the area is constrained, this 
limit shape is a flat pancake with an energy 

t~G + Fa ~ -21tW1~ + 2rcg(2W)V2Ro, (6.20) 

with the numerical coefficient g --- 2.8 (Lipowsky and Seifert 1991b). If in addition 
the volume is constrained, the vesicle becomes a spherical cap for strong adhesion, as 
shown in figure 28. In both cases, an effective contact angle 7Jefr, which obeys a 
Young-Dupr6 equation, can be defined (Seifert and Lipowsky 1990) as 

W = 2(1 + cos 7~eff), (6.21) 

with ~eff = 0 for the pancake. In (6.21), the quantity 2 is the (numerical) value of the 
Lagrange multiplier for the area constraint. It also obeys the Laplace equation 
22, + P/Ro = 0, where P is the Lagrangian multiplier used to implement the volume 
constraint. Thus, in this limit the scaling function ",/(w, v) introduced in (6.19) 
becomes 
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Figure 28. Spherical cap conformation for strong adhesion, w = 375, and effective contact 
a n g l e  Itleff ~ 65"5 ° (Seifert and Lipowsky 1990). 

 (w oo,  )=l-cos (6.22) 

The spherical cap geometry determines the relation between the effective contact 
angle gJeff and the reduced volume as 

9cos (TJerf)/2 - cos (3 ~erf)/2 + 4 
v - [2 + 2 cos (TJeff) + sin 2 (TJe~)] 3/2, (6.23) 

with v ~ 1 - ( 3 / 3 2 ) ~  for small ~ee~. 
It is meaningless to define an effective contact angle if the condition R0 >> Ra, i.e. 

W > n / R  2, does not hold. The curvature energy becomes irrelevant only if it holds, 
and then adhesion of the vesicle resembles wetting by liquid droplets. 

Spherical cap-like configurations are clearly seen in micro-pipette experiments 
(Evans and Rawicz 1990) as well as in freeze-fracture electron microscopy for smaller 
vesicles (Bailey et al. 1990). Pancakes for strong adhesion have also been found by 
reflection interference microscopy (R/idler 1993). 

6.3.4. Strong adhesion." adhesion-induced rupture and fusion 
For strong adhesion, elastic stretching of the membrane becomes relevant. In 

fact, the energetic competition which determines the configuration does not involve 
the balance between curvature energy the adhesion energy, but rather the balance 
between adhesion energy and elastic energy: 

Fk =-- (k/2)(A - Ao)2/Ao. (6.24) 

Here, k is the area compressibility modulus of the order of 102 mJ m -2. Such an 
extended model leads to the same shape equations as the model with a hard-area 
constraint. Even the boundary condition (6.16) remains unchanged. The phase 
diagram, however, changes due to the additional energy. Balancing the adhesion 
energy with the stretching term leads to the adhesion-induced stretching of the 
order of  

(A - Ao)/Ao ~- W / k .  (6.25) 

Identifying k(A - Ao)/Ao with an elastic tension Zei, we find the relation 2;el ~ W for 
strong adhesion. The bound vesicle ruptures, as soon as Zel exceeds the lysis tension, 
which is known experimentally to happen at about (A - Ao)/Ao ~-- 0-03 (Evans and 



Configurations o f  fluid membranes and vesicles 93 

Needham 1987). From (6.25) one then derives that any adhesion potential stronger 
than 0.03k induces rupture. 

After the bound vesicle has ruptured, its configuration becomes an open disc. 
Such a bound disc has an energy (Lipowsky and Seifert 1991b) 

Fbd = --4r~ WR~ + 4n2:eR0, (6.26) 

where Se is the edge tension along the circumference of the bound disc. A 
comparison of  the energy (6.26) with the energy (6.20) of  a pancake shows that 
for R0 >> Rbd ---- Se /W the bound disc always has lower energy. 

The limit of  strong adhesion can also be reached from a different route even if the 
original adhesion energy was not 'strong'. If  more and more bound vesicles cover 
the substrate, they will come into contact and may fuse. For  free vesicles, fusion of 
two vesicles with equal area A -- 4nR~ (but no constraint on the volume) leads to a 
gain in energy AFfv = 8~ + 4rc~. I f  two bound vesicles fuse, the gain in energy AFbv 
is always larger than AFrv and satisfies AFbv > gn + 4rc~ with g "~ 8-3 (Lipowsky 
and Seifert 1991b). For  large R0, this energy gain behaves as 
AFbv ~ 4tOg(v/2- 1)( W)I/2Ro, where (6.20) has been used. Thus, adhesion favours 
fusion. As the size of the fused vesicle increases, its shape becomes more like a 
pancake. If  the elastic tension exceeds the threshold for lysis, the pancake ruptures 
and becomes an open bound disc. 

These crude energetic considerations lead to a scenario where vesicles adhere to 
the wall, fuse at the wall and rupture. Finally, the open discs will also fuse, thus 
forming a bitayer parallel to the wall. Experimental evidence for such a scenario 
came from X-ray scattering of a vesicle suspension which revealed a lamellar 
structure at the air-water interface (Cevc et al. 1990, Fenzl et al. 1995). The strong 
temperature dependence of the dynamics of formation of the lamella that was found 
experimentally demonstrates that the kinetics of  this process is quite subtle. 

6.4. Adhesion in a potential with finite range: the pinned state 
The contact potential is well suited for studying the mean shape of bound 

vesicles, but is less convenient for a discussion of  the effect of thermal fluctuations. In 
such a potential, a membrane segment is either subject to the full adhesion energy if 
bound, or does not feel the substrate at all, if free. 

In this section, we therefore consider adhesion of vesicles in a potential with non- 
zero range (Evans 1985) (not only) as a prerequisite for the discussion of fluctuations 
in the next section. On the level of minimization of the energy, a potential with non- 
zero range can easily be introduced by replacing the contact term -WA* by the 
energy 

Fa -- q~ dsl ds2 x/gV(l),  (6.27) 
J 

where l = Z(sl ,  s2) is the local distance of the membrane segment with coordinates 
(s~, s2) from the wall. Here we assume that the interaction couples only to the 
membrane rather than to the enclosed liquid. 

The shape equations and the boundary conditions get modified by this energy. So 
far, there has been no explicit calculation for 3D axisymmetric vesicles in such a 
potential even though this poses no principal problem. However, a closely related 
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system, the adhesion of 2D vesicles (Maggs and Leibler 1990) in such a potential 
with finite range has been investigated in considerable detail (Seifert 1991a). The 
essential results of this study can be understood by simple scaling considerations 
which have the virtue of being easily transferable to the 3D case (Seifert and 
Lipowsky 1993). 

In this section, these scaling arguments for the 3D case are presented. Since these 
arguments do not depend on the details of the potential V(I), we characterize such a 
potential by just two quantities, the range 10, which also characterizes the location of 
the minimum, and the depth 

Vo = -V(lo) < 0 (6.28) 

at the minimum. The shape of  minimal energy of a vesicle in such a potential can be 
classified into two cases depending on the range I0 and on the size of the vesicle R0. 

(1) For  R0 < 10, i.e., for small vesicles or long-range potentials, the whole bound 
vesicle is exposed to the adhesion potential V(I), The deviations from the free shape 
(with the same constraints) are significant, if the variation of the potential along the 
contour of the vesicle becomes comparable to the bending energy which scales as ~.  
This happens at the potential strength V ° = V °, where 

V 0 2 4 l~/Ro, (6.29) 

as can be estimated by expanding the potential around its minimum. Thus, for 
V ° << V °, the bound vesicle keeps more or less its free shape and gains an energy 

AF  ~ - V ° R  2, (6.30) 

compared to the energy of a free vesicle under the same constraints, while for 
V ° ~> V ° the adhesion potential deforms the free shape. A calculation of this specific 
shape would require solving the shape equations. 

(2) For 10 << R0, i.e. for large vesicles or short-range potentials, only the adjacent 
part of the vesicle is exposed to the potential and one should recover the results for 
the contact potential case. In fact, the limiting behaviour for small lo/Ro depends on 
the potential strength. (i) If  V ° > Wa, where Wa is the critical value for the adhesion 
transition found in the contact potential, the vesicle in the smooth potential V(Z) 
approaches, in the limit of small lo/Ro, the same shape obtained for adhesion in a 
contact potential with strength W = V °. In particular, the boundary condition 
(6.16) also evolves in this limit without being imposed. This limit has been considered 
explicitly for 2D vesicles (Seifert 1991a). (ii) For V ° < Wa, the vesicle approaches, in 
the limit of small lo/Ro, the free shape which satisfies the same constraints. It 
remains, however, pinned in the (narrow) potential minimum up to the limit I0 = 0 
where, formally, it becomes pinned in only one point (Seifert 1991a). Indeed, the area 
which is actually exposed to the potential well vanishes as loRo. This yields the energy 
gain 

AF ,,~ -V°loRo, (6.31) 

for small lo/Ro in the pinned state. If  the adhesion transition found in a contact 
potential has been discontinuous, the finite range 10 leads to a transition between the 
bound and the pinned state at 
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V ° = V~a(10, R0), with lira V°a(lo, R0) = Wa. (6.32) 
10--*0 

With increasing l0 (or decreasing R0), this discontinuous transition terminates in a 
critical point (Seifert 1991a). If  the adhesion transition in the contact potential has 
been continuous the finite range 10 leads to a smooth crossover between the bound 
and the pinned state. The pinned state thus replaces the free state found for adhesion 
in a contact potential. 

Since vesicles are finite systems, any bond state will eventually unbind through 
thermal activation. The concept of  a bound mean shape is meaningful only if the 
energy difference AF between the free and the bound state is large compared with 
the thermal energy T, i.e. for [AF I >> T. If  this relation holds true, the bound state 
remains bound for exponentially long time scales. 

As a criterion for a characteristic depth V ° --= V°u at which thermal activation sets 
in, we take the relation IAF(V°)I ~ T. With the estimates (6.30) and (6.31), one 
obtains (Seifert and Lipowsky 1993) 

vO ~ ( TIRe, for R0 < 10, (6.33) 
Tl(Rolo), for 10 << Ro <1~ =_ (t~lT)lo. 

The length scale Rc arises from the consistency requirement that V ° < V°a -~ Wa, 
which was assumed when using the estimate (6.31) for AF. The breakdown of this 
relation for R0 > Rc indicates that large vesicles will not enter the pinned regime 
because the energy gain AF  of  such a pinned state would be smaller than the thermal 
energy T. Therefore, these large vesicles unbind at values of the potential depth V ° 
for which the analysis at T = 0 would predict bound vesicles with finite contact area. 
The unbinding of  these large vesicles due to thermal fluctuations of their bound part 
is described next. 

6.5. Self-consistent theory 
Within the macroscopic description with the contact potential of  section 6.3 it is 

assumed that the strength of the adhesion potential is given. Likewise, if the shape is 
calculated in a potential of finite range as discussed in section 6.4, the potential has 
to be known. However, as discussed in section 6.2 above, fluctuations contribute to 
the repulsive part of such a potential. Intuitively, it is clear that the weaker the direct 
attraction becomes, the weaker the effective tension is on this part and the more it 
fluctuates, thus further contributing to steric repulsion. In a consistent theory the 
binding potential and the fluctuations of a bound vesicle have to be treated on the 
same level. 

The key idea consists of matching the description of a bound vesicle on a 
macroscopic and a mesoscopic length scale (Seifert 1995d). On the macroscopic 
scale, a bound vesicle is described as in section 6.3. This description yields the 
relation (6.19) between the Lagrange multiplier 2 and the strength of the contact 
potential W. 

On a mesoscopic level, the bound part of the vesicle is subject both to direct 
interactions and steric repulsion which create an effective potential as described in 
section 6.2. For  a bound state to occur, this potential V(N; l) has to have a minimum 
at a separation l0 where 



96 U. Se i fer t  

V ' ( lo)  =- dV(2~; 1)~dill=to = 0. (6.34) 

The depth of this minimum, Vo -- - V ( l o )  > 0, becomes a function of the tension or, 
vice versa, the tension is a function of  the depth S = Z(V0). 

The self-consistency requirement is simply that 

Z(W = II0) = Z(V0). (6.35) 

For this tension, the tension caused by the adhesion (in connection with the area 
constraint) equals the lateral tension for a planar membrane required to create an 
effective potential that has the correct depth to yield this adhering shape. The formal 
justification for this apparently obvious condition rests on two facts. (i) The 
Lagrange multiplier terms introduced into the f i r s t  variation to ensure the con- 
straints, act like a real energy for Gaussian fluctuations (calculated from the second 
variation), as discussed for free vesicles in section 4.1. (ii) In the limit where the range 
of  the mesoscopic potential becomes much smaller than the size of the vesicle, the 
macroscopic shape calculated in such a potential with depth -V(lo) approaches the 
shape calculated in a contact potential of strength W = - V(lo) > 0, as discussed in 
section 6.4. 

The self-consistent solution for a bound vesicle has been illustrated (Seifert 
1995d) for a class of direct attractive potentials 

A / I f  (6.36) 
Vd(t)  -- (Z/t1 + 1)"" 

The amplitude A is a generalized Hamaker constant and the length scale 11 is of the 
order of the bilayer thickness. This parametrization covers the classical van der 
Waals case in half-space approximation for n = 2, but also the asymptotic behaviour 
of a membrane in the vicinity of a semi-infinite substrate for large l where n = 3 (or 4 
if retardation effects are included). It is convenient to introduce the scaled amplitude 
H =_ A ~ / 6 b 2 T  2 and the scaled length scale z - Ill1 with zo =- loll1. For a tensionless 
membrane in the potential (6.36), superposition with the Helfrich potential yields an 
unbinding transition at H = Hu  =- ( n / 2 ) " ( n / 2  - 1) 2-", which is first order for n > 2 
and second order for n = 2. For  H > Hu, the membrane is bound at z = ~0 (H). For  
any non-zero tension, a membrane in this potential is bound for all H > 0. 

For  a bound vesicle, the three equations (6.19), (6.34) and (6.35) have to be 
solved with V = Vf + I'd, where Vd is the direct potential. For the model potential 
(6.36), this solution follows in parametric form as 

H ( y )  = y2 1 + a sinh 2 (y) 
g2(y)[ 1 _ g(y)]n-2  sinh 2 (y),  

(6.37) 

and zo(y )  = g ( y ) / [ 1  - g(y)], where g ( y )  - 2 y / { n t a n h  (y)[1 + a sinh 2 (y)]}. Elimi- 
nating the scaling variable y which contains the unknown tension, yields zo (H) .  Two 
regimes must be distinguished depending on the value of the parameter 

a - 27(w, v ) ~ / 3 b T .  (6.38) 

The function 7(w, v) has been introduced generally in (6.19) and becomes 
1 - cos 7Jeff(v) for large w >> 1. 
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Figure 29. Separation z0 and scaling variable y (dashed curve) of a bound vesicle as a 
function of the scaled potential strength H for n = 3 and a = 0-08. Tension-induced 
adhesion occurs for Hc < H < Hu, where two solutions (z~, y±) are found. For 
H > Hu, only the + solution survives. In this range, the separation ~0 of a tensionless 
membrane is given for comparison (Seifert 1995d). 

(1) Regular adhesion (a > 1/3). For a > 1/3, one finds a solution for a bound 
vesicle provided the amplitude obeys H > Hu. Thus, whenever a > 1/3, adhesion of 
a vesicle is not qualitatively different from adhesion of  a tensionless membrane even 
though the position of  the minimum zo(H) deviates somewhat from the value 50 (H) 
of  a tensionless membrane.  

(2) Tension-induced adhesion (a < 1/3). For  a < 1/3, genuine tension-induced 
adhesion becomes possible. One now finds (at least) two solutions for a bound vesicle 
in the range Hu > H > He(a, n), where a tensionless membrane  would be unbound. 
As shown in figure 29 for n = 3, these solutions merge at Hc below which no 
solutions can be found. Thus, with decreasing amplitude H, the vesicle will unbind at 
H = H~ since for even smaller amplitudes the adhesion cannot create a tension large 
enough to bind the vesicle. Since the tension is still finite at the adhesion transition 
H = He, the first-order character of  the transition should hold beyond the super- 
position approach. For  regular adhesion, however, the tension vanishes for H ~ Hu. 
In analogy to the unbinding of  a tensionless membrane (Lipowsky and Leibler 1986, 
Lipowsky and Zielinska 1989), one would then expect that the adhesion transition 
becomes continuous if  fluctuations are treated beyond superposition. 

I t  turns o u t t h a t  the conditions under which the crucial parameter  a is smaller 
than the dividing value 1/3 are very restrictive (Seifert 1995d). Using both b = 1/2r~, 
as appropriate in the tension-dominated regime, and a typical value for phospho- 
lipids ~/T = 25, one gets a ~-- 100 3'. Genuine tension-induced adhesion then requires 
3' < 0.003, which corresponds to a reduced volume of  1 - v < 3 x 10 -6, extremely 
close to the spherical limit. Thus, only vesicles with minute excess area can undergo 
tension-induced adhesion. The maximal contact angle to be expected for tension- 
induced adhesion is It t teff ,ma x ~-~ 0"1. I f  a bound vesicle exhibits any larger contact 
angle, one must conclude that its adhesion is not induced by tension but rather that  a 
tensionless membrane subject to the same potential would also be bound, albeit at a 
somewhat different separation ~0(H). 

This result can be related to the observation that in dilute samples the 
approximately constant effective contact angle I/Jef f ' ~  2n/3 cannot be consistently 
explained assuming tension-induced adhesion in a direct van der Waals potential 
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(n = 2) (Servuss and Helfrich 1989). While in this geometry the origin of  the lateral 
tension is somewhat obscure, one obtains a quite similar result for the well-defined 
geometry of  a closed vesicle. I f  one insists on the assumption that these membranes 
are unbound in the absence of  a tension, there is a serious discrepancy (Helfrich 
1995). 

The self-consistent theory should also be applicable to experiment (R/idler et al. 
1995). Vesicles were filled with a slightly denser fluid so that they sank to the bottom 
of  the chamber. Both the macroscopic shape and the fluctuations of  the bound 
part  of  the vesicles were recorded. From the latter, a tension in the range 
5 x 10-3-10 -1 erg cm -2 was derived. On the other hand, van der Waals attraction 
at the measured separation 10 --- 40 nm was estimated to be about 10 -6 erg cm -2. 
While this should be an upper estimate on the adhesion energy, data derived from 
the Young-Dupr6 relation led to adhesion energies up to the order of  
5 x 10 -5 erg cm -2. Thus, tension is at least 2 (if not 3 or 4) orders of  magnitude 
larger than adhesion energy. Within the theory discussed above, an inevitable 
consequence of  such an enormous ratio would be a tiny area of  contact with 
R*/Ro ,,~ ~eff ~ ( 2 W / ~ )  1/2 ~ 0"1-0"01, contrary to the reported value of  
R*/Ro > 1/4. Thus, the results of this experiment are (as yet) incompatible with 
the theory, even if gravity is taken into account (Seifert 1995d). 

6.6. Adhesion under gravity 
Gravity can have a significant but so far somewhat neglected effect on vesicle 

shapes. Its effect arises from the frequently employed experimental technique to 
stabilize the vesicle at the bottom of  the measurement chamber by a difference in 
density between the fluids inside and outside the vesicle. Mostly, this is done by 
solution of  different sugars with equal osmolarity, but different specific weights 
(D6bereiner 1995). 

A simple scaling argument reveals the relevance of  gravitational energy even for 
the small density differences usually employed (Kraus et al. 1995). Whereas the 
curvature energy is scale invariant, adhesion energies behave as Fadh o( R02. However, 
the gravitational energy scales as  Fgra v (3( R 4, because it is proportional to the volume 
multiplied by the height of  the centre of  mass of the vesicle above the substrate. The 
dimensionless gravity parameter 

go Ap R04 
g = - - ,  (6.39) 

measures this effect. Here, go --- 9.81 m s -2 is the acceleration due to gravity and Ap 
denotes the density difference between the fluids inside and outside the vesicle. 
Typical values for the latter are around 0.01q?.l g cm -3, i.e. a few percent of  the 
density of  water. Giant vesicles can reach a size of  R 0 - - 5 - 5 0  ~tm. With 
t~ '-~ 10 -19 J ___ 25kBT,  one obtains values of  0.5-50 000 for g. Thus, for giant vesicles, 
the gravitational energy can be varied over a large range. 

For  a theoretical description, one adds 

Fg - WA* ~ g I d V Z - WA* , (6.40) 

to the curvature energy. The coordinate Z denotes the height of  a volume element 
above the substrate. 
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The behaviour for very small and very large gravitational energies may be 
understood by simple arguments (Kraus et al. 1995). A vesicle filled with a fluid 
that is only slightly denser than the surrounding fluid, i.e. for small g, will always 
touch the bottom of the measurement chamber but will not necessarily form a finite 
contact area but rather a pinned state, in which the vesicle touches the wall only at a 
single point. A contact area of finite size will be formed, as soon as the cost in 
bending energy which is necessary in order to form this area is balanced by a gain in 
gravitational energy. The criterion for the transition from the pinned state to a 
bound state then follows from the boundary condition (6.16), which is still valid in 
the presence of  gravity. For  vanishing adhesion energy, i.e. w -= 0, this condition 
becomes 1/R~ = 0. The continuous adhesion transition between the pinned state and 
a bound state with finite contact area occurs when g Teaches a critical value where the 
vesicle is deformed into a shape which has vanishing mean curvature at the contact 
point. Varying w yields a whole line of adhesion transitions at g-~gadh(W). 
Numerically, one finds gadh(W = 0) ~ 0"45 for Co = 0 without volume constraint. 
For  g = 0, adhesion happens at w = 2 induced just by the contact potential. 

The behaviour for large g is different from the large-w limit in which a spherical 
cap is obtained. In the limit of high gravitational energy, bending is also irrelevant, 
but now--given that the volume is fixed--the shape of least energy is that of  a 
fiat disc. 

For  general g, the corresponding shape equations must be solved. Since non- 
axisymmetric shapes can also become relevant, they have been included in the study 
(Kraus et al. 1995) by numerically minimizing curvature energy and gravity with the 
surface evolver program (Brakke 1992). The phase diagram thus obtained is shown 
in figure 30. It contains a 'tricritical' point at u = Utr ' ~  0'88 that separates a 
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Figure 30. Phase diagram for adhering vesicles as a function of the gravitational parameter 
g and the reduced volume v. Non-axisymmetric shapes and the large-volume 
transition are computed using the surface evolver program, while axisymmetric 
shapes are solutions of the Euler-Lagrange equations with w = 0. The transition 
g* (v) between the non-axisymmetric prolates and the discocytes is discontinuous for 
v < v t r -  0"88 (full line) and continuous for v > vtr (dashed line) separated by a 
tricritical point (black dot). For the discontinuous transition, the limit curves of 
metastable states or spinodals are shown in the figure by dashed lines. On the small-v 
side of the phase diagram, collapsed shaped become relevant (Kraus et al. 1995). 
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discontinuous transition for u </Jtr from a continuous transition for v > utr. This 
transition separates axisymmetrie shapes for large g from non-axisymmetric prolates 
for small g. For small volume u and intermediate g, self-adhesion, or cohesion, must 
be included with an additional energy W'A'  where A' is the area of contact. This 
energy leads to 'collapsed' states with finite area of self-adhesion. 

6.7. Focal adhesion 
So far, we have been assuming a laterally homogeneous adhesion energy or 

binding potential. There are at least two experimental set-ups where adhesion or 
binding is induced only on one (or several distinct) points. In the laser pinching 
experiment, two originally almost parallel membrane sheets are 'pinched' together by 
a laser trap (Bar-Ziv et al. 1995b). In biological systems, adhesion is often induced by 
adhesion molecules which bind two membranes together locally (Chiruvolu et al. 
1994, Moy et al. 1994, Evans 1995a). 

Theoretically, one focal adhesion point can be modelled as follows. Let l(x, y) be 
the separation of two membranes in a Monge representation. An appropriate energy 
for small displacements from the parallel configurations is 

(6.41) 

Two regimes can be distinguished (Bruinsma et al. 1994). In the so-called van der 
Waals regime, the potential V(I) is expanded harmonically around a minimum at 
/ = 10. By minimizing the energy for boundary condition h(0) = 0 and h(r ~ c¢) = lo 
the axisymmetric distance profile h(r) can be expressed by a Kelvin function. In the 
so-called Helfrich regime, V(I) ~ T2/t~l 2 is used in an attempt to include fluctua- 
tions self-consistently. Beyond a core, one then finds a self-similar cone profile 
h(r) ~ (T2/~)l /2r.  

In order keep the membranes asymptotically at finite distance even in the 
presence of Helfrich repulsion, a linear pressure term ~pl  can be added to (6.41). 
Characteristic for the numerical solution for the separation profile (Bar-Ziv et al. 
1995b) is an over-shooting which arises from the fourth order of the corresponding 
Euler-Lagrange equations. 

A collection of focal adhesion points can exhibit cooperative behaviour 
(Bruinsma et al. 1994). In both the van der Waals and the Helfrich regimes focal 
points experience an effective attraction because of membrane rigidity and mem- 
brane fluctuations. For a membrane under tension, thermal fluctuations can assist 
adhesion in the presence of reversible focal adhesion points which model reversible 
binding molecules (Zuckerman and Bruinsma 1995). Whether this property persists 
if steric membrane repulsion is included remains to be investigated. 

7. Dynamics 
Configurational changes of vesicles comprise two conceptually different aspects. 

First, thermal agitation generates dynamical equilibrium fluctuations around the 
shape of lowest energy. Since the typical time scale for large wavelength fluctuations 
of micron-size vesicles is of the order of seconds, these fluctuations can be seen with 
video microscopy. Second, in any discontinuous shape transformation an unstable 
shape decays towards the new minimum by an essentially deterministic motion. In 
both cases, the presence of the surrounding liquid in which the membrane is 
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embedded determines the dynamics in an important non-trivial way, since it 
generates an effective long-range dynamical interaction along the membrane. 

In this section, basic aspects of the collective dynamics of the bilayer and the 
embedding liquid are discussed within linearized theories for various geometries. The 
full nonlinear formulation of  membrane dynamics for arbitrary geometry has just 
recently been worked out formally (Cai and Lubensky 1995), but has not yet been 
applied to fluctuations of non-trivial shape or instabilities. In section 7.1, the 
hydrodynamic equations for the coupled system comprising membrane and sur- 
rounding fluid are introduced. Eliminating the viscous liquid leads to a non-local 
equation of motion for the membrane. In section 7.2, we use this equation to recall 
the dynamical fluctuations of an almost planar membrane in the classical model 
where dissipation arises from the viscous damping in the liquid alone (Kramer 1971, 
Brochard and Lennon 1975). 

A second source of dissipation has been appreciated just recently (Evans et aL 
1992, Seifert and Langer 1993). This process arises from the dynamical counterpart 
of the area-difference elasticity introduced in section 2.3: local inhomogeneities of the 
lipid density in the neutral surface of each monolayer caused by sudden bending of 
the bilayer can relax laterally, if the two leaflets slide over each other. In section 7.3 it 
is shown that friction in the tail region of the hydrocarbon chains between the leaflets 
fundamentally alters the relaxation spectrum or the shape fluctuations below a 
mesoscopic length scale (Seifert and Langer 1993). Section 7.4 is devoted to 
dynamical shape fluctuations of quasi-spherical vesicles. The dynamical fluctuations 
of the bound part of an adhering vesicle (Seifert 1994) are discussed in section 7.5; in 
this geometry, quantitative measurements of collective dynamical processes have 
become feasible just recently (R/idler 1993). The dynamics of a shape transformation 
will be discussed for the laser-induced pearling instability of cylindrical vesicles (Bar- 
Ziv and Moses 1994) in section 7.6. 

7.1. Equations of motion 
An equation of motion for the membrane can be derived by starting from the 

Navier-Stokes equations for the surrounding viscous liquid and introducing the 
membrane later. The Navier-Stokes equations for the velocity field v(r) of the 
solvent with density pf and viscosity ~ are given by 

d 
(pfv) + Vp - r/V2v = K(r), 

d-~ 
(7.1) 

where p(r) denotes the pressure, and K(r) are the external forces acting on the liquid. 
These include both forces exerted from the membrane and forces due to confining 
boundaries, such as the presence of a substrate in the case of adhesion. 

To a very good approximation, the inertial term in the Navier-Stokes equation 
can be neglected for the range of phenomena in which we are interested. As can be 
checked a posteriori, the corresponding Reynolds numbers are small compared with 
1. In the so-called Stokes approximation, one then has to solve the force balance 

Vp - r/V2v = K(r). (7.2) 

Moreover, for these phenomena, the liquid can be considered as incompressible, i.e. 
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V. v = 0, (7.3) 

which can be used to eliminate the pressure in (7.2) in favour of the forces. 
These equations are solved formally by introducing the Fourier transforma- 

tion as 

Vk = f exp ( - i k .  r)v(r) d3r (7.4) 
J 

and 

Kk : lexp ( - i k .  r)K(r) d3r. (7.5) 

The solution to (7.2) and (7.3) then becomes a linear relationship 

1 ( k;kj  
Uk, : ~ '~ 6/j -- ~ - ' j  Kkj (7.6) 

between the velocity field and the external forces, where i, j denote Cartesian 
components. (Vki is short for (Vk)i to keep the notation simple). In real space, 
relation (7.6) reads 

v(r) = f d3r p O(r, r')K(r'), (7.7) 
d 

where the Oseen tensor O(r, r p) has matrix elements (Doi and Edwards 1986) 

I [ (ri- r~)(rj -,'~)] 
r') = 8  lr- r'l ]" (7.8) 

Thus, the hydrodynamics generates a long-range interaction (~ 1 / [ r -  r'[) through 
the velocity field. 

Since essentially no liquid penetrates the membrane, as discussed in section 1.3, 
we can identify the normal velocity of the liquid, v[R(sl, s2)] • n(sl, s2), at any point 
R(sl, s2) of the membrane with a configurational change of the membrane. Thus, we 
obtain a dynamical equation of motion for the membrane as 

OtR(s1, $2, t).  n(s1, $2, t) : n(Sl, s2, t).  l d3r' O(r, r')K(r'). (7.9) 

The crucial quantity is the force density K(r) exerted from the membrane (and 
container walls in confined geometries) upon the liquid. In general, this force density 
has normal and tangential components. Both curvature energy and tension con- 
tribute to the normal component while the tangential components are dominated by 
forces within the membrane, such as lateral tension gradients. Such an inhomo- 
geneous tension can arise from the local incompressibility of the membrane. For a 
compressible membrane, the density as an additional variable has its own equations 
of motion. The tangential forces have to be determined self-consistently from no-slip 
boundary conditions between membrane and embedding liquid. 
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For an arbitrary membrane configuration, geometry complicates the problem 
even further. A fluid membrane has to obey reparametrization invariance. Stochastic 
forces have to be introduced to describe the thermal fluctuations. The correlator of 
these forces has to be chosen properly to ensure that such a dynamics obeys the 
correct equilibrium. A general formulation of membrane hydrodynamics which 
takes care of all these subtleties has recently been given by (Cai and Lubensky 
1995). In this paper, the formalism was applied to show that incompressible 
membranes become effectively compressible on longer scales because of thermal 
fluctuations. The dynamical viscosity of the liquid, however, was shown not to be 
renormalized. 

In polymer dynamics (Doi and Edwards 1986), the model just described would be 
called a Zimm model since the main dissipation arises in the embedding liquid where 
back flow effects are relevant. For membranes, a Rouse model for which the 
dissipation is local is physically not very meaningful. Many formal issues, however, 
can also be studied for such a simpler Rouse dynamics (Foltin 1994, Cai and 
Lubensky 1994). 

Membrane hydrodynamics becomes much simpler if only small configurational 
changes around a simple mean shape are considered, as we now do in the following. 
From a practical point of view, such a narrower focus is still sufficient to discuss 
basically all available quantitative experiments on membrane dynamics. 

7.2. Almost planar membrane: classical model 
As an instructive example, we first recall the relaxation of small displacements 

h(x, y, t) of an almost planar membrane around its equilibrium position at z = 0 
within the classical model, which will be derived here in a somewhat different 
approach than given in the original work (Brochard and Lennon 1975). 

In a planar geometry, it is convenient to apply a Fourier transformation parallel 
to the membrane plane according to 

and 

Vq (z) = J exp ( - i q .  x)v(r)dx 

Kq (z) = J exp ( - iq .  x)K(r)dx, 

(7.10) 

(7.11) 

where r = (x, z ) =  (x, y, z). Moreover, one can decompose the velocity and the 
force fields into their z, longitudinal and transverse components as 

and 

Vq(Z) ~Uqz(Z)ZAVVqI(Z)q-~-Vqt(Z)t, 

I q ( z )  - Kqz(Z)  + Kqt(Z),i 

(7.12) 

where ~ is the unit vector parallel to q, and t is the in-plane vector perpendicular to 
q and ~. 

Inserting these expressions for the Fourier-transformed quantities into the 
relation (7.6) yields, with little algebra, the relationship between velocity and force 
components as 

(7.13) 
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uqz(z) = 4 ~  -o~ dz' exp(-qlz-z'l)[(l+qlz-z'DKqz(Z')+iq(z'-z)Kqz(z')], 
(7.14) 

O(3 

v.~(z) = 4~  J_ 

and 

dz' exp(-qlz-z'[)[(1 -q[z-z'DKqt(Z')+iq(z'-z)Kq~(Z')], 

(7.15) 

OO t 
Uqt(g) = ,+r/q j=---/_o~ d i  exp ( - q l z  - z ' l ) 2Kq t ( z ' ) .  (7.16) 

Since the transverse components do not couple to the normal displacements in this 
geometry, they can be ignored in the following. 

For small displacements around the almost planar membrane the restoring forces 
are small and proportional to h. Therefore, they can be assumed to act only in the 
plane z = 0, since the fact that they act at the local position h(x, y, t) of  the 
membrane is an effect of  higher order. For such a force density, 

Kqz(Z) - ~ ( z ) [ r ~ + / q ~ ] ,  (7.17) 

and the relations (7.14) and (7.15) immediately yield a decoupling of  the z and the 
longitudinal components according to 

Vqr(0) = ~-~lqKqr, with r = z or l. (7.18) 

For the classical model, the normal force Kqz is given by the derivative of  the bending 
energy F0 (as introduced in (13)) as 

Kqz-  O F o  .Eo(q)hq=_~q4hq. (7.19) 
Oh~ 

If  the normal velocity at the membrane is identified with the time derivative of  
h, i.e. 

Othq = Vqz(0), (7.20) 

one obtains from relation (7.18) the equation of motion for the membrane in the 
form 

Othq = - t o  (q)Eo (q)hq. (7.21) 

The 'kinetic coefficient' 

I'0 (q) ~- 1/4~q (7.22) 

reflects the long-range character of the hydrodynamic damping. In the solution to 
this equation of  motion, 

hq(t) = hq(O)exp [-3'0(q)t], (7.23) 
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the damping rate 70 (q) is easily identified as 

7o(q) = Fo(q)Eo(q) = ~q3/4~. (7.24) 

The form (7.24) of the damping rate as a product (Marathe and Ramaswamy 1989) 
of a kinetic coefficient which contains the dissipation, and an energy which contains 
the driving force, is characteristic of the low Reynolds number viscous dynamics. It 
persists if we take the bilayer aspect of the membrane into account, as well as for a 
bound or cylindrical membrane. 

So far, the dynamics has been strictly deterministic. In order to obtain dynamical 
equilibrium functions one should first add stochastic forces to the equation of 
motion (7.1) and then average over an appropriate ensemble. Within a linear theory, 
however, the usual short-cut works. Multiplying the solution (7.23) with h i, (0) and 
averaging with the Boltzmann weight exp(-Fo/T) yields the dynamical equilibrium 
fluctuations as 

(hq(t)h*q,(O) ) = -~exp[-7o(q)tl(2~)26(q - q'). (7.25) 

7.3. Almost planar membrane: bilayer dynamics 
7.3.1. Force balance 

If  the membrane is described in the refined bilayer model introduced in section 
2.3, the normal force is given by 

Off' _ [ffoq4h q _ 2kdq2pq] ' (7.26) Iq - 

where the bilayer energy F was defined in (2.28). If  this force density is inserted into 
(7.18), one obtains with (7.20) the equation of motion for the height variable 

0thq = -F0  (q) [~q4hq - 2kdq2pq], (7.27) 

which involves the local density difference p. To obtain a closed system of equations, 
we need a dynamical equation for this density difference. 

Such an equation of motion can be obtained from the in-plane force balance 
within each monolayer (Seifert and Langer 1993), 

_ ~ g ±  ± Txiz q: b(~+ _ ~-) + #~2~± = 0, (7.28) 

where the tilde refers to 2D quantities. The four force densities in (7.28) are as 
follows. 

(1) The (in-plane) gradient of the surface pressure 

_ ~ g ±  _ ~  6F (7.29) 
= 6p±,, 

which arises from the elastic stretching or compression within each monolayer. 
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(2) The tractions Tx~ of the surrounding fluid, which have the same magnitude 
as, but different sign from the (as yet unknown) tangential forces Kq:~ = 4~qv~(0) 
exerted by the membrane on the liquid. 

(3) The friction between the two monolayers with the phenomenological friction 
coefficient b (Evans et al. 1992, Yeung 1994). The justification for describing this 
friction as viscous arises from the fast motion of the dangling ends of the 
hydrocarbon-chains, which dynamically interdigitate slightly on a relatively fast 
time scale, of the order of 10 -9 s, as shown by molecular dynamics simulations (de 
Loof et al. 1991). This fast molecular motion of the dangling ends should give rise to 
an effectively viscous friction on the much slower time scale of typical shape changes 
(Yeung 1994). 

(4) A viscous shear damping within each monolayer where/z is the monolayer 
shear viscosity and ~+ is the velocity of the lipid flow within each monolayer. For 
simplicity, and since this damping mechanism will turn out to be irrelevant except on 
very small length scales, any dilational viscosity can be ignored. For the insoluble 
phospholipids, dilational viscosity can be expected to be of the same order as the 
shear viscosity, whereas for soluble monolayers the dilational viscosity can be two 
orders of magnitude larger (Langevin 1992). 

The densities p+ obey equations of continuity 

Otp ± ..~ - ~ . ~± (7.30) 

to lowest order in the small quantities p± and ¢e +. 
Assuming conventional non-slip boundary conditions between liquid and 

membrane flow, i.e. ~+ = u ± ^ ql(0)q, the equation of continuity (7.30) can be used to 
replace the velocities in the force balance (7.28). The difference of the two equations 
(7.28) then leads, after Fourier transformation, to the equation of motion for the 
density difference pq. This equation and the corresponding one for hq can be written 
in the form (Seifert and Langer 1994) 

0 -~t(hp:) =-F(q)E(q)(hp:)  • (7.31) 

Here, E(q) is the upper left (2 x 2) submatrix of E(q) as defined in (2.29) for which 
we will not introduce a new notation. The matrix of kinetic coefficients 

F(q)=__ (1/irlq 0 

q2 

2(2b + 2~q + #q2) 

(7.32) 

shows that, for small q, the dissipation for the density difference mode is dominated 
by the inter-monolayer friction with coefficient b. It has a q2-dependence because the 
densities are conserved and the friction is local. 

The dynamical equation for the average density ~q, which also follows from this 
procedure should not be taken seriously since for this quantity the inertial terms are 
crucial to the dynamics. Including the inertial terms within the membrane leads to 
propagating sound-waves in ~q (Seifert and Langer 1993). 
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7.3.2. Dispersion relation and height-height correlation function 
The formal solution to the relaxational dynamics (7.31) is 

hq(t) ['hq(O) 
pq(t) ) = exp ( -F"  E t) \ pq(O) )" (7.33) 

After diagonalization, the relaxation times of the various modes follow as the inverse 
values of  the eigenvalues 7 / o f  F .  E, while the time-dependent correlation functions 
can be obtained from the corresponding eigenvectors. 

The dispersion relation of  the two eigenvalues 71,z (q) is shown in figure 31. There 
are three regimes (Seifert and Langer 1993) separated by the crossover wave-vectors 
ql = 2~Tk/b~ and q2 -= (2b/#) 1/2 

")'1 

3 ~-~q, q << ql, 

kt~ 2 
~-~-~ q , ql << q << q2, 

k~ 
q2 << q. # g '  

k 2 ~ q  , q << ql, 

")'2 ~ _ 
/~ 3 ~--~q, q l<<q.  

(7.34) 

For the dynamical height-height correlation function, one finds 

(hq (t)h*q, (0)) = ~q4 {A1 h (q) exp [-'71(q)t] + Az h (q) exp [-72 (q) tl} (2~)26(q - q'). 

(7.35) 

Likewise, the density-density correlations become 

(pq(t)p*q,(O)) = Tk ; {A 1 (q) exp [-71 (q)t] + A~(q) exp [-72(q)t]}(2n)2~(q - q'). 

(7.36) 

The fluctuation-dissipation theorem enforces Ah2';(q)= 1-A~'P(q). These ampli- 
tudes are also shown in figure 31. 

The asymptotic behaviour of the damping rates and the correlation function can 
be understood as follows. For small q, "/1 corresponds to the classical hydro- 
dynamically damped bending mode '70 (7.24) and "72 is the damping rate of  a new 
'slipping' mode, a density difference fluctuation damped by the inter-monolayer 
friction. In this regime, undulations relax only by the slow mode, so Ahl ~ 1, and A2 h 
is negligibly small, since the height variable is too slow to follow the fast density 
fluctuations. A similar consideration applies to A~, A t (Kraus and Seifert 1994). 

For  q >> ql, 3'2 becomes the damping rate of  a bending mode, with an effective 
bending rigidity ~ identified already in section 2.3 as the bending rigidity for 'frozen' 
lipid molecules (2.33). This effective high frequency rigidity differs from the low 
frequency rigidity n because the densities cannot respond quickly to changes in 
shape. On time scales longer than 1/72 , the height can relax so as to minimize the free 
energy for a given density fluctuation. This condition OF/Oh~l;q = 0  implies 
hq = 2kdpq/~q 2, and therefore 
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Figure 31. Dispersion relation (a) and amplitudes (b) for a free bilayer for t~ = 10 -19 J, 
t~=0.07Jm -2, d = l n m ,  r /=10-3Jsm -3, #=10-1°Jsm -2, and b=108jsm-4;  
the thin dashed lines in (a) indicate the asymptotic behaviour "Yl ~ kq3/4rl and 
72~kq2/2b for small q', and "y2~kq3/4~7 and "/1 ,~kq2~/2bk for large q, 
respectively. The ratio ~/t~ ~ 0.417 determines the asymptotic behaviour of both the 
amplitudes A~ for small q and A h for large q (Kraus and Seifert 1994). 

(hq(t)h;,(O))H ~ ~4k2d2 (pq(t)p*q,(O)) A r ~ 4k2d2k2q4 2kt~ expTt~ (-~/1 t) 

=(hqh*q')o W'2kd2exp(-'71t)'xo (7.37) 

with A/"-  (2n)26(q- q'). Thus, the coefficient Ahl(q) in the correlation function 
(7.35) is given by Ahl ,.~ 2kd2/~, for q >> ql. 

Finally, the slow mode "Yl exhibits a second crossover at q2 -- (2b/#) 1/2, where 
the main dissipative mechanism changes from inter-monolayer friction to monolayer 
surface viscosity. 

7.3.3. Experimental aspects 
An important consequence of the results of the bilayer dynamics is that any 

experiment measuring (hq (t)hq (0)) should also pick up a contribution from the slow 
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mode for q > ql, provided it is sensitive to the time scale 1/'),1. In particular, the 
slowest time scale for shape fluctuations in this regime scales as q - 2  which differs 
from the q-3 behaviour of the classical model (7.24). 

To estimate the crossover wavelengths ql below which the monolayer friction 
becomes relevant, we need a value for the friction coefficient b. This quantity, 
or more precisely the combination 4bd 2 in our notation, has recently been measured 
by a nano-tether extrusion experiment for various lipids at different tempera- 
tures (Yeung 1994, Evans and Yeung 1994). From the typical value 
4bd 2 ~_ 2 x 10 -9 J s m  -2, one derives b ___ 5 x 108 J s m  -4 with d = 1 nm. Using this 
value, one finds with n = 10 -19 J, ~'/= 10 -3 J sm -3, and k = 102 m J m  -2, the cross- 
over ql -~ 106 m- l ,  corresponding to a wavelength of several microns, below which 
bilayer corrections to the dispersion relation for the bending mode should become 
important. For the second crossover, relevant only to the slower mode, we find 
q2 -~ 1-3 x 107 cm -1, i.e. a wavelength somewhat above the membrane thickness 
using # ___ 10 - 1 ° -  10 -9 J sm -2 derived from experiments using microfluorescence 
techniques (Merkel et al. 1989). 

So far, the only experimental hint on the relevance of the second dissipative 
process for equilibrium fluctuations arises from neutron reflection spin echo 
measurement of the undulations of swollen phospholipid multi-layers (Pfeiffer et 
al. 1993). For a stack of swollen membranes and a wave-vector parallel to the sheets, 
the calculation of the dispersion relation for the collective undulation mode using the 
same force balance and boundary conditions at every membrane in a stack with 
repeat distance 2l leads to two modes. For  small q, both modes have a quadratic 
dispersion (Seifert and Langer 1993), 

k ~ 2  ~ 2 ~1 ~ ~ q  , and "y2 ~ ~-~/q • (7.38) 

Here, ")'2 corresponds to the undulation mode of a two-component smectic (Brochard 
and de Gennes 1975), which crosses over into the single-layer result for q ~ 1/l. The 
damping rate of the second slow mode ")'1 has the same dispersion as the single 
bilayer in the intermediate q regime. At  relatively large q _~ 106-107cm -1, the 
relaxation frequencies measured in the experiment fit well with this second mode. 
However, more work will clearly be needed to prove that in this measurement the 
dissipation is due to the bilayer aspect. For  a crucial experimental test, the damping 
rate as a function of the repeat distance 21 should be investigated. I f  the measured 
dispersion is indeed that of  the frictional mode, the damping rate should be 
independent of the repeat distance, since the main dissipation for this mode occurs 
within the bilayer rather than in the liquid. 

7.4. Relaxation o f  quasi-spherical modes 
Measurements of dynamical correlation functions in lipid bilayers have been 

performed for quasi-spherical vesicles (Engelhardt et al. 1985, Bivas et al. 1987, 
Duwe et al. 1990). For a theoretical analysis of these data, the dispersion relation has 
to be calculated for a spherical geometry. Within the classical model, the dynamical 
correlation functions for the flicker amplitudes as defined in (4.19) can be written as 
(Schneider et al. 1984b, Milner and Safran 1987) 
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(Ul,m*(t)Ul,m(O) ) = (Ul,m*(O)Ul,m(O) ) exp [--'y(l)t]. (7.39) 

The relaxation rate 

1 l(l+ 1) ]{n(l+2)(l- 1)[(l 
7(l)  = F(l)Eo(l)  =- ~7-R3 (2l + 1)(2l 2 + 21 - 1) + 1) /+  ~]} 

(7.40) 

is again a product of a kinetic factor and the energy known already from (4.30). 
Since only the first few modes can be analysed experimentally, the effective 

tension cannot as yet be extracted from the correlation times. Likewise, these 
experiments are not accurate enough to find the ramification arising from the bilayer 
model of quasispherical vesicles (Yeung and Evans 1995). In this model, the 
correlation function decays with two exponential factors analogous to the cor- 
relation function of  the almost planar membrane discussed in section 7.3. Qualita- 
tively, the same crossover holds, i.e. short-wavelength bending fluctuations with 
q ,,~ l /R  >~ ql show the effectively higher bending rigidity and a relaxation frequency 
,~ ~ l 2. This result should have the important consequence that for scattering studies 
of vesicles that are smaller than the crossover length, the smallest relaxation times 
are due to the bilayer friction rather than to the dissipation in the surrounding liquid. 

7.5. Dynamics of  a bound fluid membrane 
We now turn to the dynamics of a membrane interacting with a substrate 

through a potential V(I) introduced in section 6.2, to which we refer for definitions. 
For simplicity, we first describe the membrane within the classical model as an 
incompressible sheet. Modifications due to the bilayer structure will become 
important only beyond a crossover vector ~ ,  to be determined later. 

7.5.1. Hydrodynamics near a substrate 
The hydrodynamics of the liquid surrounding the membrane is strongly affected 

by the presence of the wall. Since a membrane displacement with parallel wave- 
vector q distorts the liquid flow field along a distance 1/q perpendicular to the 
membrane, the kinetic coefficient will deviate from its free value Fo(q) whenever 
q < 1/lo, where 10 is the distance of the membrane from the wall. For optical 
measurements, the criterion q < 1/lo will typically be met. 

The kinetic coefficient in this geometry can be obtained from the expression for 
the Oseen tensor (7.14) and (7.15). The components of the total force density arising 
from the membrane and the wall are located at z = 10 and z = 0, respectively. After a 
Fourier transformation parallel to the substrate, the total force density can thus be 
written as 

[ OFŜ  ] 
Kq,z =- 6(z - l o ) [ - - ~ z  + Kqtt] + 6(z)[K~qz~ + K~,c]]. (7.41) 

The first term is the normal force exerted by bending the membrane, where F~ has 
been defined in (6.4). The latter three terms are the (as yet unknown) force exerted by 
the membrane parallel to the plane, and the normal and the longitudinal force 
exerted by the substrate. If  this force density is inserted into (7.14) and (7.15), the 
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liquid flow field everywhere is obtained. The three unknown forces are determined 
through the following boundary conditions. First, both the normal and the long- 
itudinal component of the velocity at the substrate have to vanish. Second, in the 
classical model, the membrane is incompressible, which implies that the in-plane 
divergence of the liquid flow at z = 10 vanishes, i.e. vql(lo) = 0. The relationship 
between Uqz(lo) = Othq and the normal force -OFo/Ohq can then be written in the 
form 

Othq = - r " ( q ,  lo)E~(q)hq, (7.42) 

where the energy E~(q) is given by (6.4). 
The kinetic coefficient obeys the scaling form (Seifert 1994) 

r~(q,  10) = r0(q)G(ql0),  (7.43) 

with the free kinetic coefficient Fo(q) as defined in (7.22) and the scaling function 

sinh 2 x - x 2 

~(x) = 2 sinh 2 x - x 2 q- sinh x cosh x + x 

x3/3, X << 1, 
, (7.44) 

1, x > > l .  

For q >> 1/lo, the asymptotic behaviour of Fa(q, lo) deviates from its free value 
displaying the usual q2 behaviour for conserved quantities, the conserved quantity 
here being the volume of  liquid between the membrane and the substrate. 

7.5.2. Damping rate and correlation function 
The q dependence of  the damping rate, 

7~(q) =- Fa(q, lo)E~(q), (7.45) 

depends on several crossover length scales arising from either the kinetic coefficient 
F a or the energy E~. In the low-q limit, one finds (Seifert 1994) 

3'g(q) ,~ Olgq2/(12r/), q << min [l//o, 1/(, 1/~x], (7.46) 

independent of the tension and the rigidity of the membrane. With increasing q, the 
sequence of crossovers depends on the strength of the tension. We discuss explicitly 
only the case of  weak tension, ~ << 2(nf2) 172, where the energy exhibits only one 
crossover length scale at ~ defined in (6.5). Two cases must be distinguished, as 
follows. 

(1) (Monotonic damping) For 10 < ~, the intermediate behaviour is given by 

7g(q) ~ M3oq6/(12~7), 1/~ << q << 1/lo. (7.47) 

Such a q6 behaviour was first found by Brochard and Lennon (1975) as the low-q 
limit of the bending fluctuations of two parallel membranes used as a crude model 
for fluctuations of red blood cells. 

(2) (Non-monotonic damping) For ~ < 10, the q dependence becomes 

7~(q) ~ n/(4r/~4q), lilt << q << 1/~. (7.48) 
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In this case, the damping rate decreases with increasing wave-vector (Seifert 1994). 
This unusual feature arises from the fact that the potential confines the mean-square 
amplitudes (hqh~,) to the value (T(4/n)(2rc)Z6(q - q') independently of q, while the 
hydrodynamic damping becomes less effective with increasing q. 

Finally, for large q >> max [1//0, 1/~], the damping rate of the free membrane is 
recovered. Illustrative examples for the various regimes and, in particular, the 
dynamics of the unbinding transitions are discussed elsewhere (Seifert 1994). 

7.5.3. Effect of bilayer architecture 
We now discuss the modifications which arise if the bound membrane is treated 

as a bilayer consisting of compressible monolayers (Kraus and Seifert 1994). In the 
harmonic approximation, the energy for the bound bilayer is given, in analogy to the 
free membrane, by 

2ko2 o)(,) 
Fa = 2!fJ (2~z) 2 d2q (hq, pq, ~3q) ~ -2~dq 2 2ko 2kO PqPq (7.49) 

No coupling between the lateral densities and the distance from the substrate is 
assumed here. If such a coupling arises from a more careful treatment of van der 
Waals interaction, it could be incorporated easily on the harmonic level. 

The force density that enters the expressions (7.14) and (7.15) for the velocity 
field is now given by 

OF a ̂  ] 
Kq,z ~ 6(z - lo) - N z  + (K~ + K~)~ + 6(z)[K~z~ + K~z~], (7.50) 

where the tangential force at the membrane is split into two parts. While the 
boundary condition for the velocity field at the substrate remains the same as above, 
the tangential velocities at the membrane have to match with the force balance 
within each monolayer, which is still given by (7.28). Solving these equations leads to 
the relaxational dynamics of the form 

d(,) 
d~ Pq 

?q 

(') = --Fa(q, /o)Ea(q) Pq • 
~q 

(7.51) 

The explicit expression for the matrix of kinetic coefficients Fa(q, 10) is quite lengthy 
(Kraus and Seifert 1994). In this geometry, the average density ~ couples to both the 
shape and density-difference variable due to the broken symmetry between the upper 
and lower layer. In practice, however, the corresponding off-diagonal elements in 
Fa(q, 10) are negligible and the physics can still be understood by considering only 
the variables h and p. 

The detailed discussion of the dispersion relation and correlation functions given 
in Kraus and Seifert (1994) can be summarized as follows. The dispersion relation is 
made up of two modes with relaxation rates 72 and 7~. Their values are given by 
7~(q) -~ 7~(q) (as defined in (7.45)) and 7~(q) ~- (k/2b)q 2, except for q > q~. The 
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crossover vector q~ is defined through the conditions that for all q > q~, both of the 
following two conditions are met: (i) 

kq 2 
7~)(q) > 2b-" (7.52) 

If this inequality holds, the height fluctuations are faster than the lateral density 
relaxation. Therefore, the bending rigidity n in ~/~(q) gets renormalized to ~. This 
effect is relevant only if the height fluctuations are indeed governed by bending 
energy (rather than by the potential or the tension), i.e. only if (ii) 

q > max [1/~, 1/~.]. (7.53) 

If  this inequality holds, the height can adjust to density fluctuations which 
renormalizes the effective compressibility k for density-difference fluctuations from 
k to k~/~. 

In particular, these results imply that the height-height correlation function for 
long times behaves as 

T 
exp [-7~(q)t], 

(hq(t)h*q,(O)) ~ (2r~)2~(q-q ') 2Tkc[2 i, k~q2, ~ 
exp ~ - 2 - ~ - ' J ,  

q << max [1/~, 1/~], 

q >> max [1/~, 1/~], 

(7.54) 

where the prefactor of the large q regime follows from a calculation analogous to the 
one displayed in (7.37) for the free case. 

For practical applications, the various crossovers of the full dispersion relation 
may be close together, and asymptotic expressions based on a single q behaviour 
may be of little value for describing the data, as a representative example shows 
(Kraus and Seifert 1994). The full dispersion relation, however, should provide the 
basis for analysis of experimental measurements of the fluctuations of bound 
membranes. Even though at present the experimental data are not yet comprehensive 
enough for a detailed comparison, the potential of such measurements for a 
quantitative analysis of membrane interaction and dynamics is evident. 

7.6. Pearling instability of cylindrical vesicles 
7.6.1. Experimental facts 

Despite its only very recent discovery, the laser-induced pearling instability of 
cylindrical vesicles is by now the best-studied case of a dynamical shape transforma- 
tion (Bar-Ziv and Moses 1994). Initial preparation of the system yields stable, nearly 
straight single bilayer cylinders up to hundreds of microns long, anchored at both 
ends by large globules of lipid. The tubules are polydisperse, with initial radii R0 
between 0-3-5 ~tm. Initially the system is somewhat flaccid, as seen from visible 
thermal undulations and the fact that the tubes are not quite straight. 

Application of a laser spot localized to ,-~0.3 ~tm produces a dramatic transforma- 
tion to a stationary 'peristaltic' figure, i.e. a cylindrical shape with radius at first 
varying roughly sinusoidally with distance z from the trap (see figure 7). Greater 
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laser power is required for larger-radius tubules, but nothing seems to depend on the 
length of the tube, so long as the trap is initially many radii from the ends. The shape 
transformation propagates outward from the laser trap, with a well-defined velocity 
vf typically about 30 ~tm s -1. Remarkably, after a very short illumination the shape 
transformation continues to propagate after the laser is shut off, leading to a 
uniform, small-amplitude peristaltic shape. Longer excitation leads to a pearled 
state. 

Once formed, the peristaltic shape has a well-defined initial wavelength which is 
uniform over many microns. Whatever the initial radius R0, this wavelength is found 
to be A = 2rcRo/ko, where the dimensionless initial wave number/co is always in the 
range 0-64-1.0, and typically about 0.8. As the modulation grows more pronounced, 
k grows from /co to become slightly greater than 1 and deviations from a simple 
sinusoidal profile become pronounced. The modulated state is tense: visible thermal 
fluctuations are suppressed and the tube draws itself straighter than initially. 

7.6.2. Theoretical modelling 
The theoretical modelling (Bar-Ziv and Moses 1994, Nelson et al. 1995, Gold- 

stein et al. 1996, Granek and Olami 1995) exploits the phenomenological resem- 
blance with the classical Plateau-Rayleigh instability of cylindrical fluid jets subject 
to surface tension. For a volume-preserving deformation of a cylinder under tension, 
the area decreases for any axisymmetric deformation with a wave-number k0 < 1. 
Therefore, a cylindrical shape under tension is unstable. In the presence of bending 
rigidity ~, one needs a finite tension 27 > 3~/2P~ to initiate this static instability 
(Nelson et aL 1995). 

The laser indeed creates a local lateral tension of the order of 10 -3 ergcm -2 by 
sucking lipid into the trap (Nelson et al. 1995, Goldstein et al. 1996). This tension 
spreads rapidly along the cylinder since the membrane is nearly incompressible. 
After this very brief initial period the cylinder is unstable towards all deformations 
with a wavenumber smaller than 1 just as in Rayleigh's case. The wavelength 
selection, however, depends crucially on the dynamics and, in particular, the 
boundary conditions at the cylinder. In the pearling instability, a material object, 
the bilayer membrane separates the interior from the exterior fluid. Solving the 
corresponding hydrodynamical equations in the overdamped case along the lines 
discussed above for the planar geometry, one finds a fastest growing mode of wave- 
vector k0 = 0.65 (Nelson et al. 1995). Even though this value depends somewhat on 
the bending rigidity and the bilayer dynamics, it is mostly determined by the balance 
between the tension and the dissipation in the interior water for realistic parameters. 
Since the experiment shows that the instability propagates from the centre, the 
fastest growing mode is not the best candidate for the actual pattern. 

The propagating character of the instability is captured (Goldstein et al. 1996) by 
using the concept of marginal stability (Dee and Langer 1983, van Saarloos 1988). 
This criterion, which applies to many propagating instabilities, is a theory of how an 
unstable state (here the plain cylinder after spread of the tension) starting from a 
localized excitation (here the laser spot) decays into a new stable minimum (here the 
pearled state) via front propagation. Since the marginal stability criterion only 
requires knowledge of the linearized dynamics around the unstable state, it can be 
worked out completely for the pearling instability. In fact, it leads to a much better 
value for the wave-number of the pattern of k0 -~ 0-8 in presumably somewhat 
fortuitous agreement with experiment. A general shortcoming of the marginal 
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stability criterion is that it cannot prove front propagation but rather assumes it. 
However, a numerical solution of the full nonlinear elastic energy using a lubrication 
approximation for the hydrodynamics also shows front propagation with roughly 
the same values as the marginal stability criterion (Goldstein et al. 1996). The late- 
stage dynamics where the pearls move along the tether is not yet understood. It could 
be caused by lateral gradients of tension. 

A different type of a dynamic instability of cylinders caused by strong van der 
Waals attraction has been suggested (Bruinsma 1991) to explain the sometimes 
observed pearling of aspirated vesicles after thermal expansion (Evans and Rawicz 
1990). 

8. More complex membranes 
8.1. Mixed and inhomogeneous membranes 

Single-component membranes have been the topic of the previous sections. The 
lipid bilayer of biomembranes, however, is composed of different types of molecules 
which may differ in their head groups, in the length of their hydrocarbon chains, or 
in the number of unsaturated bonds within these chains. In such a multi-component 
system, the composition can become laterally inhomogeneous within each mono- 
layer and can be different across the two monolayers. As a result, an inhomogeneous 
spontaneous curvature is created which leads to a coupling between the composition 
and the shape (Gruler 1975, Gebhardt et al. 1977, Markin 1981, Leibler 1986, Leibler 
and Andelman 1987). Moreover, there are energies associated with composition 
variables such as the entropy of mixing and the cost of  an inhomogeneous 
composition profile. 

Quite generally, one can distinguish two cases for the phase behaviour of such a 
membrane: (i) a homogeneous one-phase region at high temperature, and (ii) a two- 
phase coexistence region at lower temperatures for a certain range of compositions. 

Experimental investigations of the phase diagram have shown that a two- 
component membrane in the fluid state often exhibits a homogeneous phase. By 
decreasing the temperature, before reaching a critical point, the gel state intervenes 
which then coexists with a homogeneous fluid phase. Genuine fluid-fluid coex- 
istence, however, has been found for a few examples. An especially important one is 
provided by mixtures of phospholipids and cholesterol, as has been established quite 
recently (Needham et al. 1988, Vist and Davis 1990, Bloom et al. 1991). Fluid-fluid 
coexistence also occurs in the binary mixture of DEPC and DPPE (Wu and 
McConnell 1975) and in mixtures with partially unsaturated alkyl chains (Bloom 
1992). 

8.1.1. Curvature-induced phase separation 
In the one-phase region, the ground state in the absence of a spontaneous 

curvature is a flat and laterally homogeneous membrane. However, any inhomo- 
geneity in the composition, either laterally within a monolayer or between the two 
monolayers, induces a local spontaneous curvature if the two lipid species have a 
different molecular geometry. For an almost planar membrane, this leads to a 
coupling between bending fluctuations and composition fluctuations which decreases 
the bending rigidity (Leibler 1986, Leibler and Andelman 1987). Within the 
complementary 'hat' model, the reduced rigidity of a mixed membrane is attributed 
to local curvature fluctuations of individual molecules, lateral diffusion of the 
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different species and an attractive interaction between unequal molecules across the 
bilayer (Helfrich and Kozlov 1994). 

For a non-spherical vesicle, the coupling between shape and composition causes 
curvature-induced lateral phase segregation (Seifert 1993). Such a phase segregation 
can occur if for an initially spherical vesicle a temperature increase leads to 
deviations from the spherical shape and, thus, to a position-dependent curvature 
that induces a position-dependent composition. For a quantitative description, the 
composition (area fractions) of lipid A in the individual monolayers 
xk(=l  - x~)( i  = in, out) and deviations, ~Xk(S1, 82) ~- Xk(S1, S2) -- XA, from the 
mean value NA are introduced. If the local deviation is different in the two 
monolayers, a local spontaneous curvature is induced according to 

Co(s1, $2) = )~[6x~Ut(s1,s2) - ~x~(s1, $2)] -~- Co ~ .,~(s1, 82) q- Co, (8.1) 

where the phenomenological coupling constant A has the dimensions of an inverse 
length (Leibler 1986). A systematic spontaneous curvature C0 arises if the mean 
compositions 2~ are different in the two monolayers, as applies to the spontaneous 
formation of small vesicles in mixtures of oppositely charged surfactants where 
phase separation occurs across the membrane (Kaler et al. 1989, Safran et al. 1990, 
1991, Kaler et al. 1992). A different cause of spontaneous vesiculation can be the 
large negative contribution of the electric double layer to the Gaussian bending 
rigidity of symmetrically charged membranes (Winterhalter and Helfrich 1992). 

The bending energy F1 of the two-component vesicle is then chosen as a 
generalization of the bending energy of a single-component vesicle, as given by 
(2.50). This leads to (Seifert 1993) 

F1 = d A  ½ - C0(O(Sl ,  2 + - zXA0) 2 (8.2) 

For simplicity, it is assumed that neither the bending rigidities n and an  nor the area 
of the vesicle A, and area difference AA0 depend on the composition. 

Since the membrane does not show genuine phase separation, there is a free 
energy associated with the deviation of the composition from its mean value. For 
small deviations, this energy can be written in the form 

= 2 e ~  dA[q~ 2 + (~¢V~)2]. (8.3) F2 

Here, ~c is the correlation length for composition fluctuations, V is the covariant 
gradient operator, and e is a molecular energy divided by the bending rigidity. 

Since the typical length scale for shape variations of large vesicles is in the 
micrometre range, while the typical correlation length (c will be of the order of 
nanometres, the gradient term in F2 will be, in general, much smaller than the ~b 2 
term, and thus can be ignored. If the exchange of molecules between the two layers is 
forbidden, the total energy 

F -= F1 + F2 (8.4) 

has to be minimized under the constraint 5g daub = 0. The composition profile 
~b(Sl, s2) then becomes 
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G © 
Figure 32. Curvature-induced lateral phase segregation. The spherical vesicle changes its 

shape as the reduced volume v decreases due to an increase in temperature. The light 
curves show the composition ~b. The reduced volume is given by v = 1.0, 0.89, 0.89, 
0.86 and 0-82 from left to right. At v = 0.89, the symmetric and the asymmetric 
shapes have the same energy, indicating a discontinuous budding transition. The 
vesiculation line is reached with the last shape (Seifert 1993). 

2A [H(sl, s2)_ AA] 
 (sx, s2) - ,x 2 + T d 2  ' (8.5) 

which shows that the local composition follows the deviation of the mean curvature 
H(Sl, s2) from its average value AA/(4dA). After inserting (8.5) into F, the total 
energy can be cast in the standard form of the bending energy of a single-component 
vesicle in the ADE model (2.50) in which the bending rigidity, the parameter a, and 
the equilibrium area difference AA0 have been renormalized (Seifert 1993). 

Once this mapping has been obtained, both the knowledge of the phase diagram 
of the area-difference-elasticity model and shape calculations within this model can 
be used to obtain results for the two-component system. As an illustrative example, 
consider the thermal evolution of an initially spherical vesicle (with a homogeneous 
composition profile q~(s) = 0) with increasing temperature as shown in figure 32. It is 
assumed that the thermal trajectory is still given by (3.26) with r -- 1. With increasing 
temperature, the reduced volume decreases and the shape becomes more prolate. The 
inhomogeneous curvature then induces a non-trivial composition profile along the 
contour. In the outer monolayer, the A molecules are enriched at the poles (if their 
enhancement in the outer layer leads to a positive spontaneous curvature, i.e. if 
A > 0) while the B lipids are enriched along the equatorial region of the vesicle. For 
smaller v, the up/down asymmetric shapes have lower energy leading to a 
discontinuous budding transition. These shapes finally end up at the vesiculation 
point. In the vesiculated state, the composition within each sphere becomes 
homogeneous again with all the variation of the composition occurring in the neck. 
Thus, the shape change, i.e. in this case budding and vesicutation, leads to phase 
segregation. Moreover, the formation of smaller buds is more favourable in the two- 
component system than in the pure system under the same conditions (Seifert 1993). 

Even though a few experiments have been performed on shape transformations 
of multi-component vesicles (Farge and Devaux 1992), the interaction between local 
composition and the shape transformation has not yet been systematically studied. 
For such a comparison between theory and experiment, one should, for example, 
analyse the composition of the bud and compare it with the composition of the 
mother vesicle. The experimental observation that budding can be followed by 
fission in a multicomponent membrane (D6bereiner et al. 1993) may help to achieve 
this challenging task. 

In the vicinity of the demixing point, the correlation length ~e for compositional 
fluctuations increases and the gradient term in (8.3) becomes relevant. In this case, 
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the mapping from the two-component system to an effective one-component system 
is no longer possible and one rather has to solve more complicated shape equations. 
Andelman and co-workers have investigated this regime in detail for 2D and 3D 
vesicles (Taniguchi et al. 1994). They found a renormalization of the demixing 
temperature and below that temperature various non-trivial shapes. Depending on 
the pressure difference, one can reach shapes characterized by higher spherical 
harmonics (1 > 3), which were unstable in the homogeneous case. 

8.1.2. Domain-induced budding 
In the two-phase region, domains of one phase in the surrounding matrix of the 

other phase are formed. The edges of these domains are characterized by an edge or 
line tension. Since the length of the domain boundary decreases if the domain buds, 
the competition between this edge tension and the curvature energy leads to domain- 
induced budding as soon as the domain reaches a critical size (Lipowsky 1992, 1993, 
Jfilicher and Lipowsky 1993). 

If a membrane that is initially prepared in a homogeneous state within the one- 
phase region is quenched deep into the (~/3) spinodal decomposition two-phase 
region, phase separation within the membrane is initiated. In such a situation, many 
small domains will be formed initially. The edge of an intramembrane domain has an 
energy which is proportional to the edge length. Therefore, the domain has a 
tendency to attain a circular shape in order to minimize its edge energy. 

A fiat domain will form a circular disk in order to attain a state with minimal 
edge length. For a circular domain with radius L, the edge energy Fe, is given by 

Fe - 27tLZe. (8.6) 

The line tension, 2;e, is equal to the edge energy per unit length. As far as the edge 
energy is concerned, a fiat circular disk does not represent the state of lowest energy 
since the length of the edge can be further reduced if the domain forms a bud. This 
budding process is governed by the competition between the bending rigidity n of the 
domain and the line tension Xe of the domain edge. This competition leads to the 
characteristic invagination length ~ = n/Xe (Lipowsky 1992). For phospholipid- 
cholesterol mixtures, the bending rigidity n was experimentally estimated to have the 
relatively large value n ~ 4 x 10-19j (Duwe et al. 1990). The line tension, on the 
other hand, seems to have the relatively small value Xe ~_ 10 -18 J [xm -1 (Benvegnu 
and McConnell 1992). This implies the invagination length ~ _ 400 nm. 

The competition between the edge and bending energies can be understood in the 
framework of a relatively simple model in which one assumes that the membrane 
matrix is fiat and that the membrane domain forms a spherical cap with radius R 
(Lipowsky 1993). If the domain has surface area A = nL 2 and spontaneous 
curvature Co, its total energy F = Fsc + Fr~0 has the form 

F / 2 ~  = ( L / R  - LCo/2) 2 ÷ (L/~)[1 - (L/2R)2] 1/2. (8.7) 

For Co = 0, such a model has also been studied in order to discuss the size of vesicles 
generated by sonification and to study the closure of open fluid membranes (Helfrich 
1974b, Fromherz 1983, Boal and Rao 1992b). The energy F has several minima and 
maxima as a function of L/R.  
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For small L, the domain forms an incomplete bud corresponding to the 
minimum of F at small L/R  values. As L grows, the edge of the domain becomes 
longer, and the energy of the incomplete bud is increased. At a certain critical size, 
L = L*, the incomplete bud has the same energy as the complete bud corresponding 
to a complete sphere but both states are separated by an energy barrier. For the 
parameter values considered here, the energy barrier is typically large compared to 
the thermal energy ___ T. In this case, the domain continues to grow in the incomplete 
bud state up to the limiting size L = L ° with 

Z ° = 85/[1 + (2~1Co1)2/3] 3/2, (8.8) 

at which this state becomes unstable (Lipowsky 1992). 
The same type of budding instability is found from a systematic minimization 

procedure for closed vesicles composed of two types of domains, a and/3 (Jfilicher 
and Lipowsky 1993). In this paper, the non-trivial role of the Gaussian bending 
rigidity for vesicles with domains has also been emphasized. Shapes of 2D and 3D 
vesicles consisting of several domains with different spontaneous curvature have also 
been investigated systematically as a function of the pressure difference (Andelman 
et al. 1992, Kawakatsu et al. 1993). 

8.1.3. Membranes with inclusions 
Another type of inhomogeneity arises from inclusions of large particles such as 

proteins in a membrane. Such an object represents a defect in a fluid membrane. 
Depending on the boundary conditions between defect and membrane, the 
membrane-mediated interaction between two inclusions a distance R apart can be 
long-range repulsive or attractive. Various models can be studied (Goulian et al. 
1993). For cone-line defects that impose a tilt on the surrounding membrane, a 
repulsive interaction ~ I / R  4 was found by minimizing overall curvature energy. If 
the two domain-like defects have finite but different bending rigidity, finite 
temperature leads to a long-range interaction ,,~T/R 4 which can be attractive or 
repulsive depending on the difference in bending rigidity. Finally, for fiat domains a 
'Casimir'-type attractive interaction ~ T / R  4 arises from the bending fluctuation 
'between' the inclusions. A similar behaviour has been studied for membrane stacks 
(Palmer et al. 1994). 

Defects cause local thickness changes of the bilayer according to the mattress 
model of mixed membranes (Bloom et al. 199t). Since a continuum model predicts 
that the membrane thickness profile in the vicinity of such a defect decays non- 
monotonically, the membrane-mediated interaction between these inclusions can 
have a minimum at finite separation R (Dan et al. 1994). Active inclusions such as 
proteins which pump ions modify the spectrum of long-wavelength curvature 
fluctuations from ~q4 to ~q5 under suitable conditions (Prost and Bruinsma 1996). 

8.2. Fluid membranes with internal degrees of  freedom 
While homogeneous fluid membranes are characterized by their shape only, 

interesting ramifications arise for membranes with internal degrees of freedom. A 
paradigmatic case for an internal degree of freedom has been discussed above since 
for lipid mixtures the composition is a scalar field living on the membrane. We have 
seen how an internal energy contribution such as a line tension can be relieved by 
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budding of a domain, i.e. by changing the (external) geometry of the membrane. 
Similar phenomena occur if the internal degree of freedom is associated not with 
composition in a multi-component membrane but rather with orientation of 
molecules in a single-component membrane. Examples for such a degree of freedom 
are tilt of the lipid molecules as in smectic C order (de Gennes and Prost 1993), the 
bond orientational order of a hexatic membrane (Nelson and Peliti 1987, David et al. 
1987), chirality of the constituent molecules (de Gennes and Prost 1993; Helfrich and 
Prost 1988), or flexo- and ferro-etectric membranes (Peliti and Prost 1989). 

The coupling between an internal degree of freedom to the curvature of the 
membrane can lead to various effects. First, it may even destroy the planar ground 
state of the membrane. For tilt, modulated phases such as different ripple phases or 
even square phases (Lubensky and Mackintosh 1993, Chen et al. 1995) can arise 
from such a coupling if it is strong enough. Likewise, chirality, which couples to the 
shape via tilt, can produce helical ribbons (Helfrich and Prost 1988, Nelson and 
Powers 1992, 1993, Selinger and Schnur 1993). 

Second, for weak coupling the flat membrane as ground state may persist, but its 
long-wavelength spectrum of excitations, i.e. the effective elasticity, can be altered. 
For a hexatic membrane, the effective bending rigidity increases logarithmically with 
the length scale (Nelson and Pelifi 1987). A renormalization group study (Powers 
and Nelson 1995) has shown that tilt order in the fiat phase leads to the same elastic 
behaviour as hexatic order, as has been previously proposed for different reasons 
(Peliti and Prost 1989). 

For closed vesicles, orientational order can lead to new phenomena not present 
for planar membranes. Tilt order on a spherical vesicle necessarily generates defects 
at the poles. This causes a transformation from a sphere towards a prolate shape 
(MacKintosh and Lubensky 1991). This work has been extended (Park et al. 1992) to 
cover more generally n-atic order on a membrane. Below the ordering transition, the 
shapes have polyhedral form with 2n vertices. Since tangent order expels Gaussian 
curvature, cylindrical tubes can be more favourable than vesicles of spherical 
topology (Lubensky and Prost 1992). On a toroidal surface, n-atic order leads to a 
large variety of patterns and associated shape transformations (Evans 1995b). 

8.3. Polymerized membranes and vesicles 
8.3.1. Fluctuating almost flat polymerized membranes 

Polymerized or solid membranes have fixed internal connectivity in contrast to 
the fluid membranes discussed so far. These membranes can sustain shear. The in- 
plane displacements or 'phonons' of such membranes couple to the bending modes 
(Landau and Lifshitz 1989). For a flat membrane, thermal undulations lead via this 
nonlinear coupling to an effective bending rigidity. 

t~(q) = ( yT)l-~t~2~-lq 2(~-1) (8.9) 

that depends on the scale, i.e. on the wave-numer q (Nelson and Peliti 1987, Nelson 
1988, Lipowsky and Girardet 1990). Here, Y is the 2D Young's modulus, to0 is the 
'bare' bending rigidity, and ff is the roughness exponent. Both the value of this 
exponent and the existence of a genuine crumpled phase have initially been a matter 
of many Monte Carlo studies using different models. Meanwhile, the consensus 
seems to be that self-avoidance alone is sufficient to prevent a crumpling transition 
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even for zero bending rigidity (see, for example, Kroll and Gompper (1993)). The 
absence of a crumpling transition is in agreement with a freeze fracture electron 
microscopy and light scattering study on thin graphitic oxide sheets for which a 
crumpled phase could not be found under any conditions (Spector et al. 1994). The 
value of the exponent seems to settle towards ( ___ 0.6, consistent with the prediction 
of an analytical approach (Le Doussal and Radzihovsky 1992). Such a numerical 
value would imply that the effective shear modulus vanishes on long scales 
(Aronovitz and Lubensky 1988). The dynamics of two parallel polymerized 
membranes have been investigated as a model for a red blood cell geometry (Frey 
and Nelson 1991). 

8.3.2. Fluctuating polymerized vesicles 
For a curved polymerized membrane, the coupling between phonons and 

bending becomes linear. A spherical shell cannot be bent without being stretched. 
As studied for a cylinder (Komura and Lipowsky 1992) and for a spherical vesicle 
(Zhang et al. 1993), this linear coupling implies that there is a crossover length 
L* ~-- (R2~/Y)  I/4 for thermal fluctuations. While fluctuations below this crossover 
length behave like those of a flat membrane, the mean-square amplitudes of bending 
modes with a large wavelength are essentially independent of q. 

8.3.3. Stif f  polymerized vesicles 
The low-temperature behaviour of polymerized vesicles depends crucially on the 

fact that a closed polymerized membrane of spherical topology necessarily has 
defects. In a planar membrane such defects lead to buckling (Seung and Nelson 
1988). For a triangular network, one needs 12 fivefold disclinations to form a closed 
shell. By adding planar faces to an icosahedron, which is the smallest triangulated 
shape, larger vesicles can be formed. 

For small vesicles, the total elastic energy of this shell arises mostly from the 
energy of the disclinations and scales as ~ln N, where N is the number of vertices 
(Tersoff 1992). For larger vesicles, the vesicle can lower its elastic energy by slightly 
bending the edges of the polyhedral shape. A scaling argument predicted the radius 
of curvature at the edges to scale as N 1/3, whereas the total energy scales as N 1/6 
(Witten and Li 1983). This behaviour was indeed verified by numerically minimizing 
the elastic energy for very large vesicles (Zhang et al. 1995). The numerical 
minimization revealed also that the mean curvature is negative over large portions 
of the icosahedron. 

These polymerized vesicles have applications not only to vesicle shapes in the gel 
phase but also to fuUerene buckyballs. They may also be relevant to clathrin-coated 
pits in golgi vesicle budding. 

8.4. Red blood cell membrane 
With the red blood cell, biology provides a main motivation for the study of 

polymerized membranes. Apart from the fluid lipid bilayer, the plasma membrane of 
a red blood cell contains a network of spectrin tetramers linked together at 
junctional complexes which forms a quasi-hexagonal structure attached to the 
bilayer by integral membrane proteins (Alberts et al. 1989). The spectrin network 
can be isolated by dissolving the lipid with detergents. It then no longer exhibits the 
typical biconcave shape of the red blood cell but rather becomes nearly spherical. Its 
morphological and elastic properties can be studied if the skeletons are suspended 
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with optical tweezers in a flow chamber (Svoboda et  al. 1992). Likewise, X-ray 
diffraction as well as light scattering (Schmidt et  al. 1993) probe the structural 
properties of this network. 

For the compound red blood cell membrane, the presence of the network poses a 
conceptual problem for the calculation of shapes since it is not yet clear to what 
extent the network contributes to the stability of the shape. In fact, we have seen that 
even for lipid vesicles a discocyte shape minimizes the curvature energy in an 
appropriate range of the reduced volume. Thus, in the absence of external forces, 
the shape of the red blood cell could be controlled primarily by the bending elasticity 
of the bilayer together with the osmotic conditions, while the cytoskeleton is used to 
recover this shape after deformations of the cell shape. On the other hand, it is 
known that dissolving the network from the bilayer results in spontaneous budding 
of small vesicles. Thus, it seems that the network is relevant in stabilizing the red 
blood cell lipid membrane with its specific composition (Steck 1989). 

Evidence for a presumably subtle interplay between network and bilayer also 
arises from measurements of the elastic properties of the red blood cell membrane 
and, in particular, from its shear modulus, which seems to be strongly scale 
dependent. On large scales, deformation in the micro-pipette (Waugh and Evans 
1979) as well as deformation induced by an electric field (Engelhardt and Sackmann 
1988) yield a shear modulus which is one order of magnitude larger than the one 
obtained from the analysis of the thickness fluctuations by flicker spectroscopy, 
which probes smaller scales (Strey et al. 1995). The latter paper gives a careful 
discussion of the various factors which may be at the origin of this discrepancy. 

A comprehensive theoretical model for the red blood cell membrane has not yet 
emerged. Steps in such a direction are provided by a continuum theory in which the 
network is modelled as an ionic gel (Stokke et al. 1986a, b), as well as by recent 
computer simulations (Boal et  al. 1992, Boal 1994). The analysis of these models 
shows a sensitive dependence of the shear modulus on the properties of the spectrin 
tethers. For an understanding of the red blood cell membrane, concepts from 
polymer physics and membrane physics thus have to merge. 

These few remarks on the red blood cell, the quest for whose understanding 
marks one of the starting points of the research on vesicles, demonstrate the 
continuing inspiration biology brings to physics. Based on the experience acquired 
in comprehending vesicle configurations as described in this article, the study of these 
more complicated systems is anticipated to reveal more fascinating surprises in the 
near future. 
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Symbol 

Appendix A. List of recurrent symbols 

Meaning Defined in equation 

A 
AA 
AAo 

b 
Co 
Co 
d 

E 

Eo 

f 
fo 

F 
Fo 

gi 

G 
Gi: 

H 
k TM 

K 
K 

energy 
energy 
energy 
energy 
model 

area of the vesicle 2.49 
area difference between the two monolayers 2.46 
optimal area difference between the two 
monolayers 2.47 
friction coefficient for monolayer slipping 7.28 
reduced spontaneous curvature 2.56 
spontaneous curvature 2.54 
distance between bilayer mid-plane and 
monolayer neutral surface after 2.19 
linear term in an expansion of the geometrical 
quantities 4.5-4.7 
matrix elements of the second variation of the 
geometrical quantities 4.5-4.7 
energy matrix 2.29 

of a bending mode 2.14 
of a bending mode of a bound bilayer 6.4 
density of a bilayer membrane 2.23 
density of a membrane in the classical 

2.10 
elastic energy density of the monolayers 2.19 
energy of a bilayer membrane 2.28 
energy of a membrane in the classical model 2.13 
energy of a bound bilayer in harmonic 
approximation 6.4 
linear term in an expansion of the bending 
energy 4.4 
dimensionless bending energy 2.51 
matrix of the second variation of the bending 
energy 4.4 
mean curvature 2.1 
elastic compression modulus of the monolayer 2.19 
Gaussian curvature 2.2 
external force acting on the liquid 7.1 
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Symbol Meaning 

Appendix A-(Continued) 

Defined in equation 

lo 

m 

m o  

M 
n 

N~: 
P 
Q 

su 
Ul,m 

P 

¥ 

v o 

v o 

v o 

W 

W 

O~ 

7o 

~/1,2 
F a 
ro 
A 

t~ TM 

~G 

P 

p± 

distance from the wall for which the adhesion 
potential is minimal 6.28 
reduced total mean curvature 2.56 
reduced optimal area difference 2.56 
total mean curvature 2.45 
normal vector 2.6 
number of lipid molecules in the two layers 2.40 
Lagrange multiplier for volume 3.1 
Lagrange multiplier for mean curvature 3.1 
gas constant 2.37 
equivalent sphere radius 2.49 
inverse contact curvature 6.16 
elements of the stability matrix 4.10 
expansion coefficients of fluctuating 
quasispherical shape 4.19 
reduced volume 3.11 
velocity field of the surrounding liquid 7.1 
value of the adhesion potential in its minimum 6.28 
value of the adhesion potential for which a free 
vesicle becomes deformed 6.29 
value of the adhesion potential for which 
thermally activated unbinding sets in 6.33 
scaled contact potential for adhesion 6.17 
(i) energy of a vesicle in the area-difference 
elasticity model 2.50 
(ii) contact potential for adhesion (in section 6) 6.15 
value of contact potential at adhesion transition 6.18 
material parameter of the area-difference 
elasticity 2.52 
damping rate of a bending mode in the classical 7.24 
model 
damping rate of a bending mode of a bound 7.45 
membrane 
damping rates of coupled bilayer modes 7.34 
kinetic coefficient of a bound membrane 7.43 
kinetic coefficient in the classical model 7.22 
dimensionless excess area 4.18 
bilayer bending rigidity 2.10 
renormalized bilayer bending rigidity 2.30 
bending rigidity of a monolayer 2.34 
Gaussian bending rigidity of the bilayer 2.10 
crossover length scales for a bound bilayer 6.5 and 6.6 
reduced density difference 2.24 
reduced average density deviation 2.25 
reduced density difference deviations 2.22 
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Meaning Defined in equation 

Z 

7- 

~0 

f2 

dimensionless effective tension 4.31 
in sections 2-5: Lagrange multiplier for area 3.1 
in sections 6 and 7: external tension 6.1 
in section 6.5: Lagrange multiplier for area of a 
bound vesicle 
ratio between reduced temperature and excess 
area 4.27 
equilibrium number density of lipids in the 
monolayer 2.19 
number densities of lipids in the monolayer 2.19 
number densities of lipids in the monolayer 
projected onto bilayer midplane 2.19 
variational free energy functional 3.1 
curvature of adhesion potential 6.2 

before 6.34 

Appendix B. Determination of the bending rigidity 
Great effort has been devoted in recent years to determining the bending rigidity 

n. Conceptually, two different approaches can be distinguished. In the mechanical 
approach, the response of the membrane to an applied force is measured, from which 
the bending rigidity is deduced. The extreme softness of these systems is exploited by 
the second type of method where the bending rigidity is derived from the thermally 
excited membrane fluctuations. 

One example of the mechanical approach (Evans 1983, Evans and Needham 
1987) is provided by studies of tether formation from giant vesicles which are 
aspirated with a micro-pipette (Bo and Waugh 1989). The tether is pulled out by the 
gravitational force on a small glass bead which adheres to the vesicle's surface. The 
length of the tether is determined by the balance of the suction pressure, the 
gravitational force and bending energies. It has been realized only recently that, 
with this method, the bending rigidity a and the non-local bending rigidity, t~ --- c~n, 
can be measured simultaneously (Waugh et al. 1992). 

In the flickering experiments, the bending rigidity is derived from mean-square 
amplitudes of thermally excited membrane fluctuations using phase contrast 
microscopy combined with fast image processing. This technique has been used 
with tubular vesicles (Servuss et al. 1976, Schneider et al. 1984a), quasi-spherical 
vesicles (Schneider et al. 1984b, Engelhardt et al. 1985, Bivas et aL 1987, Faucon et 
al. 1989, Duwe et al. 1990, Meleard et al. 1992, Haeekl et al. 1995), shape 
fluctuations of almost planar membrane segments (Mutz and Helfrich 1990), and 
fluctuations of weakly bound vesicles (Zilker et al. 1987, Rfidler et aL 1995). 

A third class of experiments combines the mechanical with the entropic 
approach. Since aspiration of the vescle in the micro-pipette changes the area 
available for fluctuations (Helfrich and Servuss 1984), the strength of the fluctuation 
can be controlled mechanically. From the relation between the area stored in the 
fluctuations and the suction pressure, which is related to the effective entropic 
tension, the bending rigidity can be deduced (Evans and Rawicz 1990). The same 
idea has also been used in a very different set-up where quasi-spherical vesicles are 
elongated in an ac electric field (Kummrow and Helfrich 1991). Again the bending 
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rigidity is derived from the relation between the area stored in the fluctuations and 
the applied field which controls the tension. 

The values obtained by these techniques differ quite a bit among the different 
lipids. The typical range is n-~ 2 × 10-13-10-t2erg. Even for the same lipid, the 
bending rigidity differs by a factor of 2 using different methods. Sometimes, the same 
technique applied by different research groups yields significantly different values. In 
a recent attempt to resolve these discrepancies, the quasi-spherical fluctuations and 
the elongation in the electric field were analysed at the same vesicle to determine the 
bending rigidity (Niggemann et al. 1995). Depending on whether or not the glue 
sealing the cell was in contact with the vesicle, the two methods agreed or differed 
about a factor of 2-3. Helfrich proposes that a possible sensitivity to polymeric 
contamination from the sealing glue indicates that fluid membranes are rough on a 
suboptical scale (Helfrich 1989, 1995, Helfrich and K16sgen 1992). A surprisingly 
strong decrease of the bending rigidity with temperature was also found in 
Niggemann et al. (1995). For DOPC, for example, ~; decreases by more than a 
factor of three from T = 13°C to T = 34°C. 

The bending rigidity for mixtures is particularly interesting given the fact that 
biological membranes always involve mixtures. The addition of cholesterol to fluid 
bilayers increases the bending rigidity (as well as the area compressibility) sig- 
nificantly (Evans and Needham 1987, Duwe et al. 1990). However, the non-local 
bending rigidity seems not to change with the addition of cholesterol (Song and 
Waugh 1993). This may be related to the fact that cholesterol can flip between the 
monolayers quite rapidly. 

A significant decrease in the apparent bending rigidity of an order of magnitude 
follows from the addition of a few (2-5) mol. % of a short bipolar lipid (bola lipid) or 
small pepfides (e.g. valinomycin) (Duwe et al. 1990, Haeckl et al. 1995). Since the 
apparent bending rigidity then becomes comparable to the thermal energy T, these 
vesicles exhibit very strong shape fluctuations. Entropic terms then become relevant 
for the description of typical conformations. One must note, however, that bola lipid 
is much more soluble in water and thus will go in and out of the bilayer more rapidly. 
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