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We study the effect of transmembrane proteins on the shape, composition, and thermodynamic stability
of the surrounding membrane. When the coupling between membrane composition and curvature is strong
enough, the nearby membrane composition and shape both undergo a transition from overdamped to
underdamped spatial variation, well before the membrane becomes unstable in the bulk. This transition
is associated with a change in the sign of the thermodynamic energy and, hence, favors the early stages
of coat assembly necessary for vesiculation (budding) and may suppress the activity of mechanosensitive
membrane channels and transporters. Our results suggest an approach to obtain physical parameters of
the membrane that are otherwise difficult to measure.
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Biological membranes are crucial to the structure and
function of living cells [1]. Transmembrane proteins
essential for transport, adhesion, and signaling are
embedded in membranes [2,3] consisting of a mixture of
lipids and other amphipathic components. The interaction
with the adjacent lipid molecules is known to regulate the
function of membrane proteins [4–7]. Here, we are pri-
marily interested in the nonspecific lipid-protein inter-
actions that arise from the coupling of their hydrophobic
regions [8–14], although we can also allow for selective
enrichment of membrane component(s) near the protein.
We employ a continuum theory in which small deforma-
tions of the lipid environment near a rigid inclusion can be
described by a number of local field variables, such as the
profile of the midplane of the bilayer, its composition, and
membrane thickness [15–36]. Furthermore, the free-energy
cost associated with thickness deformation is completely
decoupled at lowest order [21], and it can be independently
analyzed, although we do not do so here.
We allow for selective enrichment or depletion of

curvature-sensitive inclusions in the vicinity of a membrane
protein or, equivalently, lipid asymmetry between leaflets
that is characterized by a local spontaneous curvature, the
preferred mean curvature in the absence of any mechanical
stresses on the membrane [33–41]. This local variation may
be relatively large near a membrane protein if its geometry
is such that it bends or deforms the surrounding membrane
(see Fig. 1).Our approach leads to a real-space description of
the membrane around an inclusion of arbitrary symmetry.
We consider a two-component membrane in which

the local compositional asymmetry between the different
layers and/or the density of curvature-sensitive inclusions
is phenomenologically coupled to the local mean curvature
of the membrane [33,34]. When the compositional varia-
tion is weak and the membrane displacement is small,
the free energy can be written as a Landau-Ginzburg
expansion [33–35,42–44],

Fφ ¼ 1

2

Z

M
½aφ2 þ bð∇φÞ2 þ 2cφð∇2uÞ&d2r; ð1Þ

where only the lowest-order terms are retained and a, b,
and c are phenomenological constants. The scalar fields
φðrÞ and uðrÞ are the local composition difference (as an
area fraction) and bilayer midplane height, respectively;
see Fig. 1. Both deformation fields are described within a
Monge representation, which allows us to write the free
energy associated with midplane deformation as

F u ¼
1

2

Z

M
½σð∇uÞ2 þ κð∇2uÞ2&d2r; ð2Þ

where σ and κ are the surface tension and bending rigidity
of the membrane, respectively [45].

FIG. 1 (color online). Sketch of a membrane inclusion showing
themidplane of the bilayer (blue line) at heightuðr; θÞ. The surface
variation of the rigid inclusion in the ẑ direction is coarse grained
out so that the geometry is defined by its radius r0 and two
functions describing the heightUðθÞ and contact angleU 0ðθÞ of the
hydrophobic belt. These parametrize the protein-membrane inter-
face (red line), where uðr0; θÞ ¼ UðθÞ and n̂ ·∇uðr0; θÞ ¼ U 0ðθÞ,
with n̂ as the inward unit normal vector. We require both the
normal force and the torque on the inclusion to vanish. The latter
can lead to an equilibrium tilt angle ψ about the axis labeled by ε.
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We now seek the ground state of the membrane and
neglect fluctuations throughout. The membrane shape
uðrÞ and its compositional field φðrÞ can then be computed
exactly by minimizing the free-energy functional F ¼
F u þ Fφ, leading to the Euler-Lagrange equations

∇2u ¼ ð∇2 − β2Þϕ; ð3Þ

∇2ð∇2 − α2Þuþ γ2∇2ϕ ¼ 0; ð4Þ

where ϕðrÞ ¼ ðb=cÞφðrÞ and the coefficients α ¼
ffiffiffiffiffiffiffiffi
σ=κ

p
,

β ¼
ffiffiffiffiffiffiffiffi
a=b

p
, and γ ¼ c=

ffiffiffiffiffi
κb

p
represent the relevant inverse

length scales of the model [46]. By combining Eqs. (3)
and (4), a single equation for ϕðrÞ can be obtained
(Supplemental Material [47]),

ð∇2 − k2þÞð∇2 − k2−Þϕ ¼ 0; ð5Þ

where k' is given by

k' ¼ 1

2

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαþ βÞ2 − γ2

q
'

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα − βÞ2 − γ2

q i
: ð6Þ

By separation of variables, a solution to Eq. (5) that
vanishes in the far-field limit can be found to be

ϕðr; θÞ ¼ ϕþðr; θÞ þ ϕ−ðr; θÞ; ð7Þ

where r and θ are the usual polar coordinates, as illustrated
in Fig. 1, and ϕ' is defined by

ϕ'ðr; θÞ ¼
k2'

k2' − β2
X∞

n¼0

V'
n ðθÞKnðk'rÞ; ð8Þ

where Kn are the modified Bessel functions of the second
kind of order n, and V'

n ðθÞ ¼ A'
n cosðnθÞ þ B'

n sinðnθÞ,
with A'

n and B'
n arbitrary constants. From this, we obtain

the membrane shape through Eq. (3), which yields

uðr; θÞ ¼ uþðr; θÞ þ u−ðr; θÞ þ uhðr; θÞ; ð9Þ

where the solutions that diverge at infinity are excluded.Here,
uhðr; θÞ is the homogeneous solution of Eq. (3), namely,

uhðr; θÞ ¼
X∞

n¼0

WnðθÞr−n; ð10Þ

where WnðθÞ ¼ Xn cosðnθÞ þ Yn sinðnθÞ, with Xn and
Yn some constants. The remaining two terms in Eq. (9)
are the inhomogeneous solutions, which are found to be

u'ðr; θÞ ¼
X∞

n¼0

V'
n ðθÞKnðk'rÞ: ð11Þ

The angular functions V'
n ðθÞ and WnðθÞ are determined

by the boundary conditions at the interface ∂M, located at
a distance r0 from the symmetry axis. These are specified
by the height UðθÞ and contact angle U 0ðθÞ at which the
midplane of the bilayer meets the inclusion (see Fig. 1).
This choice is motivated by assuming a strong coupling
between the transmembrane domain of the inclusion
and the membrane hydrophobic core. Also, the normal

derivative of ϕ is chosen to vanish on ∂M, which is used to
obtain a unique solution [51].
This methodology allows us to compute exactly the

lowest order estimates to the membrane profile, its local
phase behavior, and the total deformation energy, given an
arbitrary model for the shape of the inclusion, through
UðθÞ and U 0ðθÞ, i.e., a general solution to the problem. This
makes contact with experiments that might measure mem-
brane shape (cryo TEM [52] or perhaps TIRF microscopy)
and composition (NMR [53] or FRET [54]). First, we
consider a simple illustrative example in which the height
UðθÞ is chosen to be a constant z0, while the contact angle
has a nonzero value only within an angular interval w; see
Fig. 2. This corresponds to a rigid inclusion that induces a
local midplane deformation only within a specific region
along its hydrophobic belt, with the remaining part prefer-
ring a flat membrane. The Connolly surface of a leucine
transporter, LeuT, exhibits similar features [55,56]. The
height z0 is not entirely arbitrary, being set by the overall
balance of normal forces. Similarly, the condition of torque
balance leads to a tilt of the inclusion (see the Supplemental
Material [47] for details), as illustrated in Fig. 1. Typical
solutions due to such an asymmetrically shaped inclusion
that exerts no net torque are shown in Fig. 2 for physio-
logically reasonable values of α, β, and γ [57]. The induced
ϕðrÞ values show a rich variation as the angle w is varied
between 0 and 2π, which correspond to inclusions with a
cylindrical and a conical shape, respectively.
To better understand the role of the coupling constant γ,

we consider symmetric conical inclusions (w ¼ 2π) in what

FIG. 2 (color online). Membrane profiles induced by an
asymmetrical inclusion, where the contact angle is given by
U 0ðθÞ ¼ 15° if jθj < w=2 and 0 otherwise, with θ measured from
the x axis (see text). The membrane parameters are here
αr0 ¼ 0.1, βr0 ¼ 1.0, and γr0 ¼ 0.5, with r0 the radius of the
inclusion (not depicted). The compositional asymmetry ϕðrÞ is
shown as the color map of the surface plots.
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follows, noting that the transition from over- to under-
damped variation also appears for rigid inclusions with other
(or no) symmetry. For values of γ less than γd ¼ jα − βj, the
solutions are found to be monotonically decaying; see
Fig. 3(b). However, as γ is increased above this point, the
solutions show an underdamped behavior, with the mem-
brane displacement decaying to zero for large distances. The
magnitude of this amplitude becomes large as γ approaches
γc ¼ αþ β, suggesting the presence of an instability. In fact,
γ > γc, where k2' < 0 as shown in Fig. 3(a), corresponds to
Leibler’s criterion for curvature-induced instabilities in
(bulk) membranes [33,34]. The point γ ¼ γd instead corre-
sponds to a critically damped system, separating the real and
complex domain of k'. The solutions are thermodynami-
cally stable on either side of this boundary. When
γd < γ < γc, the decay rate λ of the membrane undulations
and its wave numberω can be determined by approximating
KnðρÞ ≈ e−ρðπρ=2Þ−1=2 for ρ ≫ n in Eq. (9) [61], i.e.,

uðrÞ ∼ e−λðr−r0Þffiffiffiffiffiffiffiffiffi
r=r0

p cos ½ωðr − r0Þ þ ϑ&; ð12Þ

where ϑ is a phase angle that only depends on α, β, and γ.
Here, λ and ω are given by the real and imaginary parts of
Eq. (6), respectively. Thus, we find that thewavelength of the
precritical undulations diverges as we approach γ ¼ γd, and
the decay length diverges for γ ¼ γc, which signals the
presence of a bulk membrane instability. Physically and

mathematically distinct underdamped solutions have also
been found in studies of membrane thickness mismatch
without any compositional field that couples to midplane
curvature [17].
While α can be measured through various experimental

techniques [62–65], the parameters β and γ are more elusive
[51]. Our analysis suggests a possible method to measure
them, e.g., by tuning the system to lie near the instability
threshold γ ≲ γc. Here, the amplitudes of the undulations
are large and long ranged, and γ and β can be inferred by
comparison with Eqs. (9) or (12). This tuning might be
achieved by controlling the surface tension, e.g., using a
micropipette aspiration technique [62], so as to approach
the critical tension σc ¼ κðγ − βÞ2, although the presence
of thermal fluctuations may mean that some averaging will
be required to resolve the ground state, particularly far from
the membrane inclusion. This illustrates the predictive
power of our model.
Mechanosensitive membrane channels have been widely

studied and reveal the interplay between the biological
function of transmembrane proteins and the adjacent mem-
brane structure and composition. Through conformational
changes from a closed to an open state that allows the
passage of solvent through the membrane, they can equili-
brate an osmotic imbalance between the interior and the
exterior of cells [66–68]. Although many examples of these
channels are found in nature, the bacterial mechanosensitive
channels of large (MscL) and small conductance (MscS) are
prototypes of such proteins. Experimental studies have have
shown that the channel opening probability is related to the
membrane tension and the size of the open pore [66–73].
One possibility is that the channel simply dilates open at
high tension, but the transition between the closed and
open states might also involve, e.g., a change in slope at
the protein-membrane interface (here, δ) [74]. In a two-
component membrane such a change in boundary condi-
tions between the closed and open states couples to both the
shape and asymmetry field in the nearby membrane and
hence contributes to a change in the free energy of the
channel-membrane system. Here, for simplicity, we con-
sider the angle at the channel wall δ to be nonzero in a
conical closed state and δ ¼ 0 in the open state. We explore
the thermodynamic effect of this gating by tilt by comparing
the deformation energy F of the membrane to the exper-
imental estimate of the energy required to open the channels
at zero tension, inferred by assuming a purely dilational
opening. Figure 4(a) shows that the even modest changes in
the boundary angle at the face of the channel could give rise
to a significant thermodynamic energy under gating by tilt.
Moreover, a regime is identified in which the membrane can
act to close, rather than open, the channel, characterized by a
negative total energyF relative to the open state, although a
similar result was previously identified in a model that
neglects spatial variation of coupling to curvature [23,24].
Our results indicate that lipid composition variation and its
coupling to mean curvature could play a role in regulating
the function of mechanosensitive membrane channels.

FIG. 3 (color online). (a) Plot of k2' from Eq. (6) against the
couplingconstant γ,withαr0 ¼ 0.1,βr0 ¼ 1.0, and r0 the inclusion
radius. This illustrates that both kþ (red line) and k− (blue line) are
real for γ < jα − βj and purely imaginary when γ > αþ β. The
gray shaded area illustrates the region where k2' are complex, while
the green line shows the real part only. The domain given by γ >
αþ β corresponds to Leibler’s unstable regime [33,34]. (b) Radial
profiles of the bilayer midplane uðrÞ and the compositional
asymmetry ϕðrÞ induced by a conical inclusion, with a modest
contact angle of 15°, for different values of the coupling constant γ,
where α and β have the same values as those in panel (a).
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Finally, the presence of a negative deformation energy in
the underdamped regime motivated us to study the thermo-
dynamics of protein coat formation on a membrane. Such
coats are important in regulation, e.g., membrane trafficking
using clathrin coats, or in infection, where viral coats
assemble at the plasma membrane [1]. Figure 4(b) shows
both the compositional field ϕ around a protein coat of size
r0 ¼ 10 nm and the variation with r0 of Δfc, i.e., the change
in membrane energy due to coupling to ϕ only, scaled by the
coat area. Thus, Δfc renormalizes the chemical potential
for binding of early coat monomers to the membrane, and
it is computed by adding both the contribution from the

membrane inside (under) and outside the coat (Supplemental
Material [47]). Two striking features are observed in the
underdamped regime. First, this free-energy change can
support an initial decrease with coat size. In this case, the
deformation of the membrane (with its associated composi-
tion) is energetically favorable. This is true (even) for
membranes that remain thermodynamically stable, i.e., in
the absence of bulk instability. This may represent a new
mechanism for driving (controlling) coat formation in cells.
This might be tested by tracking coat assembly at different α
(tension), e.g., controlled bymicropipette aspiration [62]:We
predict a dramatic increase in the rate of assembly near the
critical tension σc. Second, the existence of a minimum in
Δfc corresponds to a characteristic coat size with metastable
character; we note that partially formed coats are often
observed [75].

We acknowledge the stimulating discussions with Dr. P.
Sens (Paris) and Profs. M. Freissmuth and H. Sitte (Vienna)
and funding from EPSRC under Grant No. EP/I005439/1 (a
Leadership Fellowship to M. S. T.).

*Corresponding author.
m.s.turner@warwick.ac.uk

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and
P. Walter, Molecular Biology of the Cell, 5th ed. (Garland
Science, New York, 2008).

[2] S. J. Singer and G. L. Nicolson, Science 175, 720 (1972).
[3] D. M. Engelman, Nature (London) 438, 578 (2005).
[4] T. M. Suchyna, S. E. Tape, R. E. Koeppe, O. S. Andersen, F.

Sachs, and P. A. Gottlieb, Nature (London) 430, 235 (2004).
[5] P. Moe and P. Blount, Biochemistry 44, 12239 (2005).
[6] D. Krepkiy, M. Mihailescu, J. A. Freites, E. V. Schow,

D. L. Worcester, K. Gawrisch, D. J. Tobias, S. H. White, and
K. J. Swartz, Nature (London) 462, 473 (2009).

[7] M. Milescu, F. Bosmans, S. Lee, A. A. Alabi, J. I. Kim, and
K. J. Swartz, Nat. Struct. Biol. 16, 1080 (2009).

[8] A. G. Lee, Biochim. Biophys. Acta 1666, 62 (2004).
[9] K. Mitra, I. Ubarretxena-Belandia, T. Taguchi, G. Warren,

and D. M. Engelman, Proc. Natl. Acad. Sci. U.S.A. 101,
4083 (2004).

[10] W. Dowhan, E. Mileykovskaya, and M. Bogdanov,
Biochim. Biophys. Acta 1666, 19 (2004).

[11] T. K. M. Nyholm, S. Ozdirekcan, and J. A. Killian,
Biochemistry 46, 1457 (2007).

[12] O. S. Andersen and R. E. Koeppe, Annu. Rev. Biophys.
Biomol. Struct. 36, 107 (2007).

[13] R. Phillips, T. Ursell, P. Wiggins, and P. Sens, Nature
(London) 459, 379 (2009).

[14] J. A. Lundbaek, S. A. Collingwood, H. I. Ingólfsson, R.
Kapoor, andO. S.Andersen, J. R. Soc. Interface 7, 373 (2010).

[15] P. B. Canham, J. Theor. Biol. 26, 61 (1970).
[16] H.W. Huang, Biophys. J. 50, 1061 (1986).
[17] H. Aranda-Espinoza, A. Berman, N. Dan, P. Pincus, and

S. A. Safran, Biophys. J. 71, 648 (1996).
[18] C. Nielsen, M. Goulian, and O. S. Andersen, Biophys. J. 74,

1966 (1998).

FIG. 4 (color online). (a) The top sketches, with the bilayer
membrane represented by a thick green line, show two idealized
schemes for channel gating: the gating-by-tilt model (left) and the
dilational gating model (right). The figures below this show the
angle for gating by tilt that would account for the absolute value
of the entire conformational energy change F measured for
MscL and MscS [69,70]. The dashed line indicates F ¼ 0
separating two domains where the membrane acts to open
(F > 0) or close (F < 0) the gating channel. The uncolored
region is not shown, as it corresponds to angles greater than 60°,
which are probably unphysical and where our perturbative
approach anyway breaks down. (b) The top sketch shows a
membrane deformed by the assembly of a protein coat such as
clathrin or a viral coat protein. The graphs below this show the
radial compositional field ϕðrÞ when the coat is of size r0 ¼
10 nm (left) and the change in membrane energy per area of coat
monomers Δfc due to coupling to the composition field against
the coat radius r0 (right). In both cases, we assume a typical
intrinsic coat curvature with Rc ¼ 50 nm, β ¼ 1.0 nm−1, and
γ ¼ 1.1 nm−1. In the underdamped regime, the energy change
Δfc can exhibit an initial decrease, which may drive coat
assembly. In both (a) and (b) we use κ ¼ 20kBT.

PRL 114, 098101 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

6 MARCH 2015

098101-4



[19] S. Mondal, G. Khelashvili, and H. Weinstein, Biophys. J.
106, 2305 (2014).

[20] P. Sens and S. Safran, Eur. Phys. J. E 1, 237 (2000).
[21] J.-B. Fournier, Eur. Phys. J. B 11, 261 (1999).
[22] T. R. Weikl, M.M. Kozlov, and W. Helfrich, Phys. Rev. E

57, 6988 (1998).
[23] P. Wiggins and R. Phillips, Proc. Natl. Acad. Sci. U.S.A.

101, 4071 (2004).
[24] P. Wiggins and R. Phillips, Biophys. J. 88, 880 (2005).
[25] N.Dan, P. Pincus, and S. A. Safran, Langmuir 9, 2768 (1993).
[26] M. Goulian, R. Bruinsma, and P. Pincus, Europhys. Lett. 22,

145 (1993).
[27] K. S. Kim, J. Neu, and G. Oster, Biophys. J. 75, 2274 (1998).
[28] M. S. Turner and P. Sens, Biophys. J. 76, 564 (1999).
[29] V. S. Markin and F. Sachs, Phys. Biol. 1, 110 (2004).
[30] T. Ursell, K. C. Huang, E. Peterson, and R. Phillips, PLoS

Comput. Biol. 3, e81 (2007).
[31] C. A. Haselwandter and R. Phillips, Europhys. Lett. 101,

68002 (2013).
[32] C. A. Haselwandter and R. Phillips, PLoS Comput. Biol. 9,

e1003055 (2013).
[33] S. Leibler, J. Phys. (Les Ulis, Fr.) 47, 507 (1986).
[34] S. Leibler and D. Andelman, J. Phys. (Les Ulis, Fr.) 48,

2013 (1987).
[35] D. Andelman, T. Kawakatsu, and K. Kawasaki, Europhys.

Lett. 19, 57 (1992).
[36] W. Helfrich, Z. Naturforsch. C 28, 693 (1973).
[37] U. Seifert, Adv. Phys. 46, 13 (1997).
[38] J. N. Israelachvili, D. J. Mitchell, and B.W. Ninham,

J. Chem. Soc., Faraday Trans. 72, 1525 (1976).
[39] S. M. Gruner, J. Phys. Chem. 93, 7562 (1989).
[40] H. T. McMahon and J. L. Gallop, Nature (London) 438, 590

(2005).
[41] A. Callan-Jones, B. Sorre, and P. Bassereau, Cold Spring

Harbor Persp. Biol. 3, a004648 (2011).
[42] P. B. Sunil Kumar, G. Gompper, and R. Lipowsky, Phys.

Rev. E 60, 4610 (1999).
[43] M. Schick, Phys. Rev. E 85, 031902 (2012).
[44] U. Seifert, Phys. Rev. Lett. 70, 1335 (1993).
[45] D. Nelson, T. Piran, and S. Weinberg, Statistical Mechanics

of Membranes and Surfaces, 2nd ed. (World Scientific
Publishing Company, Singapore, 2004).

[46] The sign choice of γ is simply a convention. The fields u and
ϕ are invariant under a sign change in γ, itself related to the
convention of a direction for “up” and whether one refers
to the enrichment of a component that couples to positive
curvature (depending on one’s choice for up) or the
depletion of one that couples to negative curvature.

[47] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.114.098101, which in-
cludes Refs. [48–50], for supporting calculations, including
equations for the membrane shape and composition, curva-
ture instability, and analysis of protein coat energetics.

[48] K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical
Methods for Physics and Engineering, 3rd ed. (Cambridge
University Press, Cambridge, England, 2006).

[49] F. W. Byron and R.W. Fuller, The Mathematics of Classical
and Quantum Physics (Dover Publications Inc., New York,
1992).

[50] I. S. Gradshteyn, I. M. Ryzhik, A. Jeffrey, and D. Zwillinger,
Table of Integrals, Series, and Products, 6th ed. (Academic
Press, New York, 2000).

[51] Although Dirichlet boundary conditions could be used as
well, our choice gives the ground state solution in the absence
of any constraints on the composition asymmetry fieldϕ at the
boundary; see Supplemental Material [47] for more details.

[52] A. Shimada, H. Niwa, K. Tsujita, S. Suetsugu, K. Nitta,
K. Hanawa-Suetsugu, R. Akasaka, Y. Nishino, M. Toyama,
L. Chen, Z.-J. Liu, B.-C. Wang, M. Yamamoto, T. Terada, A.
Miyazawa,A.Tanaka,S.Sugano,M.Shirouzu,K.Nagayama,
T. Takenawa, and S. Yokoyama, Cell 129, 761 (2007).

[53] P. J. Judge and A. Watts, Curr. Opin. Chem. Biol. 15, 690
(2011).

[54] L. M. S. Loura and M. Prieto, Front. Psychol. 2, 82 (2011).
[55] A. Yamashita, S. K. Singh, T. Kawate, Y. Jin, and E.

Gouaux, Nature (London) 437, 215 (2005).
[56] S. K. Singh, C. L. Piscitelli, A. Yamashita, and E. Gouaux,

Science 322, 1655 (2008).
[57] Typically, the membrane correlation length might be

α−1 ∼ 10 r0 [58]. Equation (1) can be associated with a
typical interfacial width for a strongly segregated system
of a few nm, say

ffiffiffiffiffiffiffiffiffiffiffi
b=jaj

p
∼ r0, and a line tension of about a

pN (
ffiffiffiffiffiffiffiffi
bjaj

p
∼ pN) [59], which combine to give b ∼ kBT.

Sorting of strongly curvature-coupling components into
membrane tubes gives an upper bound of c ∼ κ=ð2.5r0Þ
and, hence, a value for γ ∼ 2=r0 [60], indicating that all the
regimes discussed in the main text are accessible. While the
use of a phase-separated system to estimate the parameters a
and b is questionable, given that they are motivated within a
model in which the system remains essentially one phase,
with ϕ very small, we are reassured that the primary limit on
the accessibility of the underdamped regime is that β is not
too large. Given that spontaneous phase separation is often
seen on biological membranes, there would seem to be no
lower limit on a reasonable magnitude for a and hence β.

[58] M. P. Sheetz and J. Dai, Trends Cell Biol. 6, 85 (1996).
[59] A. Tian, C. Johnson, W. Wang, and T. Baumgart, Phys. Rev.

Lett. 98, 208102 (2007).
[60] S. Aimon, A. Callan-Jones, A. Berthaud, M. Pinot, G. E. S.

Toombes, and P. Bassereau, Dev. Cell 28, 212 (2014).
[61] M. Abramowitz and I. A. Stegun, Handbook of Mathemati-

cal Functions (Dover Publications Inc., New York, 1965).
[62] E. Evans and W. Rawicz, Phys. Rev. Lett. 64, 2094 (1990).
[63] L. Bo and R. Waugh, Biophys. J. 55, 509 (1989).
[64] M.KummrowandW.Helfrich, Phys. Rev.A 44, 8356 (1991).
[65] J. Pécréaux, H.-G. Döbereiner, J. Prost, J.-F. Joanny, and

P. Bassereau, Eur. Phys. J. E 13, 277 (2004).
[66] E. Perozo, Nat. Rev. Mol. Cell Biol. 7, 109 (2006).
[67] I. R. Booth, M. D. Edwards, S. Black, U. Schumann, and

S. Miller, Nat. Rev. Microbiol. 5, 431 (2007).
[68] E. S. Haswell, R. Phillips, and D. C. Rees, Structure 19,

1356 (2011).
[69] C.-S. Chiang, A. Anishkin, and S. Sukharev, Biophys. J. 86,

2846 (2004).
[70] S. Sukharev, Biophys. J. 83, 290 (2002).
[71] S. I. Sukharev, P. Blount, B. Martinac, F. R. Blattner, and

C. Kung, Nature (London) 368, 265 (1994).
[72] C. Kung, B. Martinac, and S. Sukharev, Annu. Rev.

Microbiol. 64, 313 (2010).
[73] E. Perozo, A. Kloda, D. M. Cortes, and B. Martinac, Nat.

Struct. Biol. 9, 696 (2002).
[74] M. S. Turner and P. Sens, Phys. Rev. Lett. 93, 118103

(2004).
[75] J. Heuser, J. Cell Biol. 84, 560 (1980).

PRL 114, 098101 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

6 MARCH 2015

098101-5


