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Lq-spectra

Let µ be a compactly supported Borel probability measure on Rn with
support denoted by F = suppµ.

The Lq-spectrum of µ is defined by

τµ(q) = lim
δ→0

log
∫
F
µ
(
B(x , δ)

)q−1
dµ(x)

− log δ

with q ∈ R.

This spectrum gives a quantitative analysis of the global fluctuations of µ.

The motivation to study this spectrum has roots in information theory.
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Basic properties of the Lq-spectrum

τµ is . . .

- convex, and thus continuous, on (0,∞) (apply Hölder’s inequality)

- decreasing on [0,∞) (easy to see)

- equal to 0 at q = 1 (easy to see)

- Lipschitz on [λ,∞) for any λ > 0 (consequence of convexity)

- differentiable on (0,∞) at all but at most countably many points and
semi-differentiable everywhere (consequence of convexity)
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Why do people interested in fractals study the
Lq-spectrum?

Relationship to the dimension theory of F and µ . . .

dimB F = τ(0)

If τ is differentiable at q = 1, then

dimH µ = dimP µ = dime µ = −τ ′(1) (Ngai ’97)

and therefore
−τ ′(1) 6 dimH F 6 dimP F 6 τ(0).
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An example

Let µ be a self-similar measure

µ =
∑
i

pi µ ◦ S−1
i ,

satisfying the strong separation condition, with defining probabilities
pi ∈ (0, 1) and similarity mappings Si with contraction ratios equal to ci

The Lq-spectra of µ is given by the unique function β : R→ R defined by∑
i

pqi c
β(q)
i = 1
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What about self-affine measures?

Olsen ’98: Sierpiński sponges for all q ∈ R

- needed a strong separation condition
- explicit formula

Falconer ’99: generic result in the range (1, 2]

- asymptotic formula

Feng-Wang ’05: much more general class of self-affine carpet

- supremum of an expression over a simplex of probability vectors

Falconer ’10: generic result for almost self-affine measures in the range
(1,∞]

- asymptotic formula
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Olsen ’98: Sierpiński sponges for all q ∈ R

- needed a strong separation condition
- explicit formula

Falconer ’99: generic result in the range (1, 2]

- asymptotic formula

Feng-Wang ’05: much more general class of self-affine carpet

- supremum of an expression over a simplex of probability vectors

Falconer ’10: generic result for almost self-affine measures in the range
(1,∞]

- asymptotic formula

Jonathan M. Fraser Lq -spectra



What about self-affine measures?
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Self-affine carpets
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Feng and Wang’s result

Theorem (Feng-Wang ’05)
Let q > 0. For a self-affine measure on a Feng-Wang carpet

τµ(q) = max{θA, θB}

where

θA = sup
t∈ΓA

t ·
(

log t + τπ2(µ)(q)(log d− log c)− q log p
)

t · log d

and

θB = sup
t∈ΓB

t ·
(

log t + τπ1(µ)(q)(log c− log d)− q log p
)

t · log c
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Feng and Wang’s result

Theorem (Feng-Wang ’05)
Let q > 0. For a self-affine measure on a Feng-Wang carpet where
ci > di for all i , ∑

i

pqi c
τπ1(µ)(q)

i d
τµ(q)−τπ1(µ)(q)

i = 1.

In this case we have a closed form expression for the spectrum.

This allows precise analysis of differentiability properties and gives
applications concerning the Hausdorff dimension of µ and F .

In fact, the spectrum is differentiable for all q ∈ (0,∞).
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Our class of measures

For q > 0, let
τ1(q) = τπ1(µ)(q)

and
τ2(q) = τπ2(µ)(q).

If there are orientation reversing maps in the IFS, then these are a pair of
graph-directed self-similar measures, and they may have complicated
overlaps.

Theorem (F ’13, Peres-Solomyak ’00)
The Lq-spectrum exists for q > 0 for any graph-directed self-similar
measure, regardless of separation conditions.
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q-modified singular value functions

For i ∈ Ik let τi(q) be the Lq-spectrum of the projection of µ onto the
longest side of the rectangle Si

(
[0, 1]2

)
,

and note that this is always equal
to either τ1(q) or τ2(q).

For s ∈ R and q > 0 and i ∈ I∗, we define the q-modified singular value
function, ψs,q, by

ψs,q
(
i
)

= pqi α1(i)τi(q) α2(i)s−τi(q),

and for s ∈ R and k ∈ N, we define a number Ψs,q
k by

Ψs,q
k =

∑
i∈Ik

ψs,q(i)

We may define a function P : R× [0,∞)→ [0,∞) by:

P(s, q) = lim
k→∞

(Ψs,q
k )1/k
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A formula for the Lq-spectrum

For each q > 0, there is a unique value s ∈ R for which P(s, q) = 1

and
hence we may define a function γ : [0,∞)→ R by

P(γ(q), q) = 1

Unfortunately, the definition for γ(q) is not a closed form expression.

However, γ(q) can be numerically estimated by approximating it by
functions γk defined by

Ψ
γk (q),q
k =

∑
i∈Ik

pqi α1(i)τi(q) α2(i)γk (q)−τi(q) = 1.
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A formula for the Lq-spectrum

Lemma (Properties of γ)

(1) γ is strictly decreasing on [0,∞)

(2) γ is continuous on (0,∞)

(3) γ is the pointwise limit of γk as k →∞

(4) γ(1) = 0 and limq→∞ γ(q) = −∞

(5) γ is convex on (0,∞)
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A formula for the Lq-spectrum

Theorem (F ’13)
Let µ be in our class of measures. Then

(1) For all q ∈ [0, 1] we have

τµ(q) 6 γ(q).

(2) For all q > 1 we have
γ(q) 6 τµ(q).

(3) If µ satisfies the rectangular open set condition, then for all q > 0
we have

τµ(q) = γ(q).
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A closed form expression in the orientation preserving case

The main drawback of our formula is that it is not a closed form
expression and this prevents us analysing differentiability of the spectrum.

However, thankfully we can use our result to get a closed form expression
in the orientation preserving case (which includes the Feng-Wang class).

Assume µ is ‘orientation preserving’, which means that the linear part of
each map Si in the defining IFS is of the form(

±ci 0
0 ±di

)
for constants ci , di ∈ (0, 1), which are the singular values of Si . Define
γA, γB : [0,∞)→ R by∑

i∈I

pqi c
τ1(q)
i d

γA(q)−τ1(q)
i = 1

and ∑
i∈I

pqi d
τ2(q)
i c

γB (q)−τ2(q)
i = 1.
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A closed form expression in the orientation preserving case

Since γA and γB are given by closed form expressions, it is easy to study
their differentiability.

Lemma
If τ1 is differentiable at q > 0, then γA is differentiable at q, with

γ′A(q) = −

∑
i∈I p

q
i c

τ1(q)
i d

γA(q)−τ1(q)
i log

(
pic

τ ′
1 (q)

i d
−τ ′

1 (q)
i

)
∑

i∈I p
q
i c

τ1(q)
i d

γA(q)−τ1(q)
i log di

and if τ2 is differentiable at q > 0, then γB is differentiable at q with a
similar explicit formula.
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A closed form expression in the orientation preserving case

Theorem (F ’13)

(1) If max{γA(q), γB(q)} 6 τ1(q) + τ2(q), then

γ(q) = max{γA(q), γB(q)}.

(2) If min{γA(q), γB(q)} > τ1(q) + τ2(q), then

γ(q) 6 min{γA(q), γB(q)},

with equality occurring if either of the following conditions are
satisfied:

(2.1)
∑

i∈I p
q
i c

τ1(q)
i d

γA(q)−τ1(q)
i log

(
ci/di

)
> 0,

(2.2)
∑

i∈I p
q
i d

τ2(q)
i c

γB (q)−τ2(q)
i log

(
di/ci

)
> 0.

Moreover, if ci > di for all i ∈ I, then γ(q) = γA(q) for all q > 0, and if
di > ci for all i ∈ I, then γ(q) = γB(q) for all q > 0, without any
additional assumptions.
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A closed form expression in the orientation preserving case

Theorem (F ’13)
Let µ be of separated type and assume that τ1 and τ2 are differentiable
at q = 1. Then γ is differentiable at q = 1 with

γ′(1) =

 min{γ′A(1), γ′B(1)} if min{γ′A(1), γ′B(1)} > τ ′1(1) + τ ′2(1)

max{γ′A(1), γ′B(1)} if max{γ′A(1), γ′B(1)} 6 τ ′1(1) + τ ′2(1)

Corollary (F ’13)
Let µ be of separated type and assume it satisfies the ROSC. Then

dimB F = dimP F = max{γA(0), γB(0)} (See also Barański ’07 and F ’12)

If τ1 and τ2 are differentiable at q = 1, then

dimH µ = dimP µ = dime µ = −γ′(1)

which is equal to either −γ′A(1) or −γ′B(1).
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If τ1 and τ2 are differentiable at q = 1, then

dimH µ = dimP µ = dime µ = −γ′(1)

which is equal to either −γ′A(1) or −γ′B(1).

Jonathan M. Fraser Lq -spectra



A closed form expression in the orientation preserving case

Theorem (F ’13)
Let µ be of separated type and assume that τ1 and τ2 are differentiable
at q = 1. Then γ is differentiable at q = 1 with

γ′(1) =

 min{γ′A(1), γ′B(1)} if min{γ′A(1), γ′B(1)} > τ ′1(1) + τ ′2(1)

max{γ′A(1), γ′B(1)} if max{γ′A(1), γ′B(1)} 6 τ ′1(1) + τ ′2(1)

Corollary (F ’13)
Let µ be of separated type and assume it satisfies the ROSC. Then

dimB F = dimP F = max{γA(0), γB(0)} (See also Barański ’07 and F ’12)
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A closed form expression in the orientation preserving case

If ci > di for all i ∈ I,

then

dimB F = dimP F = γA(0)

and if τ1 is differentiable at q = 1, then

dimH µ = dimP µ = dime µ = −γ′A(1) = −
∑

i∈I pi
(

log pi + τ ′1(1) log(ci/di )
)∑

i∈I pi log di
.

There is a similar formula if ci 6 di for all i ∈ I.
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An example

The probability vector is (3/5, 1/5, 1/5) and the unit square has been
divided up into columns of widths 1/4, 1/2 and 1/4 and rows of heights
1/2, 3/10 and 2/10.
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An example

We have a closed form expression for γ for all q ∈ [0,∞)

It turns out that γ has a phase transition at a point q0 ≈ 0.237, where it
is not differentiable, but for all other values of q > 0 it is differentiable.

γ(q) = γB(q) for q ∈ [0, q0]

γ(q) = γA(q) for q ∈ [q0,∞).
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An example

Figure : Left: The graph of γ (black), the graphs of the parts of γA and
γB not equal to γ (grey), and the graph of (τ1 + τ2) (dashed), which is
included to indicate which of γA, γB is equal to γ, i.e., the one ‘nearer’
to (τ1 + τ2).
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An example

We also have closed form expressions for the dimensions.

dimB F = dimP F = γ(0) = γB(0) = 1.046105401

and

dimH µ = dimP µ = dime µ = −γ′(1) = −γ′A(1) = 0.9792504246.
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Further questions

Question
In the separated case, if min{γA(q), γB(q)} > τ1(q) + τ2(q) and neither
(2.1) nor (2.2) is satisfied, is it still true that

γ(q) = min{γA(q), γB(q)}?

Even in the awkward situations where we do not have equality, our result
still provides useful computational information as

τ1(q) + τ2(q) 6 γk(q) 6 γ(q) 6 min{γA(q), γB(q)}

for all k ∈ N.
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Further questions

It would be interesting to consider negative values of q. The first
question concerns the projections.

Question
Do the Lq-spectra of (graph-directed) self-similar measures exist for all
q ∈ R?

If the answer is ‘yes’, then we can at least define a moment scaling
function as in the positive case.

However, precise calculations for negative q are very awkward.
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Thank you!
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Math, 183, (1998), 143–199.

Jonathan M. Fraser Lq -spectra


