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 Abstract 
 
 The well-characterized rates, mechanisms and stochastics of nucleation-dependent 
polymerization of deoxyhemoglobin S (HbS) are important in governing whether or not vaso-
occlusive sickle cell crises will occur.  The less well studied kinetics of depolymerization may also 
be important, for example in achieving full dissolution of polymers in the lungs, in resolution of 
crises and/or in minimizing gelation-induced cellular damage.  We examine depolymerization by 
microscopic observations on depolymerizing HbS fibers, by Monte Carlo simulations and by 
analytical characterization of the mechanisms.  We show that fibers fracture.  Experimental scatter 
of rates is consistent with stochastic features of the analytical model and Monte Carlo results.  We 
derive a model for the distribution of vanishing times and also show the distribution of fracture-
dependent fiber fragment lengths and its time dependence.  We describe differences between 
depolymerization of single fibers and bundles and propose models for bundle dissolution.  Our basic 
model can be extended to dissolution of gels containing many fibers and is also applicable to other 
reversible linear polymers that dissolve by random fracture and end-depolymerization.  Under the 
model, conditions in which residual HbS polymers exist and facilitate repolymerization and thus 
pathology can be defined; while for normal polymers requiring cyclic polymerization and 
depolymerization for function, conditions for rapid cycling due to residual aggregates can be 
identified. 
  
Introduction 
 
 The aim of this study is to discern and characterize new features of the depolymerization of 
HbS fibers.  These are: (i) the time a fiber requires to vanish fully and the stochastic nature and 
distribution of the vanishing time; (ii) the distribution of fiber fragment lengths as ligand-induced 
fracture breaks the fibers and as the fragments shorten; (iii) the effects of formation of fiber bundles 
on depolymerization mechanism and rates; (iv) the relations between depolymerization of single 
fibers and depolymerization of gels that contain many fibers. 
  
 Unlike thoroughly studied nucleation-dependent polymerization (1-4), the mechanism of 
depolymerization is only partially characterized and its contributions to pathogenesis and its 
avoidance are not known and have been little examined. 
 
 The relevance of the polymerization and gelation of deoxyHbS, the initiating event in sickle 
cell disease, to pathogenesis lies in manifold effects: contributions to microvascular obstruction, red 
cell and endothelial damage, and anemia; and in the cascades of multi-factorial pathological events, 
including cellular adhesion, red cell dehydration, states of hypercoagulability and other factors.  In 
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respect to the direct effect of red cell rigidification that promotes vaso-occlusion, polymerization 
kinetics have a central role: if the nucleation-dependent delay time is longer than the time needed 
for transit of red cells through the microvasculature, the propensity for vaso-occlusion will be 
lessened; conversely, if the delay is shorter, it predisposes to obstruction (3-5). 
  
 In contrast to the highly successful double nucleation model for polymerization (2), previous 
studies of many aspects of depolymerization (7-15) have not yet led to a complete model for its 
fundamental molecular mechanisms and rates, and its relevance to clinical pathology has not been 
defined.  We hypothesize at least three ways in which depolymerization rates may be important.  (i) 
If full depolymerization does not occur in the few seconds that red cells spend in the oxygenating 
conditions of the lungs, residual polymer will pass into the systemic circulation, thereby eliminating 
the nucleation-dependent portion of the delay time and predisposing to vaso-occlusion.  Mozzarelli 
et al (4) have demonstrated the generation of rapid polymerization in red cells in the presence of 
small amounts of residual polymer.  (ii) Rapid depolymerization may help in resolution of sickle 
cell crises.  (iii) Slow depolymerization may increase the likelihood and/or extent of red cell damage 
and also the extent of endothelial damage arising from the presence of rigid, grossly deformed, cells.  
Huang et al (16) have made an important advance by showing that sickle red cell deformability is 
not restored for several seconds after exposure to oxygenation or CO.  Our current work looks at the 
same problem from the perspective of depolymerization kinetics and mechanisms, which lie at the 
root of restoration of deformability. 
 
 We begin with our model for HbS fiber depolymerization (17,18).  It invokes two processes, 
depolymerization of fibers and fiber fragments at their ends by loss of monomers, and ligand-
induced fracture of fibers that creates fragments.  These processes lead to two kinds of depolymeri-
zation: slow, ligand-independent, loss of monomers (i.e. 64,500 dalton tetramers) from initial fiber 
ends without fracture; and ligand binding-dependent 'fading' in which fibers appear to dissolve 
rapidly along their entire lengths.  We attributed the 'fading' appearance to limited light microscopic 
resolution that could not resolve fractures.  'Fading' for single (i.e. 14-stranded (19,20)) fibers is well 
modeled by a fracture and depolymerization-at-fragment-ends mechanism (18).  Pure end-depolym-
erization (i.e. only at the initial fiber ends) is slow and proceeds at about 0.75 μm/sec at each end 
(17).  In it, the time for complete fiber dissolution is proportional to fiber length.  In contrast, 'fading' 
is more rapid because of the presence of new fragments and ends, and occurs over a wide range of 
rates depending on the frequency of fracture, which itself depends on ligand concentration.  Full 
dissolution can occur in small fractions of a second and the time required is independent of fiber 
length.  Because of the great difference in rates, whether dissolution is achieved by 
depolymerization only at initial fiber ends or by the combined fracture and end-depolymerization of 
fragments (hereafter designated "fracture/end") may be important for minimization of pathophysio-
logical effects. 
 
 Our model (18) developed an analytic, mean-field, approach encompassing both pure end-
depolymerization and the fracture/end mechanism, and identifies a large regime over which the 
latter operates.  The model predicts that fracture/end dissolution progresses as an exponential in 
time squared, exp(-(t/τ)2), where τ= qk 1 is a characteristic time, k is the end-depolymerization rate 
and q is the fracture rate per unit fiber length.  Based on Monte Carlo simulations, the amount of 
polymer remaining exhibits stochastic properties in the form of variations of remaining polymer 
mass as a function of time. 
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 In the present work we examine depolymerization in 3 ways that provide synergistic 
evidence: with a new theoretical model, by Monte Carlo simulations, and by experimental 
observations of HbS fibers.  Under the analytic model and in Monte Carlo simulations, and 
consistent with experimental data, depolymerization is a stochastic process.  Our model describes 
the stochastics in a pathologically relevant way, as the distribution of fiber vanishing times.  It also 
characterizes the distribution of fiber fragment lengths during depolymerization.  We also propose 
extensions of the model to encompass the effects of fiber bundle formation and to address 
dissolution of HbS gels. 
 
Depolymerization: Mechanisms and Models 
 
Model for depolymerization with random breakage 
 
 We derive equations for depolymerization in a new way that characterizes fiber vanishing 
times, stochastics and fragment length distributions.  The steps in the derivation follow. 
 
 1. Random breaks without depolymerization.  For a very long initial fiber that has 
undergone random fracture, and neglecting end-effects, we choose a segment at random.  The 
probability that it belongs to the class of segments of length exactly x units (e.g. molecules or layers) 
scales as, 
 
                                                                                 (1) 2)1()( αα xxr −=
 
where α is the breakage probability at any unit (mathematical symbols are defined in Table I).  For 
α<<1, as is usually the case, and thus using only the first order term and normalizing, n(x) and p(x), 
the number and probability of segments of length x are, respectively, 
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where N is the total number of fragments.  (The second order term is negligible as long as αx<<1, 
i.e. x<<1/α).  The mass distribution, φ(x) is, 
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 2. Continuing breakage at rate q per unit length.  We set α=qt and thus express n and 
ϕ as functions of time, 
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 3. Continuing breakage with fiber shortening.  Shortening of fragments at rate k at each 
end is now introduced.   The change in n(x,t) with time is, 
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where the first term on the right represents the effect of fibers of length x+dx shortening to increase 
n(x) and of length x shortening to decrease n(x); the second term represents the effect of breakage of 
fibers of length x on n(x); and the third term the effect of breakage of fibers longer than x.  Solving 
equation (11) and defining a characteristic time (as in Turner et al, 2006), τ= qk 1  
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where N(t) and L(t) are remaining number of fragments and fiber length (mass), respectively.   
 
 4. Stochastic distribution of vanishing times.  We now cast equation (14) in a 
dimensionless form to derive a generalized expression for the distribution of vanishing times.  We 
also replace Lo with Li=Lo-2kt, to allow for the effects of shortening at the two initial fiber ends.  
Using s≡t/τ, Ao≡Lo kq /  and A=(Lo-2kt) kq / =Ao-2s in equation (14), N (s), the mean number 
of fragments remaining is, 
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 We are interested in onset of the condition N=0, which defines the loss of all polymer, and 
its probabilistic dependence on N .  Thus, we seek the probability P(s,Ao,0) that there is no fiber at 
time s; and its derivative, ∂P/∂s=p(s,Ao,0), which is the distribution function for vanishing times.   
 
 We model the system by conceptually extracting random sections of an extremely long fiber 
to create an ensemble of fibers of initial length Lo, which may be long but still vastly shorter than 
the initial hypothetical fiber.  We assume that, when the fiber is largely depolymerized and there are 
few fragments left, the presence of any given fragment is independent of other fragments and all 
fragments are much smaller than L.  Then, given the mean number of fragments remaining, N , we 
use a Poisson distribution to obtain the probability that N=0, 
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Differentiating to obtain ∂P(s,Ao,0)/∂s≡p(s,Ao,0), 
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is the desired distribution function for vanishing times. 
 
 Equation (18) is valid in the regime of the fracture/end mechanism providing k is small 
enough and/or Lo is long enough and q rapid enough that dissolution depends primarily on creation 
of fragments and their end-depolymerization, not on end-depolymerization at the 2 initial fiber ends.  
The measure of this is the dimensionless parameter, Ao.  The time that would be required for pure 
end-depolymerization to dissolve the fiber, Lo/2k, should be substantially greater than the 
characteristic time, τ, i.e. (Lo/2) kq / =Ao/2>1; this assures that depolymerization at the original 
two ends contributes negligibly to the vanishing time.  A somewhat more stringent criterion that 
addresses the regime over which the Poisson approximation is justified requires that the amount of 
fiber remaining shall constitute only a small fraction of Lo-2kt, the length of fiber that would remain 
if dissolution were purely by end-depolymerization. This criterion assures that the remaining 
fragments are present independently.  Replacing Lo by Lo-kt, the criterion becomes Ao/2-s>1, where 
s represents the time range of applicability.  This modification constrains s as well as Ao. For low Ao  
it can exclude the beginning to the distribution, where s is relatively large.  The  validity of analyses 
under equation (18) and its regime of applicability as it depends on Ao can be affirmed by 
comparison to results of Monte Carlo simulations (below).  s≥2 assures that less than 2% of 
polymer remains, but our Monte Carlo results indicate that a less stringent criterion, s≥1.5 and 
perhaps lower values as well also suffice and result in little error, depending on the value of Ao. 
 
 Figure 1a shows a series of curves that plot p(s,Ao,0) in the most general way, as a function 
of s, for different values of Ao in the regime of large Ao.  Thus, each curve reports the probability of 
vanishing as a function of  the ratio of vanishing time to characteristic time and can be applied to 
different sets of units (length and time) and values (L,q,k) provided Ao is kept the same.  If k and Lo 
are held constant, as in the figure, Ao scales as q so that large Ao indicates faster depolymerization.  
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That faster curves lie to the right of slower ones on the reduced time, s, axis depends on the different 
abscissa scalings as τ= qk 1  changes with Ao.  Plotted against time, t, faster curves would lie to the 
left.  (An example of a less general plot in true time, t, is shown below, figure 5).    Figure 1b plots 
the curves of figure 1a semi-logarithmically to show the approximately 2-fold width of the 
vanishing time distributions if the low probability tails of the distribution are included.  Figure 1 
also shows that the distributions are skewed to the right and hence not gaussian. 
 
 5. Distribution of fragment lengths.  Differentiation of equation (12) gives, 
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and shows (figure 2a) that the distribution of fragment lengths is a decreasing exponential that 
becomes steeper with time.  Figure 2b illustrates changes in the number of fibers within a unit 
length range over time.  The population at each length reaches a maximum and then decreases, as is 
also the case for the total number of fragments (equation (14)).  The maximum occurs earlier for 
long fragments than for short ones.  Long fragments become extremely rare not long after 
depolymerization commences.  
 
Depolymerization of fiber bundles 
 
 Single HbS fibers commonly aggregate laterally to form stable fiber bundles (21-24).  We 
propose models for depolymerization of bundles that fall into three classes, schematized in figure 3.  
(a) A bundle might depolymerize as a concerted unit, with all fibers fracturing at the same site 
simultaneously, and with all fibers within a bundle fragment undergoing end-depolymerization at 
the same rate, schematized in figure 3a.  The single fiber model is then applicable without 
modification other than a possible change in the dependence of fracture and/or end-
depolymerization rate on ligand concentration (which governs fracture rate (18)).  (b) Each fiber 
might undergo random fracture and end-depolymerization independently (but at the same mean 
rates) while remaining as part of a bundle.  Depolymerization would then progress as it does for 
single fibers in free solution, and vanishing times for each single fiber would also be unaffected.  
But fracture of the bundle would not occur as rapidly as for a single fiber because overlap of gaps in 
each single fiber would be uncommon, as shown in figure 3b.  (c) Finally, fracture rates for each 
single fiber could depend on the presence or absence of neighboring fibers.  For example, a fiber in 
the center of a bundle and not exposed to solution might be protected against fracture until one or 
more surrounding fibers in the radially adjacent region depolymerized, schematized in figure 3c.  In 
this kind of model, depolymerization will be slower than for types (a) and (b) and, as for type (b), 
continuity will be maintained for a longer time than for a single fiber. 
 
Monte Carlo Simulations of Dissolution Stochastics and Fiber Fragment Lengths 
 
 We use simulations for single fibers to test our model-based equations for the stochastics of 
vanishing time and the distribution of fragment lengths.  For each simulation, the intrinsic structural 
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and kinetic parameters that suffice to characterize the system are Lo, q, and k or, alternatively, Lo, τ, 
and k. 
 
Stochastics: Vanishing Times 
 
 Figure 4 shows the results of 10,550 simulations that produce a distribution of vanishing 
times that conforms well to the distribution predicted by equation (18).  The agreement between the 
theoretical equation and Monte Carlo results justifies the assumption used, that the last few 
remaining fragments can be treated as being present randomly and independently, and that 
application of a Poisson distribution is therefore warranted.  The analytical and Monte Carlo data 
are essentially superposed even at times in which more than a few fragments remain and a 
discernible fraction of polymer remains.  The figure also shows the cumulative probability (P) that 
vanishing has occurred by a given time, t, and the fraction of polymer remaining, L/Lo.  
   
 Figure 5a shows Monte Carlo distributions of vanishing times for a range of fracture rates.  
As q increases, vanishing time is shorter and the absolute width of the distribution decreases greatly.  
But, shown in the semilogarithmic plot of figure 5b, increasing q is still associated with a narrowing 
distribution of relative vanishing times.  
 
Stochastics: Characteristic Times 
 
 Turning from vanishing to characteristic times, figure 6 shows a simulated distribution of 
characteristic times, τ, (figure 6a) along with the distribution of vanishing times in the same 
simulation (figure 6b).   The vanishing times are necessarily longer, by a factor of about 2, but the 
shapes of the distributions are similar and right-skewed. 
 
Skewing of Distributions: Vanishing and Characteristic Times 
 
 Figure 4 shows right skewing of the theoretical curve and the superposed simulated 
depolymerizations for vanishing time, affirmed over a range of rates in figures 1 and 5, by theory 
and simulation, respectively.   The simulations in figure 6 show the similarity of skewing of 
characteristic time (skewness 0.94) to that for vanishing times (1.06).  The vanishing time 
distribution is relatively wider: the ratio of standard deviation to mean vanishing time,  Δtv/tv  is 
0.18 compared to that for characteristic time, Δτ/τ=0.11.  For this simulation,  in which Ao=10, the 
ratio of these two values, 1.64, lies close to the value predicted, )ln( 0A =1.52,  by the approximate 
analysis in our mean field theory (18). 
 
 
Fragment Length Distributions 
 
 Figure 7 shows the results of Monte Carlo simulations for fragment length distribution and 
mass distribution at two times during a depolymerization.  The length distribution is a decreasing 
exponential (figure 7a).  It becomes steeper with time, and conforms well to the analytical model, 
equation (12).  The mass distributions (figure 7b) also conform to analytical predictions (equation 
(13)).  They demonstrate the predominance of remaining mass in the shorter fragments as 
dissolution progresses. 
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Experimental Results 
 
Depolymerization of HbS Fibers: Fracture and Thinning 
 
 We examined HbS fibers experimentally to ascertain if depolymerization is consistent with 
the basic features of our model as expressed analytically and simulated in Monte Carlo results: fiber 
fracture, progress curves, and stochastics.  Figure 8 shows a series of frames obtained using video-
enhanced DIC microscopy.  The fiber was created by photolysis of COHbS.  Dissolution was 
commenced by shifting the long, narrow, fiber-containing, photolysis spot slightly to the side of the 
fiber, thus providing new free CO that diffuses quickly to the fiber and induces dissolution without 
the need to recruit solution CO from a large distance.  Frame (a) shows the fiber before the 
photolysis spot was shifted and frame (b) shows it shortly after the spot shift, but before any 
depolymerization can be detected.  In (c) image contrast begins to decrease and in (d) the image has 
faded significantly.  This continues in (e) and a short gap appears, indicated by an arrow and 
enlarged in figure 9, as well as uneven fading in other locations.  This becomes more marked in (f).  
In (g) little fiber remains and there are a number of gaps, after which, in (h), no fiber can be detected 
visually. 
 
 Figure 10a shows the progress curve of dissolution based on the average gray scale values of 
the darkest pixels along the whole fiber length as a function of time.  It provides a guide to the 
events of fracture, fading of the image seen in figure 8, and the analysis in figure 10b.  The circle is 
placed at the time of frame (e), at which the first evidence of fracture appears in figure 10b and (at 
the same position) in video frame (e) of figure 8 (indicated by an arrow).    
 
 In figure 10b we identify the location of the darkest 5-pixel diameter region in each fiber 
cross-section (i.e. column of pixels perpendicular to the fiber).  Initially, these locations form a 
continuous line co-linear with the fiber, as in the trace in frame (a).  In (e), the line shows a single 
sharp deviation where it ceases to be co-linear with the fiber, the darkest pixel groups lying at a 
distance from the fiber.  In (f) and (g) more deviations occur randomly on either side of the fiber, 
but there are still intact sections of the fiber.  The deviations are consistent with fiber fracture and 
gaps at those locations: because there is no fiber, there are no dark pixels at that site and the darkest 
pixels in a normal direction are randomly located.  Finally, in (h), lacking discernible fiber, the 
darkest pixel groups are all randomly located. 
 
Depolymerization Stochastics 
 
 In figure 11, we show the progress curve of a depolymerizing fiber (11a) and then, for 
purpose of analysis, divide it into 55 contiguous sections, each 10 pixels wide in the fiber direction 
(pixel size is 44 nm in the sample plane).  Gray scale values of the DIC image (see legend and 
Methods) are used to generate progress curves of dissolution for each section of the fiber.  The 
distribution of characteristic times, τ, is shown in (11b), while (11c) shows randomness in the 
distribution of τ along the length of the fiber.  In figure 11d the progress curves for two of the 
sections are selected to show the distinct differences in rate of depolymerization. 
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 Table II summarizes results from all fibers examined.  The fibers were prepared under CO, 
with pCO (partial pressure of CO) in the range of 0.2 to 0.8 atmosphere.  The fiber pictured in 
figures 8 and 9 and analyzed in figures 10 and 11 is #7 in the table.  All fibers showed fractures as 
judged by pixel gray scales (as in figure 10b), and in many visible breaks as in figure 8 could also 
be discerned.  All showed scatter in rates of depolymerization when they were examined by 
sections, as in figure 11.  The table shows the extent of scatter, Δτ, relative to τ.  The table includes 
depolymerization induced by shifting of the photolytic spot and that induced by total extinction of 
photolysis.  The latter method is more likely to suffer from diffusion limitation, especially at low 
pCO, because of the need to recruit CO from a long distance (see Methods). 
 
Dependence of Depolymerization on pCO 
 
 Figure 12 shows that characteristic depolymerization times, τ, exhibit an inverse 2.34 
power dependence on pCO.  Because τ2=1/qk and k changes little or not at all with pCO (17), q 
scales as the approximate 4.7 power of pCO, reaffirming the cooperative nature of the 
dependence of fracture on CO binding (18).  This result shows the cooperativity to be 50% 
greater than previously measured (18); this is due to the use of the spot-shift method that avoids 
the diffusion limitation that occurs when CO is recruited from a large distance. 
 
Discussion 
 
Relevance of HbS Fiber Depolymerization to Sickle Cell Disease 
 
 Sickle cell gels dissolve under the oxygenating conditions in the lungs.  Rates of dissolution 
depend on numerous factors, most notably the intrinsic rate at which individual fibers dissolve, but 
probably also other factors in gel structure including the extent and nature of non-covalent interfiber 
cross-links, the formation of fiber bundles and perhaps other time-dependent alterations of structure.  
The completeness of depolymerization is likely to be an important factor in pathogenesis: if the 1-3 
seconds red cells spend in the oxygenating conditions of the lungs, and perhaps the additional 
seconds in the arterial circulation prior to reaching the systemic microvasculature, are not sufficient 
to dissolve all polymer, the protective delay time will be shortened and a new gelation will be facili-
tated.  Depolymerization rates may also affect resolution of vaso-occlusion and the extent of red cell 
membrane and other damage that HbS gels inflict. 
 
 That hypoxemia can exist in sickle cell disease is well established.  It may arise from overall 
hypoventilation (as may occur due to pain and splinting), from regional inhomogeneity of 
ventilation/perfusion ratios or from local atelectasis.  It may be associated with sleep apnea.  In 
order to analyze the rates and mechanisms of depolymerization in the lungs, pulmonary function has 
to be related to the kinetics of depolymerization, which the present study endeavors to characterize.  
CO, because its extent of liganding to hemoglobin can be photolytically modulated, is a useful 
model for oxygen.  It should model end-depolymerization rates well because they are ligand-
independent, the presence of CO serving only to prevent repolymerization of molecules leaving 
fiber ends.  CO in principle serves as a model for mechanisms of fracture, but the ligand-binding 
equilibria and kinetics are different from those of oxygen, so that quantitative translation of ligand 
partial pressures cannot be made.  But once liganding has occurred, the induction of fracture and 
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kinetics of depolymerization are likely to be the same for CO and oxygen, because they induce the 
same R-T conformational change in hemoglobin. 
 
 The depolymerizations we observe, with characteristic times ranging from fractions of a 
second to a few seconds are somewhat shorter than the times needed for restoration of sickle red cell 
deformability reported by Huang et al (16).  But the two sets of results are consistent because 37% 
of polymer still remains at time τ under the fracture/end mechanism and vanishing does not occur 
until significantly later (figure 6).  For this comparison, we use the characteristic time rather than the 
vanishing time, which cannot be detected by deformability measurements.  Using our previous 
measurement, k=0.75 μm/s (per end) (17), pure end-depolymerization of an 8 μm fiber will require 
about 5 sec, which is not much longer than the times at which Huang et al (16) observed restoration 
of cell deformability in response to ligands (oxygen or CO).  Therefore, in the absence of a 
significant fracture rate, depolymerization is not likely to be achieved even in the absence of 
pulmonary disease.  Hence, the boundary between conditions under which there remains some pure 
end-depolymerization and conditions under which it is absent and all fibers undergo fracture and 
more rapid dissolution is significant. 
 
 We can relate this condition to our experimental results.  We assume a characteristic time of 
about 1 sec, in the range of figure 12, and k=0.75, so that q=1/kτ2 =1.33 fractures per second per 
micron and, for an 8 mμ fiber spanning a red cell, Ao=Lo kq =9.2.  This produces slower 
vanishing times than the right-most simulated curve in figure 5b, for which Ao =20, and is therefore 
not sufficient to avoid the passage of some residual polymer through the lungs.  (This calculation 
can also be made from the theoretical curves in figure 1.)  The applicability of this estimate, based 
on CO-dependent fracture, to pathophysiology and oxygen-induced fracture remains to be 
determined.   However, the similarly of oxygen and CO-dependent recovery of cell shape 
demonstrated by Huang et al (16) suggests that there may not be great differences.  In respect to 
end-depolymerization, it is ligand-independent, ligand serving only to prevent repolymerization of 
dissociated molecules (17).  Thus, once liganding of solution hemoglobin is achieved, end-
depolymerization is unaffected by ligand concentration. 
 
 We conclude that in vivo rates may not take full advantage of the fracture/end mechanism 
and hence changes in local conditions that enhance fracture could be of benefit.  Because q exhibits 
an approximately 4.7 power dependence on ligand concentration, relatively small improvements in 
oxygenation in the lungs might provide major benefit in achieving fiber dissolution. 
 
 In addition to their importance for the role of the lungs in sickle cell disease, the mechanism 
and rates of HbS fiber depolymerization are of interest because they may be relevant to 
depolymerization of other linear polymers.  Our model has general features that are potentially 
applicable to other biological systems. 
 
A Model for Depolymerization 
 
 The present work and its antecedents (17,18) provide a basic model for depolymerization.  It 
encompasses non-cooperative, ligand-independent, loss of HbS monomers from fiber ends, and 
fiber fracture resulting from cooperative liganding and nucleation of fracture sites.  End-
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depolymerization alone is slow, but when combined with fracture in an end/fracture mechanism of 
dissolution, rapid. 
 
 Stochastics.  Because the combined fracture/end mechanism includes random fracture, we 
anticipate that kinetics will exhibit stochastic properties.  The conclusion that depolymerization is 
stochastic rests on a number of interrelated lines of evidence.   i) Our model, which is consistent 
with previous experimental observations on dissolution rates and sites and with the presence of 
fractured fibers in electron micrographs (17, 18), predicts stochastic behavior.  ii) Monte Carlo 
simulations exhibit the stochastics that theory predicts.  It then remains to consider experimental 
evidence presented here.   iii) Observed in real time, fibers fracture spontaneously and apparently 
randomly in time and location.  iv) Different sections of a fiber depolymerize at different rates as 
judged by gray scale-based measurements as well as visual impression.  v) Shapes of the 
distribution of characteristic times of sections of a fiber are consistent with Monte Carlo 
simulations.  While none of these lines of evidence proves stochastic behavior, taken together and 
with the theory they argue in favor of such behavior.  Here we elaborate on iv) and v. 
 
 iv) The results obtained by dividing each fiber into sections for the purpose of analysis are 
presented  in Table II.  The Table shows the standard deviations of characteristic times, Δτ, for the 
different fiber sections.  This scatter depends on two principal factors:  stochastic behavior 
dependent on random fracture; and scatter deriving from noise in pixel dark scale readings.  To 
assay the extent to which Δτ arises from each of these sources, we compared the experimental data 
with simulations in which we added random gaussian to simulated depolymerization progress 
curves.   The simulations in the presence of noise in figure 13 show that Δτ/τ, the fractional range of 
τ, is less in figure 13a, in which there is no fracture and depolymerization itself (i.e. before addition 
of noise) conforms to a deterministic exp(-(t/τ)2) than in 13b, in which the depolymerization consists 
of a simulation that includes random fracture and has an average form exp(-(t/τ)2).  The level of 
noise introduced in both parts, 0.2 over the full scale of fractional depolymerization (from 1 to 0), 
corresponds to the observed gray scale scatter of a section of fiber prior to the beginning of 
depolymerization.  For spot-shift experiments, values of Δτ/τ, averaging 0.175, in Table II are all 
greater than the 0.088 for that level of noise in the deterministic simulation of figure 13b and 
similar to the value of 0.139 for the simulation that includes stochastic fracture in 13b.  Thus, the 
experimental values of Δτ/τ cannot be wholly explained by pixel noise.  It is necessary to invoke 
stochastics of the depolymerization process.  The same relationship exists for full photolytic 
extinction, where the average Δτ/τ  is 0.192.   We can come to the same conclusion if we allow for 
fiber to fiber differences in noise.  The last column in Table II shows the ratio (Δτ/τ)/ν, where4 is 
the measured noise for each fiber.  For experimental fibers and for simulated fracturing fibers in 
the upper (simulated fracture) half of Table III, this ratio is significantly greater than it is for fibers 
without fractures in the lower half of Table III. 
 
 Two additional causes, one artifact, one based on depolymerization itself, may contribute to 
the excess Δτ/τ for some  fibers even over that in simulations with fracture in studies in the presence 
of pixel-dependent noise.  (a) The fibers are slightly bent, so that some parts are nearer than others 
(by up to 1μm) to the source of CO outside the illuminated spot when the spot is shifted or 
extinguished.  This might produce a diffusion-dependent artifact and an increase in Δτ.  (b) In 
analysis of fiber depolymerization by sections the mean number of fractures per section (calculated 
as fragment length times q, with q=1/(kτ2)) until vanishing is less than 1 for slow depolymerization 
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(low pCO).  Thus, some fragments vanish only because neighboring sections that do fracture 
generate depolymerization that crosses into the section that does not fracture.  This precludes 
analysis of the non-fracturing section under the basic model.  However, it does generate correlated 
scatter of depolymerization times in sections that are close together.  It may therefore produce 
systematic patterns in plots of τ against position on fiber such that τ  values in neighboring sections 
may be similar.  But, unlike diffusion-dependent effects, this contribution to a systematic pattern 
does reflect intrinsic fiber stochastics and therefore would not alter a conclusion that stochastics do 
exist.  We conclude that the observed variation in depolymerization rates in different portions of a 
fiber is consistent with and is necessary to conclude that there are true stochastics, but by itself does 
not yet conclusively demonstrate stochastics because of possible diffusion artifacts.  Hence we 
estimate the magnitude of a diffusion artifact and its effect in Methods (CO Diffusion), below.  We 
conclude that it is not likely to invalidate the conclusion that the observed variation in τ requires the 
presence of stochastics; the variation inτ is not fully explained by pixel-dependent noise or diffusion 
artifact and therefore does provide evidence for stochastic fiber dissolution. 
 
 The conclusion that a Δτ/τ higher than that for a deterministic simulation demonstrates the 
existence of stochastics can be extended over a range of noise levels, as shown in Table III.  This 
Table reports the ratio (Δτ/τ)/ν, where, for simulations, ν is the standard deviation of the added 
gaussian noise; and for experimental data it is the standard deviation of fiber gray scale prior to 
depolymerization.  Using this method, simulated (Δτ/τ)/ν is about 0.46 for deterministic fibers 
independent of noise level, while it is greater in the presence of simulated fracture(Table III)  and 
also in experimental fibers (Table II). 
 
 v) In respect to shapes of the distributions of vanishing times and τ  shown in figures 1, 4, 5, 
6, 12 and 13, they are not gaussian and are right skewed.  We use the extent of skewing to compare 
simulations that include random fracture with those based on deterministic progress curves.  Figure 
13 exemplifies this difference.  The skewing is much greater for fracture-based simulations.  The 
presence of even more marked skewing in the absence of noise is demonstrated in figure 6.  Our 
experimental data include only about 55 sections in the progress curves.  Thus, the right skewing 
seen in figure 11b is not itself statistically significant nor is the right skewing seen in almost all 
other fibers.  Therefore, our experimental observation that right skewing is present in almost all 
distributions of 55 sections is consistent with the model, but it cannot exclude the null hypothesis 
with high probability because of the limited number of sections in the distribution for each fiber and 
the intrinsic variability of skewing.   
 
 Based on the diverse lines of evidence and this analysis, we conclude the depolymerization 
times are stochastically distributed as a consequence of cooperative, ligand-dependent, nucleation 
of fiber fracture.  When it is desired to ascertain the time at which the last residual fiber vanishes, 
this randomness must be taken into account.  The situation parallels that for polymerization, in 
which cooperative formation of nucleating aggregates generates random delay times (1-3, 25, 26). 
 
 Fiber fragment lengths.  The present model also characterizes the distribution of fragment 
lengths and its changes during depolymerization as a decreasing exponential that becomes steeper 
with time.  Thus, the number of long fragments decreases more rapidly than the number of short 
ones, a fact that may be beneficial because long fibers are more likely to generate gel rigidity. 
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 Fiber fracture.  Our previous evidence that fiber fracture occurs during depolymerization 
and is integral in the mechanism consisted of observations of fragments resulting from dilution as 
seen by electron microscopy, and the success of our earlier model invoking fracture in rationalizing 
observed rates of depolymerization (17, 18).  In the present work we show by direct observations in 
real time that fibers fracture during ligand-induced depolymerization.  This, and the conformity of 
our new fracture-based model to Monte Carlo results, further support the existence and basic role of 
fracture. 
 
 Fiber thinning or fracture?  A central question for a depolymerization model is whether 
the fiber is fracturing, whether it is becoming thinner without breaking, or whether it is doing both 
and if so in what sequence.  Fracture is required in our model for a single fiber (above and in Turner 
et al, (18)).  Thinning is not encompassed in the quantitative model.  The experimental problem lies 
in distinguishing between many fractures with very small gaps that cannot be resolved 
microscopically and true thinning while the fiber remains continuous.  These distinctions are 
analyzed in figures 8-10 using pixel gray scales. 
 
 Figure 8 shows fading of the fiber image with time both before and after frame (e), where 
the first break occurs.  The absence of breaks before frame (e), at which time the fiber is already 
fading, indicates that the fading must represent thinning without fracture.  Similarly, in frame (f) 
there are few breaks while the remainder of the fiber continues to fade.  The clear identification of 
these few fractures implies that the remainder of the fiber is free of fracture.   Hence, the fading of 
the image must be ascribed to true thinning.  Although not encompassed by our model for single 
fibers, it is consistent with the existence of a fiber bundle, modeled in figure 3: eventually, when 
depolymerization proceeds substantially and the image has partially faded, a gap through the entire 
bundle develops at one, and then many locations, as schematized in figure 3b (or 3c at a later time 
than shown in the scheme). 
 
 Under our previous model (17, 18), true thinning of fibers without fracture was assumed not 
to exist even though the video images of fibers were consistent with it as well as with the fracture 
model.  Our present observations confirm that fractures exist by inspection of images and by gray 
scale analyses, but also show fading of images in the absence of fracture.  Thus, the previous model, 
which assumed the existence of only a single fiber, requires modification.  The resolution of the 
problem lies in the existence of fiber bundles. 
 
Modifications and Extensions of the Depolymerization Model 
 
 Fiber Bundles.  Present results show that depolymerization can progress with fiber fading 
while fibers remain continuous, as judged by absence of visible fractures over significant lengths of 
time and spatial fluctuations that are correlated over long lengths.  Therefore, an extension of our 
quantitative model is needed.  We do not undertake this here, but such a model must take into 
account bundle formation that results in a marked decrease in the rate of gap formation.  We have 
previously observed (21) that one member of a fiber bundle can grow alongside its mates and thus 
make the fiber thicken progressively along its length.  Here we propose that the opposite, 
depolymerizing, event can also occur. 
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 Under such a model, fiber bundles will retain rigidity longer than an equal mass of single 
fibers whether or not they depolymerize as rapidly as single fibers.  Because fibers readily, indeed 
usually, form bundles (21-23) that are thermodynamically stable (24), bundling could contribute to 
pathology by virtue of increased difficulty of dissolution as well as by any effects it has on gel 
rigidity itself.  In our observations on gels, fibers can spontaneously form bundles by touching and 
zippering together over the course of time (21, 22).  Thus, rapid reversal of gelation may confer 
benefits by precluding the existence of gels that anneal and may be increasingly difficult to 
dissolve. 
 
Application to HbS Gels 
 
 In order to assay the probability that polymer remaining when gels dissolve will promote 
vaso-occlusion, the distribution of vanishing times for a gel is needed.  This can be expected to 
depend on gel structure and diffusion of ligand into the gel interior.  Here we show that gels per se, 
by virtue of number of fibers, have longer vanishing times than a fiber does.  Equation (17) provides 
the cumulative probability that a specific fiber has vanished by time s.  Hence, the probability that 
all g identical fibers in a gel will have vanished at time s is, 
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To achieve total dissolution of all fibers in a gel with high probability, s has to be higher than is 
necessary to assure dissolution of a single fiber.  Additionally, because only a small fraction of cells 
need polymerize to initiate vaso-occlusion, the pathologically critical value of s that would preclude 
vaso-occlusion is even higher. 
 
 For a gel with g identical fibers to exhibit the same probability of total vanishing as seen 
with one fiber, 
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where the subscripts on s, g and 1, indicate gel and single fiber, respectively.  Then,  
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Thus, if we assume 30% of 20 mM (heme) is gelled in an 80 (μm)3 red cell, the total single fiber 
length (for a 14-stranded fiber with 63Å layer repeat (3, 19, 20)) in the cell is about 130,000 μm or 
16,000 8 μm fibers.  With g=16,000 and s1=2, then sg=3.8.  Thus, the presence of a gel with many 
fibers significantly increases the time needed to induce vanishing of the last fiber. 
 
 If residual polymers occur, each may generate a separate gel domain.  Hence, the number of 
polymers remaining contributes to determination of gel structure and hence the shape and 
rheological effects of affected red cells.  As we have done for N=0, equation (17) can be applied 
with N>0 to derive probability distributions for the presence of 1 or more residual fragments.  The 
analysis, however, like that for N=0, is limited to times in which little polymer remains and the 
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presence of individual fragments can be treated as independent events.  The potential for different 
numbers of residual fragments may be pathologically significant: each residual fiber fragment can 
give rise to a separate gel domain.  More domains will result in faster polymerization and in a 
multi-domain gel rather than one consisting of a single large domain.  The rheological properties 
as well as the rates of formation properties of different domain structures are likely to be different. 
 
 It should be noted that the conclusion that gels or very long fibers require longer to 
depolymerize than individual fibers does not contradict our conclusion that dissolution rates under 
the fracture/end model are independent of fiber length.  The apparent contradiction is resolved by 
noting that independence of length only applies to a normalized distribution and mean rates, and 
neglects stochastics.  When scaled to the actual number of fibers, the tails become longer and the 
number of fibers with vanishing times in those regions increases.  Additionally, fiber lengths have 
no effect only if end effects are neglected.  While they may be negligible in many circumstances, in 
principle they remain and have significant effects for short fibers, especially with slow fracture 
rates. 
 
Methods 
 
Simulations 
 
 Monte Carlo simulations were carried out on Lotus spreadsheets or with MatLab7.  Random 
gaussian noise was generated in MatLab7 with a Ziggurat algorithm. 
 
Preparations 
 
 HbS was purified chromatographically on DE-52 as previously described (27).  Samples 
were deoxygenated with 50 mM sodium dithionite in an anaerobic glove bag containing CO (as 
desired in the range of 30% to 80%).  Slides were prepared in the glove bag and sealed 
anaerobically with Mount-Quik (Daido Sangyo Co., Ltd). 
 
 Individual fibers were isolated from HbS gels as previously (17, 23, 27) using selective 
photolysis of COHbS to dissolve all except the desired fiber.  Total HbS concentrations were 16.0 
mM (in heme).  Photolysis was achieved with epi-illumination at 436 nm by a mercury arc. 
 
Depolymerization 
 
 Depolymerization was induced in two ways.  (i) Once a fiber was isolated, depolymerization 
was induced by shifting the long, narrow (8 μm wide) photolytic spot a distance of 10 μm to one 
side of the fiber (17) so that the fiber was no longer subject to epi-illumination and therefore 
dissolved (the spot-shift method).  This method provides CO quickly from the newly photolyzed 
region and thus minimizes diffusion limitation.  (ii) Depolymerization was induced by total 
extinction of photolytic epi-illumination (the epi-off method).  Dissolution times by this method are 
somewhat slower because CO has to be recruited from a large distance.  The former method is 
superior for obtaining true values of τ  because the precise amount of CO needed is made available 
in close proximity to the fiber and does not have to be recruited from afar. 
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Pixel Gray Scales 
 
 8-bit pixel gray scales were obtained as the difference between observed gray scale values 
and background for each pixel.  The mean background level was obtained from serial video frames 
after a fiber had fully dissolved.  The temporal noise for a single pixel was measured as 3.5 gray 
scales so that the standard error of the mean for a strip of 10 pixels (parallel with the fiber), used for 
figure 11, is approximately 1.1 in gray scale.  In figure 10b, 5-pixel diameter regions were used, so 
that the error is about 0.8 gray scale.  The aim of the measurements in figure 10b was not to obtain a 
gray scale value per se, but rather to discern the difference between dark pixels representing fiber 
and, where fiber had dissolved, much brighter ones representing background.  Pixel averaging was 
done in order to avoid errors that might occur if a single or a few, possibly aberrant, pixels were 
used. 
 
 Two procedures were used to evaluate fiber fading due to dissolution.  (a) In figure 10a, the 
darkest pixels at each fiber location in its 556 pixel length were averaged over the full fiber length 
for each time frame.  Thus, the average course of depolymerization as expressed in fading was 
obtained.  (b) For figure 11b, the aim was to characterize individual, 10 pixel long, sections of the 
fiber.  Therefore, the noise problem was greater.  We used a different method to evaluate progress in 
these sections.  Instead of using the darkest pixels, we measured all pixels in the 10 pixel section of 
the fiber and obtained an average gray scale for each 10 pixel row in the dark and bright rows 
parallel to the fiber that are produced by DIC imaging.  We then obtained the mean deviation for 
each row (above or below background) and summed their absolute values across (transverse to) the 
fiber; thus both the bright and dark pixels contributed to the final value. 
 
 These methods provide measures of the mass of polymer present.  They discern rates of loss 
and fractures clearly if the gaps are sufficiently large.  But, because of the complex roots of gray 
scale values in interference-based DIC images, the relation between dark scale and mass need not be 
linear.  Thus, shapes of gray scale progress curves may not be precise reflections of fiber mass 
present.  But comparative values for sections of fibers observed in the same way, as in figure 11, 
will be accurate. 
 
 Noise in pixel gray scale values can derive from different sources.  (1) Intrinsic electronic 
noise.  Where possible, we sought a balance between using large blocks of pixels to reduce noise 
and using few pixels to improve resolution.  (2) Noise due to lamp fluctuations.  This is subsumed 
within the random pixel noise measurement.  (3) Variations due to fiber fluctuations in the z (optical 
axis) direction.  Fibers may fluctuate in and out of the focal plane.  With DIC optics, the dark scale 
magnitudes change and light and dark regions may reverse.  In static situations in which no 
depolymerization was occurring, we saw no such shifts and therefore conclude that this is not a 
significant issue in our results.  This is consistent with the 1 μm or less fiber fluctuations in the focal 
plane.  Thus, z-axis fluctuations were also small and not greater than the approximately 1 μm DIC 
depth of focus. 
 
Optics 
 
 We employed a Zeiss Axioplan microscopic with video enhanced differential (DIC) 
interference optics as previously described (17, 23, 27).  However, instead of using a mercury 
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source for the transmitted, DIC, illumination we used a halogen lamp with a filter that transmits 
only at 680 nm and above in order to avoid undesired photolysis that a mercury arc would induce. 
 
CO Diffusion 
 
 The potential problems arising from limitation of CO diffusion differ in the two methods 
we employed for inducing depolymerization.  In both cases diffusion may be treated, as we have 
done previously (17), as occurring in two stages.  In stage I solution hemoglobin that was 
previously deoxygenated saturates with CO.  At pCO=0.3 atmosphere, this stage is rapid using 
the spot-shift method: as judged spectrophotometrically using transmitted light at 680 nm it is 
complete in 0.1 sec, sufficiently rapid that it is not a significant factor in our results.  This 
corresponds to predicted diffusion limitation; for a 10 μm shift, the characteristic diffusion time, 
t=x2/4D (where, for CO, D is about 2x10-6 cm2/sec (1)) is 0.12 sec.  In our geometry it may be even 
faster because the CO is dropping into a well in which there is essentially no back pressure.  When 
the method of total extinction of epi-illumination is used, stage I requires about 0.6 sec.  In both 
cases it is unlikely that significant ligand binding to the fiber takes place during stage I because the 
polymer has a lower affinity for ligand than does solution hemoglobin (28, 29).   In stage II the 
solution pCO equilibrates to its final level.  The spot-shift method minimizes this stage: the amount 
of free CO created when the spot is moved exactly equals the amount needed to saturate the old, 
fiber containing, site of photolysis and no change in solution CO need occur.  The principal limiting 
factor may arise from CO that initially diffuses in the reverse direction.  On the other hand, the 
method of full extinction requires recruitment of solution CO from a large distance and will delay 
depolymerization.  This delay can be observed in the low pCO points for this method in figure 12; 
but the effect is not large enough to alter the fundamental conclusion. 
 
 Diffusion-dependent delays arising from small deviations of a fiber from perfect linearity 
might be a factor in analysis of sections of a fiber for variation in depolymerizaton times.  Using 
t=x2/4D and thus dt/dx=x/2D, a 1 μm displacement of a bent fiber in the presence of a 10 μm 
diffusion distance changes time by δt=0.025 sec (or 0.015 sec if we consider the diffusion distance, 
6 μm, from the edge to the midline of the 8 μm wide spot).  This deviation of ≤1 μm from the true 
value in half the sections would induce a shift in τ  of 0.012 sec or less.  Because of this and because 
1 μm is the maximum deviation, it is unlikely that the Δτ  values reported in Table II would change 
enough to conclude that they are due entirely to pixel-dependent noise. 
 
 
 
 This work was supported by National Institutes of Health (NHLBI) Program Project grant 
PO1 HL58512 (R.W.B., PI). 
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 FIGURE & TABLE LEGENDS 
 
 Figure 1.  Distribution of vanishing times, based on equation (18).  (a) Distribution of fiber 
vanishing times (expressed in terms of the dimensionless, reduced time, s=t/τ, where τ= qk 1  is 
the characteristic time) and its dependence on the dimensionless parameter Ao=Lo kq  that depends 
on fiber length, Lo, fracture rate q, and end-depolymerization rate, k.  (That higher values of Ao in 
this figure are associated with longer s results from the scaling of time with τ).  (b) Semilogarithmic 
plots demonstrate the low but finite probability that fibers can exist after times much longer than the 
mean vanishing time.  (The use of dimensionless units in this and in some other figures enables 
application to different conditions and time and length scales as long as Ao is not changed.).  The 
distributions become narrower in relation to τ ( as well in absolute terms) as Ao increases (i.e. when 
q or Lo increase, or k decreases). 
 
 Figure 2.  Distribution of fragment lengths during depolymerization (see equations 12, 19 
and 20).  (a) The mean number of fiber fragments within a unit length range, n(x), decreases 
exponentially with length and the rate of decrease is greater as time progresses.  For these plots 
Ao=25.8 and τ=0.52.  Choosing units of seconds and microns, and with initial fiber length Lo=10 
microns and end-depolymerization rate k=0.75 micron/sec, as measured in Agarwal et al (17), the 
fracture rate is q=5 events/sec per micron.  These constitute values that are similar to those found 
under experimental conditions and in vivo to the extent that the latter can be estimated.   (b) The 
same distribution is used to show the time course of fragment populations.  Large fragments reach a 
peak early and fall off rapidly, whereas the number of small fragments undergoes lesser change.    
 
 Figure 3.  Models for fiber bundle depolymerization.  The rectangular blocks represent 
single fibers.  Sections of the schematized fibers represented by a dashed lines indicate regions that 
have depolymerized to form gaps.  For simplicity, only two or three fibers are shown for each of the 
three mechanisms (a-c), but the principles may be applied to larger bundles, with magnification of 
the effects.  (a) A bundle of two fibers that have fractured at the same location (arrow) and then end-
depolymerized at the same rates.  This concerted mechanism can be modeled with the same kind of 
equations used to describe single fiber depolymerization.  (b) 2 fibers that depolymerize 
independently, their fractures having occurred at different times and different locations.  Their mean 
dissolution rates and vanishing times will be the same, but fragments will not be seen until enough 
depolymerization has occurred to (randomly) produce gaps at the same location (arrow).  Thus, the 
fiber bundle will appear continuous for a significant time after polymerization has commenced.  (c) 
Interactions limit fiber fracture.  In this mechanism only external fibers in a bundle can fracture.  
Once fracture has occurred and deeper fibers are exposed to solution, these deeper fibers can also 
fracture (arrow indicates incipient fracture).  Under this mechanism, depolymerization will be 
slower than in (a) and (b) and fiber bundle continuity will be retained more than it is in (a). 
 
 Figure 4.  Analytic results and Monte Carlo simulations for fiber vanishing times.  Circles 
are Monte Carlo results of 10,550 simulations (on left ordinate).  Blue line: the analytic vanishing 
time distribution (Mp(s,Ao,0) (where M=10,550), equation (18), scaled to number of simulations; 
left ordinate).  Orange line: cumulative probability of vanishing (P(s,Ao,0), (equation (17); right 
ordinate).  Purple line: mean total number of fragments remaining (N, equation (14); right ordinate).  

 21



Green line: fraction of polymer remaining (L/Lo, equation (15); right ordinate).  The abscissa 
represents vanishing time for P and Mp and time for the other parameters.  Parameters for this 
depolymerization simulation are q=0.001, k=1, Lo=2000, Ao=63.25, τ=31.62 in arbitrary units of 
length and time.  To apply to values in the general range of experimental conditions, time and τ can 
be set to units of 0.01 sec as done in the figure axis, Lo to units of 0.01 micron, q to units of fractures 
per 0.01 micron per 0.01 sec, and k to units of .01 micron per 0.01 sec; while Ao is dimensionless 
and unchanged, as is s.  Then q=10 fractures per sec per micron, k=1, L=20 microns, Ao remains  
63.25 and τ=0.3162 sec, corresponding to the x-axis scale in hundredths of a second..  
 
 Figure 5.  Monte Carlo simulations of vanishing time distributions for different fracture 
rates, q.  Part (a) demonstrates the large effect of fracture rate on vanishing time and also widths of 
the distributions.  Initial fiber length is Lo=20 microns and fracture rates are per second per micron.  
Ao ranges from 200 for the fastest distribution to 20 for the slowest.   (b) Plotted logarithmically, the 
relative widths of the vanishing time distributions increase with decreasing fracture rate.  At 1% of 
maximum the widths range from a factor of 1.8 for Ao=200 to 2.3 for Ao=20 and more for lower Ao. 
 
 Figure 6.  Part (a) shows a simulation of 10,000 characteristic times, τ, as compared to the 
best fit gaussian (solid line).  The distribution shows marked right skewing.  Mean τ=1.12 with 
standard deviation Δτ=0.12 and Δτ/τ=0.11; skewness=0.94.  Parameters of the depolymerization 
are Lo=10, q=1,  k=1, τ=1,  Ao=10.   Part (b) shows the distribution of vanishing times in the same 
distribution.  Mean vanishing time, tv=2.2, standard deviation, Δtv=0.39, Δtv/tv=0.18; skewness= 
1.06.  Expressed as (Δtv/tv)/(Δτ/τ)), the vanishing time distribution is relatively wider, but the shapes 
are otherwise similar and they are similarly skewed to the right.   
 
 Figure 7.  Distribution of fragment lengths and mass during depolymerization.  (As others, 
this plot can apply to different scales and values of Lo, q, and k provided Ao is unchanged).  Here we 
use units that result in ranges encountered experimentally. Parameters are Lo=20 microns, q=10  per 
sec per micron, k=1 micron/sec, A=63.25, τ=0.3162  second.  Data are then shown as fragment 
lengths in hundredths of a micron and time in milliseconds, t=190 (red) and t=430 (green).  (a) 
Fragment lengths conform to a decreasing exponential distribution whose slope becomes steeper 
with time.  Circles indicate Monte Carlo simulations.  The gray lines represent the analytic 
expressions (equation (12)), superposed on and essentially indistinguishable from the underlying 
colored lines that represent regressions of the Monte Carlo results.  (b) Polymer mass associated 
with each fragment length exhibits a maximum and then a decrease for longer fibers.  The relative 
mass associated with long fibers falls more rapidly at longer times.  The lines superposed on the 
Monte Carlo data represent equation (13).  The distributions are truncated at length x=2 microns 
(initial length is 20 microns) so that the mass points at x≥2 are included cumulatively in the isolated 
single points at x=2 microns.  As in figure 2, the ordinate (in a & b) gives a fragment density, 
expressed as the number of fragments per fiber whose length lies within a range of 1 length unit 
(here in microns because k and q are given in microns) at the length indicated on the abscissa. 
 
 Figure 8.  Dissolution of a fiber.  Depolymerization of this 24 μm long fiber (fiber 7 in table 
II) was initiated by shifting the photolytic spot 10 μm to one side of the fiber, commencing at time 
approximately 1.7 sec (times are shown on the right margin).  Partial pressure of CO (pCO) was 0.3 
atmosphere.  Frame (a) shows the fiber prior to removal of photolysis.  Frame (b) shows the fiber 
about 1 sec after photolysis is removed.  There is no discernible evidence of depolymerization.  This 
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is consistent with the relatively flat portion of the dissolution curve associated with the shape of the 
progress curve as an exponential in -(t/τ)2 and/or with limited diffusion of CO to the fiber.  In (c) 
and (d) fading of the fiber occurs.  Frame (e) shows a single gap in the fiber, indicated by an arrow 
(see also figures 9 and 10b).  In (f) through (g) fading is marked and more gaps are present along the 
fiber.  In (h) dissolution is complete. 
 
 Figure 9.  Fiber fracture.  This enlargement of the section of figure 8 frame (e) indicated by 
the arrow shows a gap due to fiber fracture.  Fiber ends at the gap are slightly displaced. 
  
 Figure 10.  Fractures of the fiber in figure 8.  Figure 10a shows the progress of 
depolymerization of the fiber as measured by the gray scale of the dark regions averaged over the 
fiber length as a function of time.  Higher gray scale numbers indicate brighter pixels and hence less 
fiber.  The circle corresponds to the first fracture (frame (e) in figures 8 and 10b).  Figure 10b shows 
traces of the course of the fiber in figure 8 indicated on the ordinate in units of 1 pixel, and separated 
arbitrarily for clarity.  Each line represents the location (transverse to the fiber) of a set (diameter, 5 
pixels) of the darkest pixels at that x-axis position in the frame.  Thus, for frames (a) through (d) the 
lines are co-linear with the fiber.  In (e) there is a short section where the trace jumps upward 
because the fiber lacks dark pixels, indicating fracture and a gap; the darkest pixels at that cross-
sectional location lie randomly at a y-axis position distant from the fiber.  (The significance of the 
jump lies in its existence and x-axis position on the fiber.  Its y-axis position and whether it is up or 
down have no significance.  The gray scale for the deviated pixels was much lighter than that for 
pixels on the fiber, consistent with its representation of background pixels.)  Frames (f) and (g) 
show the increasing presence and size of gaps.  In (g) and (h) the trace of the intact fiber is 
superposed (in red) to facilitate identification of sites and extent of fracture.  In (h) the darkest pixels 
are randomly located due to the absence of any fiber. 
 
 Figure 11. Different rates of dissolution in different sections of the fiber in figure 8.  The 
course of dissolution is analyzed in 55 separate sections of 10 pixel width (44 nm/pixel) using 
integrated absolute values of the fiber pixel gray scales (see Methods) to obtain progress curves 
from which characteristic times, τ, are obtained by curve fitting.  Part (a) shows the best fit of exp((-
t/τ)2) to the data for the entire fiber.  τ=1.46 sec.  The ordinate is normalized to show the fraction of 
polymer remaining by scaling from 1 to 0 from the start to the end of depolymerization.  The 
abscissa scale corresponds to the times shown in figure 8 and the starting time is taken as 2.77 sec, 
indicated by the arrow.  Part (b) shows a histogram of τ values for the 55 separately analyzed 
sections of the fiber.  Mean τ=1.56, with the scatter standard deviation, Δτ=0.16 sec and 
Δτ/τ=0.10.  Part (c) plots τ values in sequence from beginning to end of the fiber.  Much of the 
variation is random (independent of location on the fiber), but some may be systematic (see text).  
Part (d) shows the progress curves (start time is zero) and fits at the 95% confidence level for two 
sections, for which τ =1.19 and 1.96.  The difference cannot be attributed to the pixel-dependent 
noise and is a function of the rates themselves.  (The relative contributions of true stochastics and 
pixel noise more generally are analyzed in tables II and III and figure 13; see Discussion).  That 
rates differ among the 55 sections is consistent with the unevenness shown visually in figure 8 and 
by pixel analysis in figure 10. 
 
 Figure 12.  Dependence of fiber fracture rate, q, on partial pressure of CO.  For 
depolymerization induced by spot-shifting (solid red squares), the plot of characteristic time, τ, 
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against pCO shows a logarithmic slope of –2.34, so that fiber fracture rate q=1/kτ2 has a 4.7 power 
dependence on pCO.  r2 for the regression line is 0.796.  For depolymerization induced by total 
extinction of photolytic illumination (open blue squares), possibly less accurate because of diffusion 
limitation, the slope is -2.88; r2=0.779. 
 
 Figure 13.  Simulations showing the increase in scatter of characteristic times due to 
random fracture in the presence of scatter due to pixel-dependent noise in images.  Part (a) shows 
the distribution of characteristic times, τ, for 10,000 simulations of a fiber without fracture in the 
presence of added gaussian dark scale noise, standard deviation 0.2 on the scale of 1.0 for full fiber 
dissolution.  The deterministic progress has the form exp(-(t/τ)2) before addition of noise.  The best 
fit is then obtained after addition of noise, resulting in a range of values for τ.  The distribution is 
closely gaussian, as judged by the best fit gaussian (solid line).  Mean τ=1.00, standard deviation 
Δτ= 0.098, Δτ/τ=0.088, skewness=0.16.  Part (b) shows the distribution when the original fiber is a 
simulation with average progress curve exp(-(t/τ)2), to which the same noise is added.  The 
distribution is now wider and skewed to the right.  Mean τ=1.12, standard deviation Δτ= 0.156, 
Δτ/τ=0.139, skewness=0.63.  We conclude that true stochastics can be detected in the presence of 
noise by i) widening of the distribution compared to that for a deterministic fiber and ii) the 
existence of skewing.  In the simulations, τ=1 for both parts, (a&b,) and  Lo=10, q=1, k=1, Ao=10 
for part (b). 
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Table I: Definitions. 
 

 
 Table II.  Experimental fibers.  The table shows experimental results for fiber 
depolymerization carried out by removal of photolytic illumination, either by shifting of the 
photolytic spot or total extinction of it.  Each fiber was analyzed in sections to obtain a mean 
value of the characteristic time, τ, and the standard deviation, Δτ, of τ.  The pixel-dependent 
noise, ν, was obtained by measurements on about 20 frames before depolymerization started and 
is expressed as a fraction of full scale depolymerization (range 1 to 0).   (Δτ/τ)/ν, the ratio of 
fractional deviation in τ  to noise, was then obtained to be used in conjunction with the 
simulations in Table III to ascertain whether the scatter in τ, Δτ, provides evidence of stochastics 
of depolymerization: if it is greater than can be explained by pixel dependent noise, it does, and 
if not, it dos not.  Two other columns are included.  The 95% confidence interval for fitting τ  is 
usually less than the range of Δτ, thus arguing against Δτ being due solely to noise-dependent 
fitting error.  Table II also gives values of τ for each full fiber, used for figure 12, and for 
comparison with the mean for sections. 
 

Table III.  Simulated fibers with and without random fracture in the presence of noise.  
This table characterizes depolymerization simulations for a fiber depolymerizing with random 
fracture (top section) and compares its scatter of τ  with that for a “pure” fiber that is defined 
(before addition of noise) by the deterministic progress curve exp(-(t/τ)2) (lower section).  τ=1 
for both sections.   For the fracturing fiber, Lo=10, q=1, k=1 and Ao=10.  The results are  shown 
for different levels of noise, ν.  ν=0.2 most closely approximates the levels in our experimental 
results. Because there are no intrinsic stochastics for the deterministic fiber, parameters that 
reflect scatter, Δτ/τ  and (Δτ/τ)/ν, depend wholly one noise.  Thus they provide a base from 
which stochastic scatter can be evaluated  in Table II. 
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Table I: Definitions 
x fiber fragment length 
r(x) relative probability of fiber of length x (not normalized) 
α fracture probability at any unit site 
n(x) number of fragments of length x per unit length (i.e. in a unit length bin at x) 
p(x) probability that a fragment is of length x 
N total number of fragments 
ϕ(x) total mass in fragments of length x 
Lo initial fiber mass (length) before any depolymerization  
L fiber mass (length) remaining 
q breakage rate per unit length 
k end depolymerization rate (at each end) 
t time 
τ = qk 1 , a characteristic time 
s =t/τ, dimensionless time 
Ao = Lo kq / , a dimensionless parameter
A = (Lo-2kt ) kq /  
N  mean number of fragments present 
Li =Lo-2kt 
P(s,Ao,0) probability that no fiber is left at reduced time s 
p(s,Ao,0) =∂P/∂s, distribution of vanishing times (derivative of P) 
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Table II 
 

Spot shift 
Fiber pCO # of 

sections 
Mean τ  

(of sections) 

(sec) 

τ  
(whole fiber)  

(sec) 

Δτ 
(sec) 

Δτ /τ Mean fitting 
error at 95% 
confidence 

ν, mean std dev  
(before 

depolymerization) 

Δτ /τ/ν 

1 0.2 55 2.022     2.367 0.294    0.146     0.169     0.201     0.726 
2 0.2 55 1.857     1.315 0.305    0.164     0.199     0.172     0.955 
3 0.2 55 1.755     1.736 0.312    0.178     0.149     0.135     1.318 
          
6 0.3 55 0.930     0.842 0.155    0.167     0.065     0.132     1.259 
7 0.3 55 1.561     1.460 0.159    0.102     0.083     0.117     0.868 
8 0.3 55 1.661     1.294 0.213    0.129     0.178     0.208     0.617 
          

12 0.4 55 0.355     0.417 0.082    0.231     0.048     0.120     1.928 
13 0.4 55 0.361     0.277 0.038    0.105     0.043     0.135     0.781 
14 0.4 54 0.328     0.225 0.104    0.317     0.044     0.136     2.331 
15 0.4 54 0.302     0.304 0.048    0.159     0.058     0.202     0.786 

          
19 0.5 68 0.321     0.320 0.075    0.232     0.061     0.200     1.159 

          
Average   1.041 0.960 0.162 0.175 0.100 0.160 1.157 

Std   0.695 0.689 0.100 0.060 0.058 0.035 0.513 
          

Epi-illumination off 
4 0.3 17 4.177     2.942 1.587    0.380     0.305     0.245     1.552 
5 0.3 29 2.207     2.544 0.909    0.412     0.173     0.197     2.095 
          
9 0.4 66 0.667     0.568 0.041    0.062     0.074     0.080     0.773 

10 0.4 43 0.678     0.324 0.068    0.101     0.078     0.110     0.916 
11 0.4 43 0.679     0.299 0.074    0.109     0.067     0.091     1.203 

          
16 0.5 35 0.404     0.329 0.072    0.177     0.066     0.179     0.989 
17 0.5 45 0.463     0.371 0.058    0.125     0.060     0.127     0.983 
18 0.5 52 0.296     0.28 0.055    0.186     0.059     0.214     0.870 

          
20 0.8 10 0.187     0.185 0.033    0.176     0.030     0.165     1.067 
21 0.8 15 0.091       0.074 0.018    0.195     0.023     0.217     0.899 

          
Average   0.985 0.792 0.292 0.192 0.094 0.162 1.135 

Std   1.204 0.987 0.502 0.110 0.080 0.054 0.381 
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Table III 
  

  Fiber with random fracture   

Noise, ν Mean τ  Δτ  Δτ /τ Δτ /τ/ν 

     

0 0.9978 0.1068 0.107 -- 

0.01 0.9958 0.1048 0.1053 10.527 

0.1 0.997 0.1168 0.1171 1.1712 

0.2 0.9942 0.1387 0.1395 0.6974 

0.3 0.9987 0.1874 0.1876 0.6254 

     

  Fiber without stochastics   

0 1 0 0 -- 

0.01 1.0001 0.0047 0.0047 0.4656 

0.1 1.0005 0.0464 0.0463 0.4634 

0.2 1.0024 0.0922 0.092 0.4598 

0.3 1.0038 0.1407 0.1401 0.4671 
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Wang: figure 1(b) 
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Wang: figure 2(b) 
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Wang: figure 10(b) 
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Wang: figure 11(a) 
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Wang: figure 11(d) 
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