Random self-affine multifractal Sierpiński sponges in \mathbb{R}^{d}

J. M. Fraser
The University of St Andrews
e-mail: jmf32@st-andrews.ac.uk

14/10/10

Abstract

I will first introduce the Hausdorff and packing multifractal spectrum functions, $f_{\mathrm{H}, \mu}$ and $f_{\mathrm{P}, \mu}$. I will briefly discuss the self-affine sets introduced by Bedford and McMullen and go on to mention various generalisations that have been made in recent years in particular the work of King and Olsen. Finally, I will discuss the recent work by Fraser and Olsen on the Hausdorff spectrum of random self-affine multifractal sponges in \mathbb{R}^{d}.

Lower and upper local dimension of μ at $x \in \operatorname{supp} \mu$

$$
\underline{\operatorname{dim}}_{\mathrm{loc}} \mu(x)=\liminf _{\delta \rightarrow 0} \frac{\log \mu(B(x, \delta))}{\log \delta}
$$

and

$$
\overline{\operatorname{dim}}_{\mathrm{loc}} \mu(x)=\limsup _{\delta \rightarrow 0} \frac{\log \mu(B(x, \delta))}{\log \delta}
$$

Multifractal decomposition sets

$$
\Delta_{\alpha}=\left\{x \in \operatorname{supp} \mu: \operatorname{dim}_{\mathrm{loc}} \mu(x)=\alpha\right\}
$$

for $\alpha \geq 0$.

Hausdorff and packing multifractal spectrum functions, $f_{\mathrm{H}, \mu}$ and $f_{\mathrm{P}, \mu}$ of μ

$$
f_{\mathrm{H}, \mu}(\alpha)=\operatorname{dim}_{\mathrm{H}} \Delta_{\alpha}
$$

and

$$
f_{\mathrm{P}, \mu}(\alpha)=\operatorname{dimp} \Delta_{\alpha}
$$

for $\alpha \geq 0$.

A self-affine Bedford-McMullen carpet

We define

$$
\beta_{i_{1} \ldots i_{d}}, \beta_{i_{1} \ldots i_{d-1}}, \ldots, \beta_{i_{1} i_{2}}, \beta_{i_{1}}, \beta: \mathbb{R} \rightarrow \mathbb{R}
$$

inductively as follows,
(0) For $q \in \mathbb{R}$ and $\left(i_{1}, \ldots, i_{d}\right) \in D$ let $\beta_{i_{1} \ldots i_{d}}(q)=0$
(1) For $q \in \mathbb{R}$ and $\left(i_{1}, \ldots, i_{d-1}\right) \in \pi_{d-1}(D)$ define $\beta_{i_{1} \ldots i_{d-1}}(q)$ by

$$
\sum_{\substack{\left.i_{d} \\ \ldots, i_{d}\right) \in \pi_{d}(D)}} p_{D, \mathbf{p}, d}\left(i_{d} \mid i_{1}, \ldots, i_{d-1}\right)^{q} n_{d}^{\beta_{i_{1} \ldots i_{d}}(q)-\beta_{i_{1} \ldots i_{d-1}}(q)}=1
$$

(2) For $q \in \mathbb{R}$ and $\left(i_{1}, \ldots, i_{d-2}\right) \in \pi_{d-2}(D)$ define $\beta_{i_{1} \ldots i_{d-2}}(q)$ by

$$
\sum_{\substack{i_{d-1} \\\left(i_{1}, \ldots, i_{d-1}\right) \in \pi_{d-1}(D)}} p_{D, \mathbf{p}, d-1}\left(i_{d-1} \mid i_{1}, \ldots, i_{d-2}\right)^{q} n_{d-1}^{\beta_{i_{1} \ldots i_{d-1}}(q)-\beta_{i_{1} \ldots i_{d-2}}(q)}=1
$$

(d) For $q \in \mathbb{R}$ define $\beta(q)$ by

$$
\sum_{\substack{i_{1} \\ i_{1} \in \pi_{1}(D)}} p_{1}\left(i_{1}\right)^{q} n_{1}^{\beta_{i_{1}}(q)-\beta(q)}=1
$$

The steps in the calculation of β

Three options at each step in the construction

The first two steps in the construction of a random carpet based on the realisation $\omega=(2,3, \ldots)$

For $l=1, \ldots, d$ define $\nu_{l}=n_{1, l}^{p_{1}} \cdots n_{N, l}^{p_{N}}$ and for $i=1, \ldots, N$ we define

$$
\beta_{i, i_{1} \ldots i_{d}}, \beta_{i, i_{1} \ldots i_{d-1}}, \ldots, \beta_{i, i_{1} i_{2}}, \beta_{i, i_{1}}, \beta_{i}: \mathbb{R} \rightarrow \mathbb{R}
$$

inductively as follows,
(0) For $q \in \mathbb{R}$ and $\left(i_{1}, \ldots, i_{d}\right) \in D_{i}$ let $\beta_{i, i_{1} \ldots i_{d}}(q)=0$
(1) For $q \in \mathbb{R}$ and $\left(i_{1}, \ldots, i_{d-1}\right) \in \pi_{d-1}\left(D_{i}\right)$ define $\beta_{i, i_{1} \ldots i_{d-1}}(q)$ by

$$
\sum_{\substack{i_{d} \\\left(i_{1}, \ldots, i_{d}\right) \in \pi_{d}\left(D_{i}\right)}} p_{D_{i}, \mathbf{p}_{i}, d}\left(i_{d} \mid i_{1}, \ldots, i_{d-1}\right)^{q} \nu_{d}^{\beta_{i, i_{1} \ldots i_{d}}(q)-\beta_{i, i_{1} \ldots i_{d-1}}(q)}=1
$$

(2) For $q \in \mathbb{R}$ and $\left(i_{1}, \ldots, i_{d-2}\right) \in \pi_{d-2}\left(D_{i}\right)$ define $\beta_{i, i_{1} \ldots i_{d-2}}(q)$ by

$$
\sum_{\substack{i_{d-1} \\\left(i_{1}, \ldots, i_{d-1}\right) \in \pi_{d-1}\left(D_{i}\right)}} p_{D_{i}, \mathbf{p}_{i}, d-1}\left(i_{d-1} \mid i_{1}, \ldots, i_{d-2}\right)^{q} \nu_{d-1}^{\beta_{i, i_{1} \ldots i_{d-1}}(q)-\beta_{i, i_{1} \ldots i_{d-2}}(q)}=1
$$

(d) For $q \in \mathbb{R}$ define $\beta_{i}(q)$ by

$$
\sum_{\substack{i_{1} \\ i_{1} \in \pi_{1}(D)}} p_{1}\left(i_{1}\right)^{q} \nu_{1}^{\beta_{i, i_{1}}(q)-\beta_{i}(q)}=1
$$

Finally, define $\beta: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\beta=\sum_{i} p_{i} \beta_{i}
$$

ClCl-(C)

$$
\begin{gathered}
\left.\left.\left.\beta_{2,00}\right|^{\beta_{2,04}}\right|_{1} ^{\beta_{2,22}}\right|_{2,24} ^{\beta_{2}}
\end{gathered}
$$

$$
\begin{equation*}
\beta_{2,0} \quad \beta_{2,2} \tag{3,4}
\end{equation*}
$$

1

$$
\beta_{3,00} \beta_{3,06} \beta_{3,20} \beta_{3,22} \beta_{3,24} \beta_{3,44}
$$

 $\beta_{3,00} \beta_{3,06} \beta_{3,20} \beta_{3,22} \beta_{3,24} \quad \beta_{3,44}$

 $\beta_{3,00} \beta_{3,06} \beta_{3,20} \beta_{3,22} \beta_{3,24} \quad \beta_{3,44}$

The steps in the calculation of β

Theorem 1.1. (F and Olsen, Indiana Univ. Math. J., (to appear)).
Assuming the VSSC is satisfied for D_{1}, \ldots, D_{N} and $\nu_{1}<\nu_{2}<\cdots<\nu_{d}$ we have
(1) For almost all realisations ω we have:

$$
f_{\mathrm{H}, \mu_{\omega}}(\alpha)=\operatorname{dim}_{\mathrm{H}}\left\{x \in K_{\omega} \left\lvert\, \lim _{r \searrow 0} \frac{\log \mu_{\omega}(B(x, r))}{\log r}=\alpha\right.\right\}=\beta^{*}(\alpha)
$$

for all $\alpha \in\left(\alpha_{\min }, \alpha_{\max }\right)$ (here β^{*} denotes the Legendre transform of β defined by $\left.\beta^{*}(\alpha)=\inf _{q}(q \alpha+\beta(q))\right)$.
(2) For almost all realisations ω we have:

$$
\left\{x \in K_{\omega} \left\lvert\, \lim _{r \searrow 0} \frac{\log \mu_{\omega}(B(x, r))}{\log r}=\alpha\right.\right\}=\emptyset
$$

for all $\alpha \notin\left[\alpha_{\min }, \alpha_{\max }\right]$.

Theorem 1.2. (F and Olsen, Indiana Univ. Math. J., (to appear)).
Assuming that $\nu_{1}<\nu_{2}<\cdots<\nu_{d}$ we have
(1) For almost all realisations ω we have:

$$
f_{\mathrm{H}, \mu_{\omega}}^{s}(\alpha)=\operatorname{dim}_{\mathrm{H}}\left\{x \in K_{\omega} \left\lvert\, \lim _{r \searrow 0} \frac{\log \mu_{\omega}(Q(x, r))}{\log r}=\alpha\right.\right\}=\beta^{*}(\alpha)
$$

for all $\alpha \in\left(\alpha_{\min }, \alpha_{\max }\right)$ (here β^{*} denotes the Legendre transform of β defined by $\left.\beta^{*}(\alpha)=\inf _{q}(q \alpha+\beta(q))\right)$.
(2) For almost all realisations ω we have:

$$
\left\{x \in K_{\omega} \left\lvert\, \lim _{r \searrow 0} \frac{\log \mu_{\omega}(Q(x, r))}{\log r}=\alpha\right.\right\}=\emptyset
$$

for all $\alpha \notin\left[\alpha_{\text {min }}, \alpha_{\text {max }}\right]$.

Open(ish) Questions

1. Can we remove the assumption that $\nu_{1}<\nu_{2}<\cdots<\nu_{d}$?

Yes - see paper.
2. Can we compute the almost sure Hausdorff spectrum for a more general random model?

Watch this space!
3. Do our results still hold if the VSSC is not satisfied? In particular, do the results of Olsen on deterministic self-affine sponges hold without the VSSC?

Probably! The VSSC was removed by Jordan and Rams in the case $d=2$.
4. What is the packing spectrum of a determinsitic self-affine sponge? This is not known even in \mathbb{R}^{2}.

No idea! We have

$$
\beta^{*}(\alpha)=f_{\mathrm{H}, \mu}(\alpha) \leqslant f_{\mathrm{P}, \mu}(\alpha) \leqslant \gamma^{*}(\alpha)
$$

References

[1] J. M. Fraser and L. Olsen. Multifractal spectra of random self-affine multifractal Sierpiński sponges in \mathbb{R}^{d}. Indiana Univ. Math. J., (to appear).
[2] T. Jordan and M. Rams. Multifractal analysis for Bedford-McMullen carpets. Preprint. (2009)
[3] J. King. The singularity spectrum for general Sierpiński carpets. Adv. in Math., 116 (1995), 1-8.
[4] L. Olsen. Self-affine multifractal Sierpiński sponges in \mathbb{R}^{d}. Pacific J. Math, 183 (1998), 143-199.
[5] L. Olsen. Random self-affine multifractal Sierpiński sponges in \mathbb{R}^{d}. Monatshefte für Mathematik, (to appear).

