Understanding Coleman’s Theory of Integration
Marc Masdeu-Sabaté
April 28, 2008

1 Results in \(p \)-adic analytic geometry

1.1 Affinoids
Consider \(\mathbb{C}_p \), and fix an absolute value \(|·|\) on it. Fix \(K \subseteq \mathbb{C}_p \) a complete subfield. Write \(R \) for the maximal order of \(K \), and \(p \) for the maximal ideal of \(R \). Let \(\mathbb{F} = R/p \) be the residue field of \(K \) (\(\mathbb{F} \) is an algebraic extension of \(\mathbb{F}_p \)).

Given an affinoid \(X \) over \(K \), denote by \(A(X) \) the algebra of rigid analytic functions on \(X \) over \(K \). We have that \(\text{Sp} A(X) = X \).

For \(f \in A(X) \), and \(x \in X \), write \(|f(x)| \) for the absolute value of the image of \(f \) in \(A(X)/x \). Set also:
\[
\|f\|_X \overset{\text{def}}{=} \sup_{x \in X} |f(x)|
\]
and define \(A_0(X) \overset{\text{def}}{=} \{ f \in A(X) \mid \|f\|_X \leq 1 \} \).

We have that \(\|f\|_X \) is a seminorm (called the spectral norm) on \(A(X) \), and that \(A_0(X) \) is a sub-\(R \)-algebra of \(A(X) \). The spectral norm is a norm if \(X \) is reduced, and then \(A(X) \) is complete with respect to this norm.

Set also \(\tilde{A}(X) \overset{\text{def}}{=} A_0(X)/pA_0(X) \), and \(\tilde{X} \overset{\text{def}}{=} \text{Spec} \tilde{A}(X) \). Then \(\tilde{X} \) is a scheme of finite type over \(\mathbb{F} \) if \(A_0(X) \) is of topological finite type over \(R \) (true if \(K = \mathbb{C}_p \), or \(K \) a DVR). In general, \(\tilde{X} \text{red} \) is of finite type.

Definition 1.1. We say that \(X \) has good reduction if \(A_0(X) \) is of topological finite type over \(R \) and \(\tilde{X} \) is smooth over \(\mathbb{F} \).

Lemma 1.2. Suppose that \(r \colon Y \to X \) is a morphism of affinoids over \(K \), such that the image of \(\tilde{Y} \) is a dense open subset of \(\tilde{X} \). Let \(f \in A(X) \). Then \(\|f\|_X = \|f \circ r\|_Y \).

Definition 1.3. A Tate \(R \)-algebra is an \(R \)-algebra of the form
\[
R\langle x_1, \ldots, x_n \rangle/I
\]
for some finitely-generated ideal \(I \) of \(R\langle x_1, \ldots, x_n \rangle \), the ring of restricted power series in \(x_1, \ldots, x_n \) (which is actually the completion of \(R[x_1, \ldots, x_n] \) over \(R \)).

Definition 1.4. The annihilator in \(A \) of \(r \in R \) is:
\[
\text{Ann}_A(r) \overset{\text{def}}{=} \{ a \in A \mid ra = 0 \}
\]

Definition 1.5. Given a homomorphism \(A \to B \) of Tate \(R \)-algebras, we say that \(B \) is \(R \)-torsion free over \(A \) if:
\[
\text{Ann}_B(r) = \text{Ann}_A(r) \cdot B
\]
for all \(r \in R \).
Let any Tate R-algebra A, we set $\tilde{A} \overset{\text{def}}{=} A/pA$.

Definition 1.6. We say that B is **formally smooth over** A if \tilde{B} is smooth over \tilde{A} and B is R-torsion free over A.

The proof of the following statement is omitted, as it is not needed in the sequel.

Proposition 1.7. The following are equivalent:

1. B is formally smooth over A,
2. \tilde{B} is smooth over \tilde{A} and B is flat over A,
3. B/rB is smooth over A/rA for all $r \in R$.

The following theorem is what is needed to prove Theorem 1.12.

Theorem 1.8. Suppose that there is a commutative diagram of Tate R-algebras

\[
\begin{array}{ccc}
D & \leftarrow & B \\
\uparrow & & \uparrow \\
C & \leftarrow & A
\end{array}
\]

such that $\tilde{C} \rightarrow \tilde{D}$ is surjective and B is formally smooth over A. Suppose that there is a homomorphism $s: \tilde{B} \rightarrow \tilde{C}$ making the reduction of the diagram commutative. Then there is a lifting $\overline{s}: B \rightarrow C$ of s which makes the original diagram commutative.

Proof. We will proceed by proving several lemmas that will patch together to get our result.

Lemma 1.9. Suppose that $A \rightarrow B$ is a surjective homomorphism of Tate R-algebras. Then its kernel is finitely generated.

Proof. First, note that WLOG can assume that $A = R_m$ (in general, A is a quotient of it, so there is no harm in replacing it). The hypothesis says that B is a quotient of R_n (for some $n \geq 0$), with finitely generated kernel J:

\[
0 \rightarrow J \rightarrow R_n \rightarrow B \rightarrow 0
\]

Let now $h: R_n \rightarrow R_m$ be a homomorphism such that the following commutes:

\[
\begin{array}{ccc}
R_n & \rightarrow & B \\
\downarrow & & \downarrow \\
R_m & \rightarrow & B
\end{array}
\]

Take now x'_1, \ldots, x'_m lifts (in R_n) of the images of $x_1, \ldots, x_m \in R_n$ in B. Then the kernel of $R_m \rightarrow B$ is generated by $h(J)$, together with the set of $\{x_i - h(x'_i) \mid 1 \leq i \leq m\}$, so it’s finitely generated. \(\square\)

As B is **topologically of finite type** over R, a fortiori it is so over A. Hence there is a surjection $A_n \rightarrow B$, for some n. By the previous lemma, there exist $G_1, \ldots, G_m \in A_n$, such that

\[
B \simeq A_n/(G_1, \ldots, G_m)
\]

as an A-algebra.

Let $G \overset{\text{def}}{=} (G_1, \ldots, G_m) \in A_n^m$, and let g denote the composition $A_n \rightarrow B \rightarrow D$, and \tilde{V} the composition $\tilde{A}_n \rightarrow \tilde{B} \rightarrow \tilde{C}$. The fact that $\tilde{C} \rightarrow \tilde{D}$ is surjective implies that $\tilde{C} \rightarrow \tilde{D}$, and so $D \simeq C/I$, for some ideal I.

2
Lemma 1.10. There exists a $V : A_n \to C$ which lifts \tilde{V}, and such that $V \equiv g \pmod{I}$.

![Diagram]

Proof. As $C \to D$, there exists a hom. $g' : A_n \to C$ such that

$$g' \equiv g \pmod{I}$$

(just take, if $X = (x_1, \ldots, x_n)$, $g'(X)$ to be any lift of $g(X)$, and extend to all A_n in the natural way). In the same way, \tilde{V} can be lifted to $V' : A_n \to C$. Then one has:

$$V'(X) - g'(X) \in (p + I)^n \subseteq C^n$$

Now let $a \in p^n \subseteq C^n$, and $b \in I^n \subseteq C^n$ be such that:

$$V'(X) - g'(X) = a - b$$

Set then $d \overset{\text{def}}{=} V'(X) - a = g'(X) - b$, and clearly $\tilde{d} = \tilde{V}$, and $d \equiv g \pmod{I}$.

Hence we may take V to be the unique homomorphism $A_n \to C$ such that $V(X) = d$. □

The homomorphism V is a first approximation to the lifting we are after.

We need to construct a sequence of approximations that tends to our desired lift. As our algebra is complete, we will be then get the lift by taking the limit.

Lemma 1.11. There exists an $n \times m$ matrix N, and $m \times m$ matrices M and Q over A_n such that:

$$G(X + NG) = G^tMG + QG$$

where the coordinates of Q are in pA_n.

Let now $V_0 = V$, and define recursively V_k by setting

$$V_{k+1}(X) \overset{\text{def}}{=} V_k(X) + N(V_k(X)) G(V_k(X))$$

As $V_{k+1}(X) \in C^m$, it determines a unique homomorphism $V_{k+1} : A_n \to C$. From the previous lemma, $V_{k+1} - V_k \to 0$. As Tate algebras are complete, the limit of these will do. □

1.2 Lifting Morphisms

If $h : X \to Y$ is a morphism of affinoids over K, denote by $\tilde{h} : \tilde{X} \to \tilde{Y}$ its reduction. Given \tilde{h}, we say that h lifts \tilde{h}.

Theorem 1.12. Suppose $K = \mathbb{C}_p$ or K a DVR. Suppose that there is a commutative diagram of reduced affinoids over K:

![Diagram]
such that $W \to Y$ is a closed immersion, and \tilde{X} is smooth over \tilde{Z}. Suppose that $h: \tilde{Y} \to \tilde{X}$ is a morphism commuting with the reduction of the given diagram. Then there is a lifting $\tilde{h}: Y \to X$ of h commuting with the diagram:

\[
\begin{array}{ccc}
W & \longrightarrow & X \\
\downarrow & & \downarrow \\
Y & \longrightarrow & Z
\end{array}
\]

Suppose now that S is a scheme over a field F, and $\sigma: F \to F$ is an automorphism of F. Let S^σ be the scheme over F obtained by base change via σ. We have a commutative diagram:

\[
\begin{array}{ccc}
S^\sigma & \longrightarrow & S \\
\downarrow & & \downarrow \\
\text{Spec}(F) & \longrightarrow & \text{Spec}(F)
\end{array}
\]

Given a form (a function or a differential) f on S, one denotes by f^σ its pullback via σ to S^σ. The resulting map $f \mapsto f^\sigma$ is σ-linear (but not linear, in general).

Let now X be an affinoid over $F = K$, and let $S = \text{Spec}(A(X))$ (over $\text{Spec}(K)$), and let σ be a continuous automorphism of K. Let then X^σ be the affinoid characterized by $\text{Spec}(A(X^\sigma)) = S^\sigma$, as schemes over K.

Next, consider the case $F = \mathbb{F}$, and let σ be the Frobenius automorphism of \mathbb{F}. For each $n \in \mathbb{Z}^+$, there is a canonical morphism $\phi: S \to S^\sigma^n$, called the Frobenius morphism, and characterized by the equation $\phi^* f^\sigma^n = f^{p^n}$ (for $f \in \mathcal{O}_S(U)$). If S is of finite type over \mathbb{F}, then there exists some positive integer n such that $S \simeq S^\sigma^n$. Fix an F-isomorphism $\rho: S^\sigma^n \to S$, and then the morphism $\rho \circ \phi: S \to S$ is called a Frobenius endomorphism of S.

Now suppose that X is an affinoid over K, and σ is a continuous automorphism of K, which restricts to the Frobenius automorphism σ on \mathbb{F}. As \tilde{X} is of finite type over \mathbb{F}, then \tilde{X} has Frobenius endomorphisms, and an endomorphism of X lifting one of those is called a Frobenius endomorphism of X. Such an endomorphism is actually K-linear (and not just σ-linear). We have the following corollary:

Corollary 1.13. Suppose that X is a reduced affinoid over K with good reduction. Then:

1. X possesses a Frobenius endomorphism.
2. There is a morphism from X to X^σ lifting the robenius morphism $\tilde{X} \to \tilde{X}^\sigma$.
3. $X \simeq X^\sigma^n$ for some positive integer n.

Let X be as in the previous corollary, and let ϕ be a Frobenius endomorphism of X. In each residue class U of X there is a unique point ε_U such that

\[
\phi^m(\varepsilon_U) = \varepsilon_U
\]

for some positive integer m. It can be computed/defined as: think of U as a point in $\tilde{X}(\overline{\mathbb{F}})$ (over the algebraic closure of \mathbb{F}). Then there is some m such that $\tilde{\phi}^m(U) = U$, because U is defined over some finite extension of \mathbb{F}_p. Then

\[
\varepsilon_U = \lim_{n \to \infty} \phi^{mn}(x)
\]

for any $x \in U$. This point ε_U is called a **Teichmüller point** of ϕ.

1.3 Differentials

Suppose that X is an affinoid over K. Let $\Omega^1_{X/K}$ be the module of rigid differentials on X, and $d: A(X) \to \Omega^1_{X/K}$ the natural derivation. We define $\Omega^i_{X/K}$ as the i-th exterior power of $\Omega^1_{X/K}$.

If W is any rigid space over K, we can make a natural complex of rigid sheaves $(\Omega^\bullet_{W/K}, d)$ on W. A closed differential will then be an element $\omega \in H^0(W, \Omega^1_{W/K})$ such that $d\omega = 0$.

Proposition 1.14. Let X be a connected reduced affinoid with good reduction over K. Let $D = \text{red}^{-1} \Delta$, where Δ is the diagonal in $\tilde{X} \times \tilde{X}$. Then D has a natural structure of rigid analytic space, and we let $A(D)$ be the ring of rigid analytic functions on D. Consider $p_1, p_2: D \to X$ the two natural projections. Suppose that ω is closed on X. Then:

$$p_1^*\omega - p_2^*\omega \in dA(D)$$

Proof. Let C be a cover of \tilde{X} by affine opens such that $Y \in C$ may be expressed as a finite unramified covering of an affine open subset of \mathbb{A}^d_K, where d is the dimension of X. For each $Y \in C$, the inverse image $\tilde{Y} = \text{red}^{-1} Y$ has a natural structure of an affinoid over K such that $\tilde{\tilde{Y}} = Y$.

Fix $Y \in C$. There exist functions $\tilde{x}_1, \ldots, \tilde{x}_n$ on Y, which are local parameters at each point of Y (by how we are taking our Y). Let x_1, \ldots, x_n be liftings to \tilde{Y}. Then x_1, \ldots, x_n are also local parameters everywhere on \tilde{Y}. So we may write:

$$\omega = f_1 dx_1 + \cdots + f_n dx_n$$

for some $f_i \in A(Y)$.

The idea of the proof can be seen in the case $n = 1$. In that case, write $\omega = f(x)dx$, and then $p_1^*\omega - p_2^*\omega = f(x)dx - f(y)dy$. We want to “integrate” this. So let $h \overset{\text{def}}{=} x - y$, and rewrite the previous expression as $f(y + h)d(y + h) - f(y)dy$. Now expand f around y, noting that h is divisible by p (because $h = x - y$ vanishes on the diagonal). Write then:

$$p_1^*\omega - p_2^*\omega = \sum_{i=1}^{\infty} \frac{f^{(i)}(y)}{i!} h^n dy + \sum_{i=0}^{\infty} \frac{f^{(i)}(y)}{i!} h^n dh$$

Now, just check that if one defines $F \overset{\text{def}}{=} \sum_{i=1}^{\infty} \frac{f^{(i-1)}(y)}{i!} h^i$, then dF is the desired expression.

Following we write the general case, which is just the same, but messier. So let now $x = (x_1, \ldots, x_n)$, and let $C = p_1^*x - p_2^*x$. Clearly $C \in T^n$, where T is the ideal of $A_0(X) \otimes A_0(X) \subseteq A(D)$ consisting of functions which vanish on Δ (the diagonal on $X \times X$). Set then

$$F_Y \overset{\text{def}}{=} \sum_I \frac{1}{I!} (p_2^* F_I) C^I$$

where $I = (i_1, \ldots, i_n) \in \mathbb{Z}^n$, $I > 0$, $I \neq 0$, $I! = i_1! \cdots i_n!$, and

$$F_I \overset{\text{def}}{=} \frac{d^1}{dx_1} \cdots \frac{d^{i_k-1}}{dx_{i_k}} f_k$$

where k is such that $i_k > 0$ and $i_j = 0$ for $j > k$. It is a well-known fact that, if $f \in A(Y)$ and $J \in \mathbb{Z}^n$, $J \geq 0$, then:

$$\left| \frac{1}{J!} \left. \frac{d^J}{dx^J} f \right|_Y \right| \leq |f|_Y$$
Hence:
\[
\frac{|F_I|}{|I|} \leq \frac{\max_j |f_j|}{|i_k|}
\]
and so \(F_Y \in A(D_Y)\).

Now we can compute \(dF_Y\) and prove that, on \(\overline{Y}\),
\[
dF_Y = p_1^* \omega - p_2^* \omega
\]
Next, we check that the \(F_Y\) glue together into a function \(F \in B(D)\) as required.

Corollary 1.15. Suppose that \(f_1, f_2: X' \to X\) are morphisms of reduced connected affinoids with good reduction, such that \(\tilde{f}_1 = \tilde{f}_2\). Let \(\omega\) be a closed 1-form on \(X\). Then:
1. \(f_1^* \omega - f_2^* \omega \in dA(X')\)
2. Suppose that \(\lambda\) is a function on \(X(\mathbb{C}_p)\), analytic on each residue class of \(X\), and such that \(d\lambda = \omega\). Then:
\[
f_1^* \lambda - f_2^* \lambda \in A(X')
\]

Let now \(V\) be a proper scheme of finite type over \(R\), and let \(\tilde{V}\) be its special fiber. Let \(W \subseteq \tilde{V}\) be an affine open set. Consider:
\[
\overline{W} \overset{\text{def}}{=} \{ x \in V_K | x \text{ is closed and } \tilde{x} \in W \}
\]
Then \(\overline{W}\) has a natural structure of affinoid over \(K\). If \(V\) is smooth, then \(\overline{W}\) has good reduction, and \(\overline{W} = W\). The set \(\overline{W}\) is called a **Zariski affinoid open set** of \(V\).

Definition 1.16. Suppose that \(V_K\) is smooth. A **differential of the second kind** on \(V_K\) is an element \(\omega \in \Omega^1_{V_K/K}(U)\), for some dense open \(U\) of \(V_K\), such that:
1. \(d\omega = 0\).
2. there exists a Zariski open covering \(\mathcal{C}\) of \(V_K\) such that for each \(W \in \mathcal{C}\),
\[
\text{Res}^U_{\mathcal{C} \cap W}(W) \in \text{Res}^W_{\mathcal{C} \cap W}(\Omega^1_{V_K/K}(W)) + d\mathcal{O}_{V_K}(U \cap W)
\]

Definition 1.17. Suppose that \(V\) is smooth and proper over \(R\). We say that **Frobenius acts properly on** \(V\) if for each Frobenius endomorphism \(\phi\) of \(\tilde{V}\) there is a polynomial \(Z(T) \in \mathbb{C}_p[T]\) such that:
1. No root of \(Z(T)\) in \(\mathbb{C}_p\) is a root of unity.
2. For each Zariski affinoid open \(W\) of \(V\) such that \(\phi \tilde{W} = \tilde{W}\), there is a lifting \(\overline{\phi}: W \to W\) of the restriction of \(\phi\) to \(\tilde{W}\) such that
\[
Z(\overline{\phi}^*)\omega \in dA(W)
\]
for each algebraic differential of the second kind \(\omega\) on \(V_K\) regular on \(W\).

Remark. If (ii) holds for one lifting \(\overline{\phi}\), then it holds for all, thanks to the previous corollary.

Theorem 1.18. Suppose that \(K\) is a DVR and that \(V\) is a smooth projective scheme over \(R\). Then any Frobenius endomorphism acts properly on \(V\).
2 p-adic Abelian Integrals

Here the integrals are constructed, following the Dwork principle.

Theorem 2.1. Let X be a smooth connected affinoid over K with good reduction $	ilde{X}$. Let ω be a closed one-form on X. Let ϕ be a Frobenius endomorphism of X, and suppose that $P(T)$ is a polynomial over \mathbb{C}_p such that

$$P(\phi^* \omega) \in dA(X)$$

and such that no root of $P(T)$ is a root of unity. Then there exists a locally analytic function f_ω on $X(\mathbb{C}_p)$ unique up to an additive constant such that:

1. $df_\omega = \omega$
2. $P(\phi^*) f_\omega \in A(X)$.

Proof. We copy the proof in the original paper, but for the special case of $P(T) = T - a$, with $a \in \mathbb{C}_p$ (the degree of $P(T)$ is $n = 1$). This is (hopefully) enough to see the ideas behind it.

So assume that $\phi^* \omega - a \omega \in dA(X)$.

We first prove uniqueness: suppose that one has two solutions to the problem. Then their difference would be a locally analytic function g satisfying $dg = 0$ and $\phi^* g - a g \in A(X)$. We will see that g is constant. As $dg = 0$, g must be locally constant, and thus $\phi^* g - a g$ is locally constant as well. As X is connected, then $\phi^* g - a g = C$, for some constant $C \in \mathbb{C}_p$. We will prove that $g(x) = C/(1 - a)$ for all $x \in X$.

Let U be a residue class of X, and let $\varepsilon = \varepsilon_U$ be a Teichmüller point of ϕ in U, of period m (so that $\phi^m(\varepsilon) = \varepsilon$). Then one can check (by induction, for example) that:

$$\phi^{mk}(x) = \varepsilon$$

Take now $k = m$ and evaluate at ε, to get:

$$(1 - a^m) g(\varepsilon) = C \frac{1 - a^m}{1 - a}$$

As $1 - a^m$ is invertible, this implies that $g(\varepsilon) = C/(1 - a)$ as we want.

Now let $x \in U$ be arbitrary. As g is locally constant and $\phi^{mk}(x) \to \varepsilon$, there is some integer k such that:

$$g(\phi^{mk}(x)) = g(\varepsilon)$$

Again by Equation 1, we get:

$$a^{mk} g(x) = a^{mk} C/(1 - a)$$

So $g(x) - C/(1 - a)$ is in the kernel of a^{mk}, thought as acting on \mathbb{C}_p. But here is the trick to cancel this: for each integer r, there is some element $y_r \in U$ such that $\phi^{mr}(y_r) = x$. Using Equation 1 again, we deduce that:

$$g(x) - C/(1 - a) = a^r (g(y_r) - C/(1 - a))$$

so $g(x) - C/(1 - a)$ is both in the kernel of a^{mk} and in the image of a^{mr} for all $r \geq 0$, and only 0 is there:

$$\ker(a^{mk}) \cap (\bigcap_{r \geq 0} a^{mr}(\mathbb{C}_p)) = \{0\}$$
so \(g \) is constant.

Next, we prove existence: for this, write first \(\phi^* \omega = a \omega + dh \) for some \(h \in A(X) \). We can surely integrate \(\omega \) locally, but we need to do it in a coherent way so that the second condition in the theorem is satisfied. Once again, the Teichmüller points will save the day. If \(U \) is a residue class of \(X \) and \(\varepsilon \in U \) is the corresponding Teichmüller point for \(\phi \), write \(m \) for the minimal positive integer such that \(\phi^m(\varepsilon) = \varepsilon \). Then define \(f_U \) to be the local integral to \(\omega \), normalized such that:

\[
f_U(\varepsilon) = \frac{1}{1 - a^m} \sum_{i=0}^{m-1} a^i h \left(\phi^{m-(i+1)}(\varepsilon) \right)
\]

and define \(f \) by \(f|_U \overset{\text{def}}{=} f_U \). We can then compute \((\phi^* f)(\varepsilon)\) and show that it equals \(a f(\varepsilon) + h(\varepsilon) \) as we wanted. \(\square \)

Corollary 2.2. The function \(f_\omega \) is analytic on each residue class of \(X \).

Corollary 2.3. The function \(f_\omega \) depends modulo constants only on \(\omega \) and not on the choice of \(P \).

Corollary 2.4. Let \(\omega' \) be a closed one-form on \(X \) such that \(P(\phi^*)\omega' \in dA(X) \). Then:

1. \(f_{\omega + \omega'} = f_\omega + f_{\omega'} \) (modulo constants in \(\mathbb{C}_p \)),
2. if \(\omega \) is exact, then \(f_\omega \in A(X) \).

Corollary 2.5. The function \(f_\omega \) is independent (up to constants) of the choice of \(\phi \).

Let now \(\sigma \) be a continuous automorphism of \(\mathbb{C}_p \). Let \(\omega^\sigma \) denote the pullback of \(\omega \) to \(X^\sigma \). Let \(f_\omega^\sigma \) be the function on \(X^\sigma(\mathbb{C}_p) \) defined by:

\[
f_\omega^\sigma(x) \overset{\text{def}}{=} \sigma f_\omega(\sigma^{-1}(x))
\]

Corollary 2.6. The differential \(\omega^\sigma \) satisfies the hypotheses of the theorem over \(X^\sigma \), and \(f_\omega^\sigma = f_\omega^\sigma \) up to constants. In particular, if \(\sigma \) fixes \(K \), then \(f_\omega^\sigma = f_\omega \) up to constants.

Proposition 2.7. Suppose that \(F: \tilde{X}' \to X \) is a morphism of smooth affinoids with good reduction over \(K \). Let \(\omega' = F^* \omega \). Then there exists a Frobenius endomorphism \(\phi' \) of \(\tilde{X}' \) and a polynomial \(P'(T) \) in \(\mathbb{C}_p[T] \) such that

\[
P'(\phi'^*) \omega' \in dA(X')
\]

and such that no root of \(P'(T) \) is a root of unity. Moreover, if \(f_{\omega'} \) is a solution of the Theorem with \(\omega' \) in place of \(\omega \), then \(f_{\omega'} = F^* f_\omega \) up to constants.

Proof. The key observation to be made is that there exists Frobenius endomorphisms \(\phi: X \to X \) and \(\phi': \tilde{X}' \to \tilde{X}' \) compatible with \(F \) on the reductions. That is, such that the following commutes:

\[
\begin{array}{ccc}
\tilde{X}' & \overset{\tilde{F}}{\longrightarrow} & \tilde{X} \\
\downarrow \phi' & & \downarrow \phi \\
\tilde{X}' & \overset{\tilde{F}}{\longrightarrow} & \tilde{X}
\end{array}
\]
Then there is (by what we have seen so far) a polynomial \(P(T) \), without roots of unity, such that:

\[P(\phi^*)\omega \in dA(X) \]

From this, we deduce that:

\[P(\phi^{*'})\omega' \in dA(X') \]

Also, we deduce (because \(\phi \circ F \) and \(F \circ \phi' \) to the same morphism) that:

\[F^*(\phi^{*'})^k f_\omega - (\phi^{*'})^k F^* f_\omega \in A(X') \quad \text{for all } k > 0 \]

and hence:

\[P(\phi^{*'}) F^* - F^* P(\phi^*) \in A(X') \]

Now apply the uniqueness of \(f_\omega' \) to conclude the result. \(\square \)

Next, we will describe how to integrate differentials \(\omega \) of the second kind on \(V_K \), where \(V \) is a smooth, proper, connected scheme of finite type over \(R \).

Let \(D \) be the collection of Zariski affinoid opens \(X \) in \(V_K \) such that, on \(X \),

\[\omega - dg_X \in \Omega^1_K(X) \]

for some \(g_X \) in \(K(V_K) \) (the function field of \(V_K \)). Note that \(D \) is a covering, because \(\omega \) is of the second kind. Let \(\langle \omega \rangle_\infty \) be the support of the polar divisor of \(\omega \) on \(V_K \), and write \(V'_K \overset{\text{def}}{=} V_K - \langle \omega \rangle_\infty \).

Fix a Frobenius endomorphism \(\phi \) of \(\bar{V} \). Write \(D' \) for the subcollection of \(D \) consisting of those \(X \) such that \(\phi X = \bar{X} \) (note that \(D' \) is also a covering of \(V_K \) (why??)). Let \(Z(T) \) be a polynomial associated to \(V \) and \(\phi \) (as in Definition 1.17).

Fix now \(X \in D' \). Write for short \(g = g_X \), and set \(\nu = \nu_X = \omega - dg \). Let \(\overline{\phi} = \overline{\phi_X} \) be a lifting of the restriction of \(\phi \) to \(\bar{X} \). Hence:

\[Z(\overline{\phi}^{*})\nu \in dA(X) \]

By Theorem 2.1, there exists \(f = f_X \), locally analytic on \(X \) and unique up to an additive constant such that \(df = \nu \), and \(Z(\overline{\phi}^{*}) f \in A(X) \).

Now, set \(h_X \overset{\text{def}}{=} f + g \), as a function on \(X - \langle \omega \rangle_\infty \).

Claim. The function \(h_X \) is independent of the choices of \(f \) and \(g \), up to an additive constant.

Proof. Suppose that \(g' \in K(V_K) \) is such that \(\omega - dg' = \nu' \in \Omega^1_K(X) \). It follows then that \(\nu' = \nu + d(g - g') \), and so in particular \(g - g' \in A(X) \). If now \(f' \) is a solution of \(df' = \nu' \), and \(Z(\overline{\phi}^{*}) f' \in A(X) \), then \(f' = f + (g - g') \), from a previous corollary (up to constants). This finishes the proof. \(\square \)

Finally, we need to patch together the local integrals \(h_X \):

Lemma 2.8. Let \(X, X' \in D' \). Then \(h_X - h_{X'} \) is constant on \(X \cap X' \).

Proof. Note first that \(X \cap X' \in D \), so it suffices to prove it in the case \(X' \subseteq X \). In this case, we may take \(g_X = g_X' \). Then \(\nu_X' \) is the restriction of \(\nu_X \) to \(X' \), and if we restrict \(f_X \) to \(X' \) we get a solution for our problem, hence \(h_{X'} = h_X \mid_{X'} \), as we wanted. \(\square \)
This makes the map \((X, X') \mapsto h_X - h_{X'}\) into a \(1\)-cocycle wrt the covering \(D'\) and the constant sheaf \(\mathbb{C}_p\). It is actually a coboundary, since any finite subcollection of \(D'\) has non-empty intersection.

We have proved:

Theorem 2.9. There exists a function \(f_\omega\) on \(V'_K(\mathbb{C}_p)\), unique up to an additive constant, such that:

1. \(df_\omega = \omega\),
2. For each \(X \in D'\), there exists a \(g \in K(V_K)\) such that \(f_\omega - g\) extends to a locally analytic function on \(X\), and

\[Z(\phi^X_X)(f_\omega - g) \in A(X) \]

Definition 2.10. Given \(\omega\) and \(f_\omega\) as above, and given two points \(P, Q \in V'_K(\mathbb{C}_p)\), the integral of \(\omega\) from \(P\) to \(Q\) is defined as:

\[\int_P^Q \omega \overset{\text{def}}{=} f_\omega(Q) - f_\omega(P) \]

Proposition 2.11. Let \(\omega\) and \(\omega'\) be two differentials of the second kind on \(V_K\). Then:

- If \(P, Q \notin (\omega)_{\infty} \cup (\omega')_{\infty}\), we have:

\[\int_P^Q (\omega + \omega') = \int_P^Q \omega + \int_P^Q \omega' \]

- If \(\omega = dg\) for a meromorphic function \(g\) on \(V_K\), then:

\[\int_P^Q \omega = g(Q) - g(P) \]

- Let \(g: W \to V\) be a morphism of smooth proper schemes over \(R\), on which Frobenius acts properly. Then, if \(g(Q), g(P) \notin (\omega)_{\infty}\), we have:

\[\int_P^Q g^* \omega = \int_{g(P)}^{g(Q)} \omega \]

- If \(P, Q \notin (\omega)_{\infty}\), then:

\[\left(\int_P^Q \omega \right)^\sigma = \int_{g(P)}^{g(Q)} \omega^\sigma \]

where the second integral is taken on \(V^\sigma\).

The following theorem, whose proof omit for now, is a strengthening of the change of variable formula from the previous proposition:

Theorem 2.12 (Change of Variables). Suppose that \(V\) and \(W\) are smooth proper schemes of finite type over a ring \(R\) on which Frobenius acts properly. Suppose \(f: V_K \to W_K\) is a rational map. Let \(\omega\) be a differential of the second kind on \(W_K\). Then:

\[\int_P^Q f^* \omega = \int_{f(P)}^{f(Q)} \omega \]

for any \(P, Q \in V(\mathbb{C}_p)\) in the domain of regularity of \(f\) such that \(f(P), f(Q) \notin (\omega)_{\infty}\).
Corollary 2.13. The integral $\int_P^Q \omega$ doesn’t depend on the model V for V_K.

Corollary 2.14. Suppose that V_K is a variety over K which may be completed to a smooth proper scheme V of finite type over R on which Frobenius acts properly. Let ω be a regular differential on V_K of the second kind. Then for $P, Q \in V_K(\mathbb{C}_p)$ the integral $\int_P^Q \omega$ depends only on V_K and not on its completion.

Let now G be a connected commutative group scheme over R, which is an extension of an abelian scheme A by a vector group B:

$$0 \to B \to G \to A \to 0$$

Let O be the origin on G.

Theorem 2.15. Let ω be an invariant differential on G, and let

$$\lambda_{\omega}(Q) \overset{\text{def}}{=} \int_Q^O \omega$$

where $Q \in G_K(\mathbb{C}_p)$. (this is well defined by a previous corollary). Then:

1. λ_{ω} is a homomorphism from $G_K(\mathbb{C}_p)$ into \mathbb{C}_p
2. λ_{ω} is locally analytic, and $d\lambda_{\omega} = \omega$.

Proof. Let $T_a: G \to G$ denote translation by $a \in G_K(\mathbb{C}_p)$. Then $T_a^*\omega = \omega$, and so by the change of variables formula:

$$\int_O^P \omega = \int_O^P T_a^*\omega = \int_Q^{P+Q} \omega = \int_Q^{P+Q} \omega - \int_Q^O \omega$$

which implies $\lambda(P) = \lambda(P + Q) - \lambda(Q)$.

The second statement was known already from the previous results. \qed

In particular, we get the addition theorem:

Theorem 2.16. Let C be a complete curve over K with a smooth proper model over R, on which Frobenius acts properly. Consider D_1, D_2, D_3 three divisors on C, such that $D_1 + D_2 \equiv D_3 + n[P]$. Then, for any differential ω of the first kind on C, we have:

$$\sum_{i=1}^n \int_P^{P_i} \omega + \sum_{i=1}^n \int_P^{Q_i} \omega = \sum_{i=1}^n \int_P^{R_i} \omega$$

Proof. Just take G in the previous theorem to be the Néron model of the Jacobian of C. \qed