On the L^q -spectrum of planar self-affine measures

Jonathan M. Fraser

The University of Warwick

Let μ be a compactly supported Borel probability measure on \mathbb{R}^n with support denoted by $F = \operatorname{supp} \mu$.

《曰》《聞》《臣》《臣》

E.

DQC

Let μ be a compactly supported Borel probability measure on \mathbb{R}^n with support denoted by $F = \text{supp } \mu$.

The L^q -spectrum of μ is defined by

$$\tau_{\mu}(q) = \lim_{\delta \to 0} \frac{\log \int_{F} \mu \big(B(x, \delta) \big)^{q-1} \, d\mu(x)}{-\log \delta}$$

with $q \in \mathbb{R}$.

▲ □ ► ▲ □ ►

Let μ be a compactly supported Borel probability measure on \mathbb{R}^n with support denoted by $F = \text{supp } \mu$.

The L^q -spectrum of μ is defined by

$$au_{\mu}(q) = \lim_{\delta o 0} rac{\log \int_F \mu (B(x, \delta))^{q-1} d\mu(x)}{-\log \delta}$$

with $q \in \mathbb{R}$.

This spectrum gives a quantitative analysis of the global fluctuations of μ .

臣

< ≣ ▶

Let μ be a compactly supported Borel probability measure on \mathbb{R}^n with support denoted by $F = \text{supp } \mu$.

The L^q -spectrum of μ is defined by

$$au_{\mu}(q) = \lim_{\delta o 0} rac{\log \int_{F} \mu (B(x, \delta))^{q-1} d\mu(x)}{-\log \delta}$$

with $q \in \mathbb{R}$.

This spectrum gives a quantitative analysis of the global fluctuations of μ .

The motivation to study this spectrum has roots in information theory.

Basic properties of the L^q -spectrum

 au_{μ} is \dots

・ロト ・回ト ・ヨト

< ≣ >

æ

 au_{μ} is \dots

- convex, and thus continuous, on $(0,\infty)$

・ロト ・回ト ・ヨト

臣

DQC

- convex, and thus continuous, on $(0,\infty)$ (apply Hölder's inequality)

- convex, and thus continuous, on $(0,\infty)$ (apply Hölder's inequality)
- decreasing on $[0,\infty)$

<⊡> < ⊒>

- ★ 臣 ▶ - - 臣

- convex, and thus continuous, on $(0,\infty)$ (apply Hölder's inequality)
- decreasing on $[0,\infty)$ (easy to see)

3

- < ≣ > ----

 au_{μ} is \dots

- convex, and thus continuous, on $(0,\infty)$ (apply Hölder's inequality)
- decreasing on [0, ∞) (easy to see)
- equal to 0 at q=1

・回 ・ ・ ヨ ・ ・ ヨ ・

- convex, and thus continuous, on $(0,\infty)$ (apply Hölder's inequality)
- decreasing on [0, ∞) (easy to see)
- equal to 0 at q = 1 (easy to see)

臣

- < ≣ > -

 au_{μ} is \dots

- convex, and thus continuous, on $(0,\infty)$ (apply Hölder's inequality)
- decreasing on [0, ∞) (easy to see)
- equal to 0 at q=1 (easy to see)
- Lipschitz on $[\lambda,\infty)$ for any $\lambda>0$

→ 문 → 문

- convex, and thus continuous, on $(0,\infty)$ (apply Hölder's inequality)
- decreasing on [0, ∞) (easy to see)
- equal to 0 at q = 1 (easy to see)
- Lipschitz on $[\lambda,\infty)$ for any $\lambda>0$ (consequence of convexity)

▲圖▶ ▲屋▶ ▲屋▶ --

 au_{μ} is \dots

- convex, and thus continuous, on $(0,\infty)$ (apply Hölder's inequality)
- decreasing on [0, ∞) (easy to see)
- equal to 0 at q = 1 (easy to see)
- Lipschitz on $[\lambda,\infty)$ for any $\lambda>0$ (consequence of convexity)

- differentiable on $(0,\infty)$ at all but at most countably many points and semi-differentiable everywhere

(4回) (4回) (4回)

- convex, and thus continuous, on $(0,\infty)$ (apply Hölder's inequality)
- decreasing on [0, ∞) (easy to see)
- equal to 0 at q = 1 (easy to see)
- Lipschitz on $[\lambda,\infty)$ for any $\lambda>0$ (consequence of convexity)
- differentiable on $(0,\infty)$ at all but at most countably many points and semi-differentiable everywhere (consequence of convexity)

3

< ∃ >

臣

DQC

Relationship to the dimension theory of F and μ ...

< ∃ >

Relationship to the dimension theory of F and μ ...

 $\dim_{\mathrm{B}} F = \tau(0)$

回 と く ヨ と く ヨ と …

3

DQC

Relationship to the dimension theory of F and μ ...

 $\dim_{\mathrm{B}} F = \tau(0)$

If au is differentiable at q = 1, then

 $\dim_{\mathrm{H}} \mu = \dim_{\mathrm{P}} \mu = \dim_{e} \mu = -\tau'(1)$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Relationship to the dimension theory of F and μ ...

 $\dim_{\mathrm{B}} F = \tau(0)$

If au is differentiable at q = 1, then

$$\dim_{\mathrm{H}} \mu = \dim_{\mathrm{P}} \mu = \dim_{e} \mu = -\tau'(1) \qquad (\mathsf{Ngai} '97)$$

回 と く ヨ と く ヨ と …

Relationship to the dimension theory of F and μ ...

 $\dim_{\mathrm{B}} F = \tau(0)$

If au is differentiable at q = 1, then

$$\dim_{\mathrm{H}} \mu = \dim_{\mathrm{P}} \mu = \dim_{e} \mu = -\tau'(1) \qquad (\mathsf{Ngai} '97)$$

and therefore

$$- au'(1)\leqslant \dim_{\mathrm{H}}F\leqslant \dim_{\mathrm{P}}F\leqslant au(0).$$

回 と く ヨ と く ヨ と …

Relationship to the multifractal structure of μ . . .

< ≣ >

Relationship to the multifractal structure of μ . . .

Let

$$\Delta_{\alpha} = \{ x \in F : \dim_{\mathsf{loc}} \mu(x) = \alpha \}$$

for $\alpha \ge 0$, where dim_{loc} $\mu(x)$ is the local dimension of μ at x, if it exists.

< ≣ >

æ

Relationship to the multifractal structure of μ . . .

Let

$$\Delta_{\alpha} = \{ x \in F : \dim_{\mathsf{loc}} \mu(x) = \alpha \}$$

for $\alpha \ge 0$, where dim_{loc} $\mu(x)$ is the local dimension of μ at x, if it exists.

The Hausdorff and packing multifractal spectra are defined by

$$f_{\mathrm{H},\mu}(lpha) = \dim_{\mathrm{H}} \Delta_{lpha}$$

and

$$f_{\mathrm{P},\mu}(lpha) = \dim_{\mathrm{P}} \Delta_{lpha}$$

for $\alpha \ge 0$.

臣

< ≣ ▶

Relationship to the multifractal structure of μ . . .

Let

$$\Delta_{\alpha} = \{ x \in F : \dim_{\mathsf{loc}} \mu(x) = \alpha \}$$

for $\alpha \ge 0$, where dim_{loc} $\mu(x)$ is the local dimension of μ at x, if it exists.

The Hausdorff and packing multifractal spectra are defined by

$$f_{\mathrm{H},\mu}(lpha) = \dim_{\mathrm{H}} \Delta_{lpha}$$

and

$$f_{\mathrm{P},\mu}(lpha) = \dim_{\mathrm{P}} \Delta_{lpha}$$

for $\alpha \ge 0$.

For all $\alpha \ge 0$, we have

$$f_{\mathrm{H},\mu}(\alpha) \leqslant f_{\mathrm{P},\mu}(\alpha) \leqslant \tau^*_{\mu}(\alpha)$$

臣

< ≣ ▶

Relationship to the multifractal structure of μ . . .

Let

$$\Delta_{\alpha} = \{ x \in F : \dim_{\mathsf{loc}} \mu(x) = \alpha \}$$

for $\alpha \ge 0$, where dim_{loc} $\mu(x)$ is the local dimension of μ at x, if it exists.

The Hausdorff and packing multifractal spectra are defined by

$$f_{\mathrm{H},\mu}(lpha) = \dim_{\mathrm{H}} \Delta_{lpha}$$

and

$$f_{\mathrm{P},\mu}(lpha) = \dim_{\mathrm{P}} \Delta_{lpha}$$

for $\alpha \ge 0$.

For all $\alpha \ge 0$, we have

 $f_{\mathrm{H},\mu}(lpha)\leqslant f_{\mathrm{P},\mu}(lpha)\leqslant au_{\mu}^{*}(lpha)$ (for example, Olsen '95, '98)

回 と く ヨ と く ヨ と …

Let μ be a self-similar measure

$$\mu = \sum_{i} p_i \, \mu \circ S_i^{-1},$$

satisfying the strong separation condition, with defining probabilities $p_i \in (0, 1)$ and similarity mappings S_i with contraction ratios equal to c_i

臣

- ∢ ≣ ▶

Let μ be a self-similar measure

$$\mu = \sum_{i} p_i \, \mu \circ S_i^{-1},$$

satisfying the strong separation condition, with defining probabilities $p_i \in (0, 1)$ and similarity mappings S_i with contraction ratios equal to c_i

The L^q -spectra of μ is given by the unique function $\beta : \mathbb{R} \to \mathbb{R}$ defined by

$$\sum_i p_i^q c_i^{eta(q)} = 1$$

< ∃ >

An example

Image: A math a math

≪ ≣⇒

æ

An example

Jonathan M. Fraser

Olsen '98: Sierpiński sponges for all $q \in \mathbb{R}$

臣

≣ ▶

DQC

Olsen '98: Sierpiński sponges for all $q \in \mathbb{R}$

- needed a strong separation condition

문 🛌 문

Olsen '98: Sierpiński sponges for all $q \in \mathbb{R}$

- needed a strong separation condition
- explicit formula

臣

∢ ≣ ≯

Olsen '98: Sierpiński sponges for all $q \in \mathbb{R}$

- needed a strong separation condition
- explicit formula

Falconer '99: generic result in the range (1, 2]

문 문 문

Olsen '98: Sierpiński sponges for all $q \in \mathbb{R}$

- needed a strong separation condition
- explicit formula

Falconer '99: generic result in the range (1, 2]

- asymptotic formula

글 > 글
What about self-affine measures?

Olsen '98: Sierpiński sponges for all $q \in \mathbb{R}$

- needed a strong separation condition
- explicit formula

Falconer '99: generic result in the range (1, 2]

- asymptotic formula

Feng-Wang '05: much more general class of self-affine carpet

Olsen '98: Sierpiński sponges for all $q \in \mathbb{R}$

- needed a strong separation condition
- explicit formula

Falconer '99: generic result in the range (1, 2]

- asymptotic formula

Feng-Wang '05: much more general class of self-affine carpet

- supremum of an expression over a simplex of probability vectors

Olsen '98: Sierpiński sponges for all $q \in \mathbb{R}$

- needed a strong separation condition
- explicit formula

Falconer '99: generic result in the range (1, 2]

- asymptotic formula

Feng-Wang '05: much more general class of self-affine carpet

- supremum of an expression over a simplex of probability vectors

Falconer '10: generic result for almost self-affine measures in the range $(1,\infty]$

Olsen '98: Sierpiński sponges for all $q \in \mathbb{R}$

- needed a strong separation condition
- explicit formula

Falconer '99: generic result in the range (1, 2]

- asymptotic formula

Feng-Wang '05: much more general class of self-affine carpet

- supremum of an expression over a simplex of probability vectors

Falconer '10: generic result for almost self-affine measures in the range $(1,\infty]$

- asymptotic formula

Self-affine carpets

Feng and Wang's result

Theorem (Feng-Wang '05) Let $q \ge 0$. For a self-affine measure on a Feng-Wang carpet

 $\tau_{\mu}(q) = \max\{\theta_{A}, \theta_{B}\}$

→ 문 → 문

Feng and Wang's result

Theorem (Feng-Wang '05) Let $q \ge 0$. For a self-affine measure on a Feng-Wang carpet

 $\tau_{\mu}(q) = \max\{\theta_A, \theta_B\}$

where

$$heta_A = \sup_{\mathbf{t}\in\Gamma_A} rac{\mathbf{t}\cdot\Big(\log\mathbf{t}+ au_{\pi_2(\mu)}(q)(\log\mathbf{d}-\log\mathbf{c})-q\log\mathbf{p}\Big)}{\mathbf{t}\cdot\log\mathbf{d}}$$

and

$$\theta_B = \sup_{\mathbf{t}\in\Gamma_B} \frac{\mathbf{t}\cdot\Big(\log\mathbf{t}+\tau_{\pi_1(\mu)}(q)(\log\mathbf{c}-\log\mathbf{d})-q\log\mathbf{p}\Big)}{\mathbf{t}\cdot\log\mathbf{c}}$$

・回 ・ ・ ヨ ・ ・ ヨ ・

臣

Let $q \ge 0$. For a self-affine measure on a Feng-Wang carpet where $c_i \ge d_i$ for all i,

$$\sum_{i} p_{i}^{q} c_{i}^{\tau_{\pi_{1}(\mu)}(q)} d_{i}^{\tau_{\mu}(q) - \tau_{\pi_{1}(\mu)}(q)} = 1.$$

< ≣ ▶

Let $q \geqslant 0.$ For a self-affine measure on a Feng-Wang carpet where $c_i \geqslant d_i$ for all i,

$$\sum_{i} p_{i}^{q} c_{i}^{\tau_{\pi_{1}(\mu)}(q)} d_{i}^{\tau_{\mu}(q) - \tau_{\pi_{1}(\mu)}(q)} = 1.$$

In this case we have a **closed form expression** for the spectrum.

글 > 글

Let $q \geqslant 0.$ For a self-affine measure on a Feng-Wang carpet where $c_i \geqslant d_i$ for all i,

$$\sum_{i} p_{i}^{q} c_{i}^{\tau_{\pi_{1}(\mu)}(q)} d_{i}^{\tau_{\mu}(q) - \tau_{\pi_{1}(\mu)}(q)} = 1.$$

In this case we have a **closed form expression** for the spectrum.

This allows precise analysis of differentiability properties and gives applications concerning the Hausdorff dimension of μ and F.

Let $q \geqslant 0.$ For a self-affine measure on a Feng-Wang carpet where $c_i \geqslant d_i$ for all i,

$$\sum_{i} p_{i}^{q} c_{i}^{\tau_{\pi_{1}(\mu)}(q)} d_{i}^{\tau_{\mu}(q) - \tau_{\pi_{1}(\mu)}(q)} = 1.$$

In this case we have a **closed form expression** for the spectrum.

This allows precise analysis of differentiability properties and gives applications concerning the Hausdorff dimension of μ and F.

In fact, the spectrum is differentiable for all $q \in (0, \infty)$.

Our class of measures

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

Our class of measures

《曰》《聞》《臣》《臣》

æ

Our class of measures

・ロン ・四と ・日と ・日と

æ

For $q \ge 0$, let and $\tau_2(q) = \tau_{\pi_2(\mu)}(q).$

$$\tau_1(q)=\tau_{\pi_1(\mu)}(q)$$

Jonathan M. Fraser
$$L^q$$
-spectra

For
$$q \geqslant 0$$
, let $au_1(q) = au_{\pi_1(\mu)}(q)$ and $au_2(q) = au_{\pi_2(\mu)}(q).$

If there are orientation reversing maps in the IFS, then these are a pair of graph-directed self-similar measures,

< ∃ >

臣

For
$$q \geqslant 0$$
, let $au_1(q) = au_{\pi_1(\mu)}(q)$ and $au_2(q) = au_{\pi_2(\mu)}(q).$

If there are orientation reversing maps in the IFS, then these are a pair of graph-directed self-similar measures, and they may have complicated overlaps.

臣

< ≣ ▶

For
$$q \geqslant 0$$
, let $au_1(q) = au_{\pi_1(\mu)}(q)$ and $au_2(q) = au_{\pi_2(\mu)}(q).$

Theorem (F '13, Peres-Solomyak '00)

The L^q -spectrum exists for $q \ge 0$ for any graph-directed self-similar measure, regardless of separation conditions.

For $\mathbf{i} \in \mathcal{I}^k$ let $\tau_{\mathbf{i}}(q)$ be the L^q -spectrum of the projection of μ onto the longest side of the rectangle $S_{\mathbf{i}}([0,1]^2)$,

-≣->

For $\mathbf{i} \in \mathcal{I}^k$ let $\tau_{\mathbf{i}}(q)$ be the L^q -spectrum of the projection of μ onto the longest side of the rectangle $S_{\mathbf{i}}([0,1]^2)$, and note that this is always equal to either $\tau_1(q)$ or $\tau_2(q)$.

For $\mathbf{i} \in \mathcal{I}^k$ let $\tau_{\mathbf{i}}(q)$ be the L^q -spectrum of the projection of μ onto the longest side of the rectangle $S_{\mathbf{i}}([0,1]^2)$, and note that this is always equal to either $\tau_1(q)$ or $\tau_2(q)$.

For $s \in \mathbb{R}$ and $q \ge 0$ and $\mathbf{i} \in \mathcal{I}^*$, we define the *q*-modified singular value function, $\psi^{s,q}$, by

$$\psi^{s,q}(\mathbf{i}) = p_{\mathbf{i}}^{q} \alpha_{1}(\mathbf{i})^{\tau_{\mathbf{i}}(q)} \alpha_{2}(\mathbf{i})^{s-\tau_{\mathbf{i}}(q)}$$

For $\mathbf{i} \in \mathcal{I}^k$ let $\tau_{\mathbf{i}}(q)$ be the L^q -spectrum of the projection of μ onto the longest side of the rectangle $S_{\mathbf{i}}([0,1]^2)$, and note that this is always equal to either $\tau_1(q)$ or $\tau_2(q)$.

For $s \in \mathbb{R}$ and $q \ge 0$ and $\mathbf{i} \in \mathcal{I}^*$, we define the *q*-modified singular value function, $\psi^{s,q}$, by

$$\psi^{s,q}(\mathbf{i}) = p_{\mathbf{i}}^{q} \alpha_{1}(\mathbf{i})^{\tau_{\mathbf{i}}(q)} \alpha_{2}(\mathbf{i})^{s-\tau_{\mathbf{i}}(q)}$$

and for $s \in \mathbb{R}$ and $k \in \mathbb{N}$, we define a number $\Psi_k^{s,q}$ by

$$\Psi_k^{s,q} = \sum_{\mathbf{i}\in\mathcal{I}^k} \psi^{s,q}(\mathbf{i})$$

For $\mathbf{i} \in \mathcal{I}^k$ let $\tau_{\mathbf{i}}(q)$ be the L^q -spectrum of the projection of μ onto the longest side of the rectangle $S_{\mathbf{i}}([0,1]^2)$, and note that this is always equal to either $\tau_1(q)$ or $\tau_2(q)$.

For $s \in \mathbb{R}$ and $q \ge 0$ and $\mathbf{i} \in \mathcal{I}^*$, we define the *q*-modified singular value function, $\psi^{s,q}$, by

$$\psi^{s,q}(\mathbf{i}) = p_{\mathbf{i}}^{q} \alpha_{1}(\mathbf{i})^{\tau_{\mathbf{i}}(q)} \alpha_{2}(\mathbf{i})^{s-\tau_{\mathbf{i}}(q)}$$

and for $s \in \mathbb{R}$ and $k \in \mathbb{N}$, we define a number $\Psi_k^{s,q}$ by

$$\Psi_k^{s,q} = \sum_{\mathbf{i}\in\mathcal{I}^k} \psi^{s,q}(\mathbf{i})$$

We may define a function $P: \mathbb{R} \times [0,\infty) \to [0,\infty)$ by:

$$P(s,q) = \lim_{k \to \infty} (\Psi_k^{s,q})^{1/k}$$

For each $q \ge 0$, there is a unique value $s \in \mathbb{R}$ for which P(s,q) = 1

<->
</>
</>
</>
</>
</l>

- ★ 臣 ▶ - - 臣

DQC

For each $q \ge 0$, there is a unique value $s \in \mathbb{R}$ for which P(s,q) = 1 and hence we may define a function $\gamma : [0,\infty) \to \mathbb{R}$ by

$$P(\gamma(q), q) = 1$$

臣

- < ≣ > -

For each $q \ge 0$, there is a unique value $s \in \mathbb{R}$ for which P(s,q) = 1 and hence we may define a function $\gamma : [0,\infty) \to \mathbb{R}$ by

$$P(\gamma(q), q) = 1$$

Unfortunately, the definition for $\gamma(q)$ is not a closed form expression.

æ

For each $q \ge 0$, there is a unique value $s \in \mathbb{R}$ for which P(s,q) = 1 and hence we may define a function $\gamma : [0,\infty) \to \mathbb{R}$ by

$$P(\gamma(q), q) = 1$$

Unfortunately, the definition for $\gamma(q)$ is not a closed form expression.

However, $\gamma(\textbf{\textit{q}})$ can be numerically estimated by approximating it by functions γ_k defined by

$$\Psi_k^{\gamma_k(q),q} = \sum_{\mathbf{i}\in\mathcal{I}^k} p_{\mathbf{i}}^q \alpha_1(\mathbf{i})^{\tau_{\mathbf{i}}(q)} \alpha_2(\mathbf{i})^{\gamma_k(q)-\tau_{\mathbf{i}}(q)} = 1.$$

∢ 문 ▶ - - 문

Lemma (Properties of γ)

γ is strictly decreasing on [0,∞)
 γ is continuous on (0,∞)

Lemma (Properties of γ)

- (1) γ is strictly decreasing on $[0,\infty)$
- (2) γ is continuous on $(0,\infty)$
- (3) γ is the pointwise limit of γ_k as $k \to \infty$

Lemma (Properties of γ)

(1)
$$\gamma$$
 is strictly decreasing on $[0,\infty)$

(2) γ is continuous on $(0,\infty)$

(3)
$$\gamma$$
 is the pointwise limit of γ_k as $k \to \infty$

(4)
$$\gamma(1) = 0$$
 and $\lim_{q \to \infty} \gamma(q) = -\infty$

(5) γ is convex on $(0,\infty)$

æ

Theorem (F '13) Let μ be in our class of measures. Then

(1) For all $q \in [0,1]$ we have

 $\overline{\tau}_{\mu}(q) \leqslant \gamma(q).$

(2) For all $q \ge 1$ we have

 $\gamma(q) \leq \underline{\tau}_{\mu}(q).$

(3) If μ satisfies the rectangular open set condition, then for all $q \ge 0$ we have

$$au_{\mu}(q) = \gamma(q).$$

The main drawback of our formula is that it is not a closed form expression and this prevents us analysing differentiability of the spectrum.

The main drawback of our formula is that it is not a closed form expression and this prevents us analysing differentiability of the spectrum. However, thankfully we can use our result to get a closed form expression in the orientation preserving case (which includes the Feng-Wang class).

The main drawback of our formula is that it is not a closed form expression and this prevents us analysing differentiability of the spectrum. However, thankfully we can use our result to get a closed form expression in the orientation preserving case (which includes the Feng-Wang class).

Assume μ is 'orientation preserving', which means that the linear part of each map S_i in the defining IFS is of the form

$$\left(\begin{array}{cc} \pm c_i & 0 \\ 0 & \pm d_i \end{array} \right)$$

for constants $c_i, d_i \in (0, 1)$, which are the singular values of S_i .

The main drawback of our formula is that it is not a closed form expression and this prevents us analysing differentiability of the spectrum. However, thankfully we can use our result to get a closed form expression in the orientation preserving case (which includes the Feng-Wang class).

Assume μ is 'orientation preserving', which means that the linear part of each map S_i in the defining IFS is of the form

$$\left(\begin{array}{cc} \pm c_i & 0\\ 0 & \pm d_i \end{array}\right)$$

for constants $c_i, d_i \in (0, 1)$, which are the singular values of S_i . Define $\gamma_A, \gamma_B : [0, \infty) \to \mathbb{R}$ by

$$\sum_{i\in\mathcal{I}} p_i^q c_i^{\tau_1(q)} d_i^{\gamma_A(q)-\tau_1(q)} = 1$$

and

$$\sum_{i\in\mathcal{I}}p_i^q d_i^{\tau_2(q)} c_i^{\gamma_B(q)-\tau_2(q)} = 1$$

Since γ_A and γ_B are given by closed form expressions, it is easy to study their differentiability.
Since γ_A and γ_B are given by closed form expressions, it is easy to study their differentiability.

Lemma

If τ_1 is differentiable at q > 0, then γ_A is differentiable at q, with

$$\gamma_{A}'(q) = -\frac{\sum_{i \in \mathcal{I}} p_{i}^{q} c_{i}^{\tau_{1}(q)} d_{i}^{\gamma_{A}(q) - \tau_{1}(q)} \log \left(p_{i} c_{i}^{\tau_{1}'(q)} d_{i}^{-\tau_{1}'(q)} \right)}{\sum_{i \in \mathcal{I}} p_{i}^{q} c_{i}^{\tau_{1}(q)} d_{i}^{\gamma_{A}(q) - \tau_{1}(q)} \log d_{i}}$$

and if τ_2 is differentiable at q > 0, then γ_B is differentiable at q with a similar explicit formula.

(1) If
$$\max\{\gamma_A(q), \gamma_B(q)\} \leqslant \tau_1(q) + \tau_2(q)$$
, then

 $\gamma(q) = \max\{\gamma_A(q), \gamma_B(q)\}.$

(2) If $\min\{\gamma_A(q), \gamma_B(q)\} \ge \tau_1(q) + \tau_2(q)$, then

 $\gamma(q) \leqslant \min\{\gamma_A(q), \gamma_B(q)\},\$

(1) If
$$\max\{\gamma_A(q), \gamma_B(q)\} \leq \tau_1(q) + \tau_2(q)$$
, then

 $\gamma(q) = \max\{\gamma_A(q), \gamma_B(q)\}.$

(2) If $\min\{\gamma_A(q), \gamma_B(q)\} \ge \tau_1(q) + \tau_2(q)$, then

 $\gamma(q) \leqslant \min\{\gamma_A(q), \gamma_B(q)\},\$

with equality occurring if either of the following conditions are satisfied:

(2.1)
$$\sum_{i \in \mathcal{I}} p_i^q c_i^{\tau_1(q)} d_i^{\gamma_A(q) - \tau_1(q)} \log (c_i/d_i) \ge 0,$$

(2.2) $\sum_{i \in \mathcal{I}} p_i^q d_i^{\tau_2(q)} c_i^{\gamma_B(q) - \tau_2(q)} \log (d_i/c_i) \ge 0.$

(1) If
$$\max\{\gamma_A(q), \gamma_B(q)\} \leq \tau_1(q) + \tau_2(q)$$
, then

 $\gamma(q) = \max\{\gamma_A(q), \gamma_B(q)\}.$

(2) If $\min\{\gamma_A(q), \gamma_B(q)\} \ge \tau_1(q) + \tau_2(q)$, then

 $\gamma(q) \leqslant \min\{\gamma_A(q), \gamma_B(q)\},\$

with equality occurring if either of the following conditions are satisfied:

 $\begin{array}{ll} (2.1) & \sum_{i \in \mathcal{I}} p_i^q \; c_i^{\tau_1(q)} \; d_i^{\gamma_A(q) - \tau_1(q)} \; \log \left(c_i/d_i \right) \ge 0, \\ (2.2) & \sum_{i \in \mathcal{I}} p_i^q \; d_i^{\tau_2(q)} \; c_i^{\gamma_B(q) - \tau_2(q)} \; \log \left(d_i/c_i \right) \ge 0. \end{array}$

Moreover, if $c_i \ge d_i$ for all $i \in \mathcal{I}$, then $\gamma(q) = \gamma_A(q)$ for all $q \ge 0$, and if $d_i \ge c_i$ for all $i \in \mathcal{I}$, then $\gamma(q) = \gamma_B(q)$ for all $q \ge 0$, without any additional assumptions.

Let μ be of separated type and assume that τ_1 and τ_2 are differentiable at q = 1. Then γ is differentiable at q = 1 with

$$\gamma'(1) = \begin{cases} \min\{\gamma'_{A}(1), \gamma'_{B}(1)\} & \text{if } \min\{\gamma'_{A}(1), \gamma'_{B}(1)\} \ge \tau'_{1}(1) + \tau'_{2}(1) \\ \\ \max\{\gamma'_{A}(1), \gamma'_{B}(1)\} & \text{if } \max\{\gamma'_{A}(1), \gamma'_{B}(1)\} \leqslant \tau'_{1}(1) + \tau'_{2}(1) \end{cases}$$

Let μ be of separated type and assume that τ_1 and τ_2 are differentiable at q = 1. Then γ is differentiable at q = 1 with

 $\gamma'(1) = \begin{cases} \min\{\gamma'_{A}(1), \gamma'_{B}(1)\} & \text{if } \min\{\gamma'_{A}(1), \gamma'_{B}(1)\} \ge \tau'_{1}(1) + \tau'_{2}(1) \\ \\ \max\{\gamma'_{A}(1), \gamma'_{B}(1)\} & \text{if } \max\{\gamma'_{A}(1), \gamma'_{B}(1)\} \leqslant \tau'_{1}(1) + \tau'_{2}(1) \end{cases}$

Corollary (F '13) Let μ be of separated type and assume it satisfies the ROSC. Then

 $\dim_B F = \dim_P F = \max\{\gamma_A(0), \gamma_B(0)\}$

□ ▶ 《 臣 ▶ 《 臣 ▶ / 臣

Let μ be of separated type and assume that τ_1 and τ_2 are differentiable at q = 1. Then γ is differentiable at q = 1 with

 $\gamma'(1) = \begin{cases} \min\{\gamma'_{A}(1), \gamma'_{B}(1)\} & \text{if } \min\{\gamma'_{A}(1), \gamma'_{B}(1)\} \ge \tau'_{1}(1) + \tau'_{2}(1) \\ \\ \max\{\gamma'_{A}(1), \gamma'_{B}(1)\} & \text{if } \max\{\gamma'_{A}(1), \gamma'_{B}(1)\} \leqslant \tau'_{1}(1) + \tau'_{2}(1) \end{cases}$

Corollary (F '13) Let μ be of separated type and assume it satisfies the ROSC. Then

 $\dim_B F = \dim_P F = \max\{\gamma_A(0), \gamma_B(0)\}$ (See also Barański '07 and F '12)

御 と く ヨ と く ヨ と … ヨ

Let μ be of separated type and assume that τ_1 and τ_2 are differentiable at q = 1. Then γ is differentiable at q = 1 with

 $\gamma'(1) = \begin{cases} \min\{\gamma'_{A}(1), \gamma'_{B}(1)\} & \text{if } \min\{\gamma'_{A}(1), \gamma'_{B}(1)\} \ge \tau'_{1}(1) + \tau'_{2}(1) \\ \\ \max\{\gamma'_{A}(1), \gamma'_{B}(1)\} & \text{if } \max\{\gamma'_{A}(1), \gamma'_{B}(1)\} \leqslant \tau'_{1}(1) + \tau'_{2}(1) \end{cases}$

Corollary (F '13) Let μ be of separated type and assume it satisfies the ROSC. Then

 $\dim_B F = \dim_P F = \max\{\gamma_A(0), \gamma_B(0)\}$ (See also Barański '07 and F '12)

If τ_1 and τ_2 are differentiable at q = 1, then

$$\dim_{H} \mu = \dim_{P} \mu = \dim_{e} \mu = -\gamma'(1)$$

御 と く ヨ と く ヨ と … ヨ

Let μ be of separated type and assume that τ_1 and τ_2 are differentiable at q = 1. Then γ is differentiable at q = 1 with

 $\gamma'(1) = \begin{cases} \min\{\gamma'_{A}(1), \gamma'_{B}(1)\} & \text{if } \min\{\gamma'_{A}(1), \gamma'_{B}(1)\} \ge \tau'_{1}(1) + \tau'_{2}(1) \\ \\ \max\{\gamma'_{A}(1), \gamma'_{B}(1)\} & \text{if } \max\{\gamma'_{A}(1), \gamma'_{B}(1)\} \leqslant \tau'_{1}(1) + \tau'_{2}(1) \end{cases}$

Corollary (F '13) Let μ be of separated type and assume it satisfies the ROSC. Then

 $\dim_B F = \dim_P F = \max\{\gamma_A(0), \gamma_B(0)\}$ (See also Barański '07 and F '12)

If τ_1 and τ_2 are differentiable at q = 1, then

$$\dim_{H} \mu = \dim_{P} \mu = \dim_{e} \mu = -\gamma'(1)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

which is equal to either $-\gamma_{\mathcal{A}}'(1)$ or $-\gamma_{\mathcal{B}}'(1)$.

If $c_i \ge d_i$ for all $i \in \mathcal{I}$,

If $c_i \ge d_i$ for all $i \in \mathcal{I}$, then

 $\dim_B F = \dim_P F = \gamma_A(0)$

If $c_i \ge d_i$ for all $i \in \mathcal{I}$, then

$$\dim_B F = \dim_P F = \gamma_A(0)$$

and if τ_1 is differentiable at q = 1, then

$$\dim_{H} \mu = \dim_{P} \mu = \dim_{e} \mu = -\gamma'_{A}(1) = -\frac{\sum_{i \in \mathcal{I}} p_{i} \left(\log p_{i} + \tau'_{1}(1) \log(c_{i}/d_{i})\right)}{\sum_{i \in \mathcal{I}} p_{i} \log d_{i}}$$

If $c_i \ge d_i$ for all $i \in \mathcal{I}$, then

$$\dim_B F = \dim_P F = \gamma_A(0)$$

and if τ_1 is differentiable at q = 1, then

$$\dim_{H} \mu = \dim_{P} \mu = \dim_{e} \mu = -\gamma'_{A}(1) = -\frac{\sum_{i \in \mathcal{I}} p_{i} \big(\log p_{i} + \tau'_{1}(1) \log(c_{i}/d_{i})\big)}{\sum_{i \in \mathcal{I}} p_{i} \log d_{i}}$$

There is a similar formula if $c_i \leq d_i$ for all $i \in \mathcal{I}$.

	AT A	
	<u>^</u> ^	. .
	<u>.</u>	i îi
	A A	Δ Δ
	· · · · 11 11	

590

æ

◆□ > ◆□ > ◆臣 > ◆臣 > ○

The probability vector is (3/5, 1/5, 1/5) and the unit square has been divided up into columns of widths 1/4, 1/2 and 1/4 and rows of heights 1/2, 3/10 and 2/10.

臣

-≣->

A ►

We have a closed form expression for γ for all $q \in [0,\infty)$

- ▲ @ ▶ - ▲ 臣

< ≣⇒

æ

DQC

We have a closed form expression for γ for all $q \in [0, \infty)$

It turns out that γ has a phase transition at a point $q_0 \approx 0.237$, where it is not differentiable, but for all other values of $q \ge 0$ it is differentiable.

문 🛌 문

We have a closed form expression for γ for all $q \in [0, \infty)$

It turns out that γ has a phase transition at a point $q_0 \approx 0.237$, where it is not differentiable, but for all other values of $q \ge 0$ it is differentiable.

 $\gamma(q) = \gamma_B(q) \text{ for } q \in [0, q_0]$ $\gamma(q) = \gamma_A(q) \text{ for } q \in [q_0, \infty).$

문 문 문

An example

Figure : Left: The graph of γ (black), the graphs of the parts of γ_A and γ_B not equal to γ (grey), and the graph of $(\tau_1 + \tau_2)$ (dashed), which is included to indicate which of γ_A , γ_B is equal to γ , i.e., the one 'nearer' to $(\tau_1 + \tau_2)$.

We also have closed form expressions for the dimensions.

$$\dim_{\rm B} F = \dim_{\rm P} F = \gamma(0) = \gamma_B(0) = 1.046105401$$

and

$$\dim_{\mathrm{H}} \mu \,=\, \dim_{\mathsf{P}} \mu \,=\, \dim_{\mathsf{e}} \mu \,=\, -\gamma'(1) \,=\, -\gamma'_{\mathcal{A}}(1) \,=\, 0.9792504246.$$

・ロン ・四と ・日と ・日と

æ

DQC

Question

In the separated case, if $\min\{\gamma_A(q), \gamma_B(q)\} \ge \tau_1(q) + \tau_2(q)$ and neither (2.1) nor (2.2) is satisfied, is it still true that

 $\gamma(q) = \min\{\gamma_A(q), \gamma_B(q)\}?$

글 > 글

Question

In the separated case, if $\min\{\gamma_A(q), \gamma_B(q)\} \ge \tau_1(q) + \tau_2(q)$ and neither (2.1) nor (2.2) is satisfied, is it still true that

$$\gamma(q) = \min\{\gamma_A(q), \gamma_B(q)\}?$$

Even in the awkward situations where we do not have equality, our result still provides useful computational information as

$$au_1(q) + au_2(q) \leqslant \gamma_k(q) \leqslant \gamma(q) \leqslant \min\{\gamma_A(q), \gamma_B(q)\}$$

for all $k \in \mathbb{N}$.

< ≣ ▶

æ

<= ≣⇒

< 🗇 🕨 <

臣

Question

Do the L^q-spectra of (graph-directed) self-similar measures exist for all $q \in \mathbb{R}$?

글 🕨 🛛 글

Question

Do the L^q-spectra of (graph-directed) self-similar measures exist for all $q \in \mathbb{R}$?

If the answer is 'yes', then we can at least define a moment scaling function as in the positive case.

글 > 글

Question

Do the L^q-spectra of (graph-directed) self-similar measures exist for all $q \in \mathbb{R}$?

If the answer is 'yes', then we can at least define a moment scaling function as in the positive case.

However, precise calculations for negative q are very awkward.

Thank you!

◆□ > ◆□ > ◆臣 > ◆臣 > ○

≡ • ク へ (~

- K. Barański. Hausdorff dimension of the limit sets of some planar geometric constructions, *Adv. Math.*, **210**, (2007), 215–245.
- D.-J. Feng and Y. Wang. A class of self-affine sets and self-affine measures, *J. Fourier Anal. Appl.*, **11**, (2005), 107–124.
- J. M. Fraser. On the packing dimension of box-like self-affine sets in the plane, *Nonlinearity*, **25**, (2012), 2075–2092.
- J. M. Fraser. On the *L^q*-spectrum of planar self-affine measures, *preprint*, (2013).
- L. Olsen. Self-affine multifractal Sierpiński sponges in \mathbb{R}^d , *Pacific J. Math*, **183**, (1998), 143–199.