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Background

So far we have been talking about the wave function, and how the wave function may be
calculated using electronic structure theory. The most simple example we gave was Hartree-
Fock theory. By now, you will have seen for yourself that Hartree-Fock theory does a pretty
good job of approximating both the wave function and the total energy of a system. However,
like most models, there is scope for improvement.

In the last set of notes, we mentioned a quantity known as the electron correlation.
Correlation is defined as the difference between the Hartree-Fock total energy (and therefore
the Hartree-Fock wave function) and the exact total electronic energy (and wave function).
One of the outstanding problems in the field of theoretical chemistry today is how we can
effectively and accurately model this correlation energy. Both the development of models
of correlation, and also the calculation (on a computer) using such models are not easy
tasks. Most electronic structure calculations that account for electron correlation are very
computationally intensive (take a long time to finish)! A correlated model that is perhaps the
least computationally intentsive to use is known as density functional theory otherwise
referred to as DFT.

Density Functional theory (DFT)

The basic idea behind DFT has similarities and differences with Hartree-Fock theory. Re-
member from your reading material from last week that Hartree-Fock theory is concerned
with the wave function. If we have N electrons, then the wave function is a function of the
N positions (and spins) of these electrons (71 ...7ry). The electron density p is related to the
wave function. We obtain the electron density at a given position (say, 71), by taking the
square of the wave function, and integrating it over all positions (and spins) except those
for 1. This yields p(r1). In principle, if we know where the nuclei are in the molecule, and
what their charges are, and we know the electron density, then we know everything about
the electronic structure of a molecule.

Unlike Hartree-Fock theory, the emphasis in DFT is on the electron density (as op-
posed to emphasising the wave function, as in Hartree-Fock theory). In DFT, we still use a
self-consistent field in the calculations, but this time, we iterate until the electron density
is converged. Remember that in Hartree-Fock theory, we use self-consistency to converge the
wave function. In principle, a DFT calculation goes directly from the density to
the total electronic energy, without having to calculate the wave function first.

In DFT, the total energy can be written down as a functional of the density. A
functional is a function of a function. Remember from the last set of notes that we



can break down the total energy into several parts (electron kinetic energy, electron-electron
repulsion, electron-nuclear attraction, and, nuclear-nuclear repulsion). In DFT, the first
three of these terms can be expresses as a functional of the electron density, i.e.

Tlp(r)] + Vaelo(r)] + Veelo(r)]

We’ll now look at each of these three terms.

Starting with the easiest, the electron-nuclear attraction is straightforward to calculate
as a functional of the density. Next, let’s consider the kinetic energy. It turns out that for
doing chemistry, using T[p(r)] is not an accurate enough picture of the electron kinetic
energy. In 1965, two people called Kohn (now Nobel prizewinner for his work on DFT) and
Sham figured out a way to decompose the density into molecular orbitals (MO’s), and use
MO’s to describe the kinetic energy (just like we do in Hartree-Fock theory). This works
pretty well for chemical applicatons! This is called Kohn-Sham DFT, and is basically the
most popular variant of DFT used worldwide. It is what you will be using in the lab. Note
that since MO’s get (indirectly) involved in a Kohn-Sham DFT calculation, we again have
to make use of basis functions to expand the MO’s.

Finally, we have the electron-electron repulsion term. This term actually comprises
3 components: a classical electrostatic part (Coulomb term, J[p(r))], and two non-classical
(quantum) parts—the exchange term, E;[p(r))], and the correlation term, E.[p(r))]. These
last two terms, the exchange and correlation, are at the heart of DFT. There are
all sorts of exchange functionals and correlation functionals available to use in calculations.
Most of these exchange and correlation functionals can be combined in a mix’n’match way.

In principle, if we know what the exact formulae for the exchange and correlation
functionals are, we can get exact solutions from our calculations. The bad news is that no-one
at present knows what the ideal formulae for exchange and correlation are—so theorists come
up with models that approximate the exact contributions from exchange and correlation.
Finding the correct E;[p(r))] and E.[p(r))] would be on par with finding the Holy Grail of
the theoretical chemistry world!

Two very common (approximate) exchange functionals are Dirac exchange and Becke
exchange. Dirac exchange was developed by assuming that molecules have a uniform electron
density(!). Becke exchange improves on this model by adding in extra terms that include the
gradient of the density. Two very common correlation functionals are Vosko-Wilks-Nusair
correlation and Lee-Yang-Parr correlation. Similarly to exchange, Vosko-Wilks-Nusair cor-
relation is based on a uniform electron density, while Lee-Yang-Parr correlation improves
this by adding extra terms from the gradient of the density.

You can see that some of these functionals have very long names, so theorists tend
to use abbreviations when they refer to the functionals they have used in their calculation.
Dirac exchange is often abbreviated to “S”, Becke exchange is abbreviated to “B” (or some-
times “B88”), the Vosko-Wilks-Nusair functional is called “VWN”, and the Lee-Yang-Parr
exchange is called “LYP”. When referring to the level of theory used in DFT, the nomen-
clature is
“Exchange functional” “Correlation Functional” /” Basis set”.

As an example, if a theorist is reporting results of a (Kohn-Sham) DFT calculation using
Becke exchange and Lee-Yang-Parr correlation, using the 6-31G basis set, this calculation



would be referred to as a BLYP/6-31G calculation. One other ideosyncrasy is that the
combination SVWN is often referred to as “LDA” (stands for local density approximation).

Hybrid density-functional theory (hybrid DFT) also deserve a mention. In hybrid
DFT, we go one step further by writing down the total electronic energy as a blend of
Hartree-Fock energy and DFT energies. Mixing in a bit of Hartree-Fock energy improves
the total electronic energy in quite a few cases where DF'T doesn’t perform so well. The most
common hybrid DFT functional is abbreviated to “B3LYP”. It contains mixtures of Hartree-
Fock, Becke exchange, Dirac exchange, VWN correlation and LYP correlation (basically, a
bit of everything!). B3LYP calculations are probably the most popular DFT calculations
worldwide at the present time.

On a closing note, it can’t be emphasised enough that our exchange and correlation
functionals in DFT are approximate. So, although we can account for the correlation
energy in DFT (something we can’t do using Hartree-Fock theory), this correlation term is
approximate. DFT doesn’t provide a route to systematically improving our description of
correlation—each new correlation functional is different, but won’t necessarily be consistently
better than the previous one. We also have the exchange functional to worry about. In
Hartree-Fock theory, exchange is treated exactly. So in DFT, we have to be careful that
both exchange and correlation are being described properly.



