# Assouad type dimensions and homogeneity of fractals

Jonathan M. Fraser

The University of St Andrews

Jonathan M. Fraser Assouad type dimensions

A 'dimension' is a function that assigns a (usually positive, finite real) number to a metric space which attempts to quantify how 'large' the set is.

- ∢ ⊒ →

Common examples of 'dimensions' are the Hausdorff, packing and box dimensions.

Common examples of 'dimensions' are the Hausdorff, packing and box dimensions.

Fractals are sets with a complex structure on small scales and thus they may have *fractional dimension*!

Common examples of 'dimensions' are the Hausdorff, packing and box dimensions.

Fractals are sets with a complex structure on small scales and thus they may have *fractional dimension*!

People working in dimension theory and fractal geometry are often concerned with the rigorous computation of the dimensions of abstract classes of fractal sets.

・ 同 ト ・ ヨ ト ・ ヨ ト

However, fractals and dimensions often crop up in a wide variety of contexts, with links and applications being found in diverse areas of mathematics, for example, geometric measure theory, dynamical systems, probability theory and differential equations.

### Geometric measure theory



Figure: A Kakeya needle set.

▲ □ ▶ ▲ 三

### Dynamical systems



Figure: Chaotic solution to the Lorenz system.

・ロ・ ・ 日・ ・ 田・

-≣->

## Probability theory



Figure: Fractal percolation.

・ロト ・回 ト ・ ヨト ・ ヨト

### Differential equations: fluid dynamics



#### Figure: Kelvin-Helmholtz instability

/⊒ > < ≣ >

How many balls of diameter 1/8 do we need to cover it?



How many balls of diameter 1/8 do we need to cover it?  $\ldots 8 = (1/8)^{-1}$ 

回 と く ヨ と く ヨ と



How many balls of diameter 1/8 do we need to cover it?  $\ldots 8 = (1/8)^{-1}$ 

In general we will need roughly  $r^{-1}$  balls of diameter r to cover the line segment . . .

- ∢ ⊒ ⊳



How many balls of diameter 1/8 do we need to cover it? ...  $8 = (1/8)^{-1}$ 

In general we will need roughly  $r^{-1}$  balls of diameter r to cover the line segment . . .

... and the 'dimension' of the line segment is 1.

Let (X, d) be a compact metric space. For any non-empty subset  $F \subseteq X$  and r > 0, let  $N_r(F)$  be the smallest number of open sets with diameter less than or equal to r required to cover F.

Let (X, d) be a compact metric space. For any non-empty subset  $F \subseteq X$ and r > 0, let  $N_r(F)$  be the smallest number of open sets with diameter less than or equal to r required to cover F. Heuristically,

$$N_r(F) \approx r^{-\dim F}$$
.

/⊒ > < ≣ >

Let (X, d) be a compact metric space. For any non-empty subset  $F \subseteq X$ and r > 0, let  $N_r(F)$  be the smallest number of open sets with diameter less than or equal to r required to cover F. Heuristically,

$$N_r(F) \approx r^{-\dim F}.$$

In fact, solving for dim F formally yields the upper and lower box dimensions.

#### The Assouad dimension was introduced by Assouad in the 1970s

・ロン ・回 と ・ ヨ と ・ ヨ と

- The Assouad dimension was introduced by Assouad in the 1970s
- Important tool in the study of quasi-conformal mappings, embeddability problems and PDEs

回 と く ヨ と く ヨ と

- The Assouad dimension was introduced by Assouad in the 1970s
- Important tool in the study of quasi-conformal mappings, embeddability problems and PDEs
- In fact the initial motivation was to prove the following theorem: a metric space can be quasisymmetrically embedded into some Euclidean space if and only if it has finite Assouad dimension.

- The Assouad dimension was introduced by Assouad in the 1970s
- Important tool in the study of quasi-conformal mappings, embeddability problems and PDEs
- In fact the initial motivation was to prove the following theorem: a metric space can be quasisymmetrically embedded into some Euclidean space if and only if it has finite Assouad dimension.

Robinson: *Dimensions, Embeddings, and Attractors* Heinonen: *Lectures on Analysis on Metric Spaces.*  Minimal attention in the literature on fractals,

2011 - Mackay: Assouad dimension of Lalley-Gatzouras carpets

回 と く ヨ と く ヨ と

2011 - Mackay: Assouad dimension of Lalley-Gatzouras carpets 2011 - Olsen: Assouad dimension of graph-directed Moran fractals

2011 - Mackay: Assouad dimension of Lalley-Gatzouras carpets 2011 - Olsen: Assouad dimension of graph-directed Moran fractals 2012 - Käenmäki-Lehrbäck-Vuorinen: Relationships with Whitney covers and tubular neighbourhoods

2011 - Mackay: Assouad dimension of Lalley-Gatzouras carpets 2011 - Olsen: Assouad dimension of graph-directed Moran fractals 2012 - Käenmäki-Lehrbäck-Vuorinen: Relationships with Whitney covers and tubular neighbourhoods 2013 - F.: Assouad dimension of Barański carpets, quasi-self-similar sets and self-similar sets with overlaps

2011 - Mackay: Assouad dimension of Lalley-Gatzouras carpets 2011 - Olsen: Assouad dimension of graph-directed Moran fractals 2012 - Käenmäki-Lehrbäck-Vuorinen: Relationships with Whitney covers and tubular neighbourhoods 2013 - F.: Assouad dimension of Barański carpets, quasi-self-similar sets and self-similar sets with overlaps

The Assouad dimension gives 'coarse but local' information about a set, unlike the Hausdorff dimension which gives 'fine but global' information.

伺下 イヨト イヨト

The Assouad dimension of a non-empty subset F of X is defined by

$$\begin{split} \dim_{\mathsf{A}} F &= \inf \left\{ \begin{array}{c} \alpha &: \text{ there exists constants } C, \ \rho > 0 \text{ such that,} \\ & \text{ for all } 0 < r < R \leqslant \rho, \text{ we have} \\ & \sup_{x \in F} \ N_r \big( B(x,R) \cap F \big) \ \leqslant \ C \bigg( \frac{R}{r} \bigg)^{\alpha} \end{array} \right\}. \end{split}$$

(1日) (1日) (日)

We will also be concerned with the natural dual to Assouad dimension, which we call the *lower dimension*.

・ 回 ト ・ ヨ ト ・ ヨ ト

We will also be concerned with the natural dual to Assouad dimension, which we call the *lower dimension*. The lower dimension of F is defined by

$$\dim_{L} F = \sup \left\{ \begin{array}{rl} \alpha & : \text{ there exists constants } C, \ \rho > 0 \text{ such that,} \\ & \text{ for all } 0 < r < R \leqslant \rho, \text{ we have} \\ & \inf_{x \in F} N_{r} \big( B(x, R) \cap F \big) \ \geqslant \ C \Big( \frac{R}{r} \Big)^{\alpha} \right\}.$$

This quantity was introduced by Larman in the 1960s, where it was called the *minimal dimensional number*.

We will also be concerned with the natural dual to Assouad dimension, which we call the *lower dimension*. The lower dimension of F is defined by

$$\dim_{\mathsf{L}} F = \sup \left\{ \begin{array}{ll} \alpha & : \text{ there exists constants } C, \ \rho > 0 \text{ such that,} \\ & \text{ for all } 0 < r < R \leqslant \rho, \text{ we have} \\ & \inf_{x \in F} \ N_r \big( B(x, R) \cap F \big) \ \geqslant \ C \bigg( \frac{R}{r} \bigg)^{\alpha} \end{array} \right\}.$$

This quantity was introduced by Larman in the 1960s, where it was called the *minimal dimensional number*. It has also been referred to by other names, for example: the *lower Assouad dimension* by Käenmäki, Lehrbäck and Vuorinen and the *uniformity dimension* (Tuomas Sahlsten, personal communication).

For a totally bounded subset F of a metric space, we have

 $\dim_{\mathsf{L}} F \leqslant \underline{\dim}_{\mathsf{B}} F \leqslant \overline{\dim}_{\mathsf{B}} F \leqslant \dim_{\mathsf{A}} F.$ 

同 と く ヨ と く ヨ と

For a totally bounded subset F of a metric space, we have

$$\dim_{\mathsf{L}} F \leqslant \underline{\dim}_{\mathsf{B}} F \leqslant \overline{\dim}_{\mathsf{B}} F \leqslant \dim_{\mathsf{A}} F.$$

The lower dimension is in general not comparable to the Hausdorff dimension or packing dimension. However, if F is compact, then

| Property                     | dim <sub>H</sub> | dim <sub>P</sub> | <u>dim</u> B | $\overline{dim}_{B}$ | dimL         | dim <sub>A</sub> |
|------------------------------|------------------|------------------|--------------|----------------------|--------------|------------------|
| Monotone                     | $\checkmark$     | $\checkmark$     | $\checkmark$ | $\checkmark$         | ×            | $\checkmark$     |
| Finitely stable              | $\checkmark$     | $\checkmark$     | ×            | $\checkmark$         | ×            | $\checkmark$     |
| Countably stable             | $\checkmark$     | $\checkmark$     | ×            | ×                    | ×            | ×                |
| Lipschitz stable             | $\checkmark$     | $\checkmark$     | $\checkmark$ | $\checkmark$         | ×            | ×                |
| Bi-Lipschitz stable          | $\checkmark$     | $\checkmark$     | $\checkmark$ | $\checkmark$         | $\checkmark$ | $\checkmark$     |
| Stable under taking closures | ×                | ×                | $\checkmark$ | $\checkmark$         | $\checkmark$ | $\checkmark$     |
| Open set property            | $\checkmark$     | $\checkmark$     | $\checkmark$ | $\checkmark$         | ×            | $\checkmark$     |
| Measurable                   | $\checkmark$     | ×                | $\checkmark$ | $\checkmark$         | $\checkmark$ | $\checkmark$     |

・ロン ・四 と ・ ヨ と ・ モ と

'Dimension pairs' are intimately related to the dimension theory of product spaces and there is a pleasant symmetry in the formulae.

∃ >

'Dimension pairs' are intimately related to the dimension theory of product spaces and there is a pleasant symmetry in the formulae. We have

 $\dim_{\mathsf{H}} X + \dim_{\mathsf{H}} Y \leqslant \dim_{\mathsf{H}} (X \times Y) \leqslant \dim_{\mathsf{H}} X + \dim_{\mathsf{P}} Y$ 

 $\leq \dim_{\mathsf{P}}(X \times Y) \leq \dim_{\mathsf{P}} X + \dim_{\mathsf{P}} Y,$ 

・回・ ・ヨ・ ・ヨ・

'Dimension pairs' are intimately related to the dimension theory of product spaces and there is a pleasant symmetry in the formulae. We have

 $\dim_{\mathsf{H}} X + \dim_{\mathsf{H}} Y \leqslant \dim_{\mathsf{H}} (X \times Y) \leqslant \dim_{\mathsf{H}} X + \dim_{\mathsf{P}} Y$ 

 $\leq \dim_{\mathrm{P}}(X \times Y) \leq \dim_{\mathrm{P}} X + \dim_{\mathrm{P}} Y,$ 

 $\underline{\dim}_{\mathsf{B}} X + \underline{\dim}_{\mathsf{B}} Y \leqslant \underline{\dim}_{\mathsf{B}} (X \times Y) \leqslant \underline{\dim}_{\mathsf{B}} X + \overline{\dim}_{\mathsf{B}} Y$ 

 $\leqslant \overline{\dim}_{\mathsf{B}}(X \times Y) \leqslant \overline{\dim}_{\mathsf{B}}X + \overline{\dim}_{\mathsf{B}}Y$ 

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

# Basic properties: products

The Assouad dimension and lower dimension are also a natural 'dimension pair'.

Theorem (Assouad '77-'79, F. '13)

For metric spaces X and Y, we have

 $\dim_L X + \dim_L Y \quad \leqslant \quad \dim_L (X \times Y) \; \leqslant \; \dim_L X + \dim_A Y$ 

 $\leqslant \dim_A(X \times Y) \leqslant \dim_A X + \dim_A Y.$ 

伺 ト イヨト イヨト

# Basic properties: products

The Assouad dimension and lower dimension are also a natural 'dimension pair'.

Theorem (Assouad '77-'79, F. '13)

For metric spaces X and Y, we have

 $\dim_L X + \dim_L Y \leqslant \dim_L (X \times Y) \leqslant \dim_L X + \dim_A Y$ 

 $\leq \dim_A(X \times Y) \leq \dim_A X + \dim_A Y.$ 

白 と く ヨ と く ヨ と …

Note: there are many natural 'product metrics' to impose on the product space  $X \times Y$ , but any reasonable choice is bi-Lipschitz equivalent to the metric  $d_{X \times Y}$  on  $X \times Y$  defined by

$$d_{X \times Y}((x_1, y_1), (x_2, y_2)) = \max\{d_X(x_1, x_2), d_Y(y_1, y_2)\}.$$

Iterated function systems (IFSs) provide many of the basic 'toy models' of fractals. It is a natural way of creating the self-similarity seen in many examples of real life and theoretical fractals.

Iterated function systems (IFSs) provide many of the basic 'toy models' of fractals. It is a natural way of creating the self-similarity seen in many examples of real life and theoretical fractals.

Let (X, d) be a compact metric space. An iterated function system (IFS) is a finite collection  $\{S_i\}_{i \in \mathcal{I}}$  of contracting self maps on X. It is a fundamental result in fractal geometry that for every IFS there exists a unique non-empty compact set F, called the *attractor*, which satisfies

$$F=\bigcup_{i\in\mathcal{I}}S_i(F).$$

向下 イヨト イヨト

Iterated function systems (IFSs) provide many of the basic 'toy models' of fractals. It is a natural way of creating the self-similarity seen in many examples of real life and theoretical fractals.

Let (X, d) be a compact metric space. An iterated function system (IFS) is a finite collection  $\{S_i\}_{i \in \mathcal{I}}$  of contracting self maps on X. It is a fundamental result in fractal geometry that for every IFS there exists a unique non-empty compact set F, called the *attractor*, which satisfies

$$F=\bigcup_{i\in\mathcal{I}}S_i(F).$$

If an IFS consists solely of *similarity* transformations, then the attractor is called a *self-similar set*. Likewise, if X is a Euclidean space and the mappings are all translate linear (*affine*) transformations, then the attractor is called *self-affine*.

(1日) (1日) (日)

# Iterated function systems



Figure: Left: The self-similar Sierpiński Triangle. Right: The self-affine Barnsley Fern.

(日本) (日本)

Self-similar sets are in a certain sense the most basic type of fractal. Let  $c_i \in (0, 1)$  denote the contraction ratio for the similarity map  $S_i$ . Then the solution s to the famous Hutchinson-Moran formula

$$\sum_{i\in\mathcal{I}}c_i^s=1$$

is known as the *similarity dimension* of the system and is the 'best guess' for the Hausdroff dimension of the attractor F.

| 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 回 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U = 2 4 U =

$$\dim_{\mathrm{H}} F = \underline{\dim}_{\mathrm{B}} F = \overline{\dim}_{\mathrm{B}} F = \dim_{\mathrm{P}} F \leqslant s$$

where s is the similarity dimension.

< ∃⇒

$$\dim_{\mathrm{H}} F = \underline{\dim}_{\mathrm{B}} F = \overline{\dim}_{\mathrm{B}} F = \dim_{\mathrm{P}} F \leqslant s$$

where s is the similarity dimension. It is also well-known that self-similar sets satisfying the OSC are Ahlfors regular and that Ahlfors regular sets have equal Assouad dimension and lower dimension,

$$\dim_{\mathrm{H}} F = \underline{\dim}_{\mathrm{B}} F = \overline{\dim}_{\mathrm{B}} F = \dim_{\mathrm{P}} F \leqslant s$$

where s is the similarity dimension. It is also well-known that self-similar sets satisfying the OSC are Ahlfors regular and that Ahlfors regular sets have equal Assouad dimension and lower dimension, so if a self-similar set satisfies the OSC, then

$$\dim_{\mathsf{L}} F = \dim_{\mathsf{H}} F = \underline{\dim}_{\mathsf{B}} F = \overline{\dim}_{\mathsf{B}} F = \dim_{\mathsf{P}} F = \dim_{\mathsf{A}} F = s.$$

$$\dim_{\mathrm{H}} F = \underline{\dim}_{\mathrm{B}} F = \overline{\dim}_{\mathrm{B}} F = \dim_{\mathrm{P}} F \leqslant s$$

where s is the similarity dimension. It is also well-known that self-similar sets satisfying the OSC are Ahlfors regular and that Ahlfors regular sets have equal Assouad dimension and lower dimension, so if a self-similar set satisfies the OSC, then

$$\dim_{\mathsf{L}} F = \dim_{\mathsf{H}} F = \underline{\dim}_{\mathsf{B}} F = \overline{\dim}_{\mathsf{B}} F = \dim_{\mathsf{P}} F = \dim_{\mathsf{A}} F = s.$$

Olsen ('12) asked if the Assouad dimension of a self-similar set with overlaps can ever exceed the upper box dimension.

Answer:

Answer: Yes!

< □ > < □ > < □ > < □ > < □ > .

Answer: Yes! Theorem (F. '13) Any self-similar set satisfies  $\dim_L F = \dim_H F = \underline{\dim}_B F = \overline{\dim}_B F = \dim_P F \leq \dim_A F$ 

and the final inequality can be strict.

白 と く ヨ と く ヨ と

We need to prove two things:

(1) Any self-similar set satisfies dim<sub>L</sub>  $F = \dim_H F$ 

and

(2) There exists a self-similar set with  $\overline{\dim}_{B}F < \dim_{A}F$ 

▲御▶ ▲注▶ ▲注▶

We need to prove two things:

(1) Any self-similar set satisfies  $\dim_{L} F = \dim_{H} F$ 

and

(2) There exists a self-similar set with  $\overline{\dim}_{B}F < \dim_{A}F$ 

(1) is easy and in fact we can prove this relationship for a more general class of quasi-self-similar sets (in the sense of McLaughlin '87, Falconer '89).

・ 同 ト ・ ヨ ト ・ ヨ ト

We need to prove two things:

(1) Any self-similar set satisfies  $\dim_{L} F = \dim_{H} F$ 

and

(2) There exists a self-similar set with  $\overline{\dim}_{B}F < \dim_{A}F$ 

(1) is easy and in fact we can prove this relationship for a more general class of quasi-self-similar sets (in the sense of McLaughlin '87, Falconer '89).

We will now prove (2) by constructing an example.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let  $\alpha, \beta, \gamma \in (0, 1)$  be such that  $(\log \beta)/(\log \alpha) \notin \mathbb{Q}$  and define similarity maps  $S_1, S_2, S_3$  on [0, 1] as follows

 $S_1(x) = \alpha x$ ,  $S_2(x) = \beta x$  and  $S_3(x) = \gamma x + (1 - \gamma)$ .

- (日) (日) (日) (日) (日)

Let  $\alpha, \beta, \gamma \in (0, 1)$  be such that  $(\log \beta)/(\log \alpha) \notin \mathbb{Q}$  and define similarity maps  $S_1, S_2, S_3$  on [0, 1] as follows

$$S_1(x) = \alpha x$$
,  $S_2(x) = \beta x$  and  $S_3(x) = \gamma x + (1 - \gamma)$ .

Let *F* be the self-similar attractor of  $\{S_1, S_2, S_3\}$ . We will now prove that dim<sub>A</sub> *F* = 1 and, in particular, the Assouad dimension is independent of  $\alpha, \beta, \gamma$  provided they are chosen with the above property.

・日・ ・ ヨ ・ ・ ヨ ・ -

Let  $\alpha, \beta, \gamma \in (0, 1)$  be such that  $(\log \beta)/(\log \alpha) \notin \mathbb{Q}$  and define similarity maps  $S_1, S_2, S_3$  on [0, 1] as follows

 $S_1(x) = \alpha x$ ,  $S_2(x) = \beta x$  and  $S_3(x) = \gamma x + (1 - \gamma)$ .

Let *F* be the self-similar attractor of  $\{S_1, S_2, S_3\}$ . We will now prove that dim<sub>A</sub> *F* = 1 and, in particular, the Assouad dimension is independent of  $\alpha, \beta, \gamma$  provided they are chosen with the above property. We will use the following proposition due to Mackay and Tyson.

#### Proposition

Let  $X \subset \mathbb{R}$  be compact and let F be a compact subset of X. Let  $T_k$  be a sequence of similarity maps defined on  $\mathbb{R}$  and suppose that  $T_k(F) \cap X \rightarrow_{d_{\mathcal{H}}} \hat{F}$  for some non-empty compact set  $\hat{F}$ . Then  $\dim_A \hat{F} \leq \dim_A F$ . The set  $\hat{F}$  is called a weak tangent to F.

< □ > < @ > < 注 > < 注 > ... 注

We will now show that [0,1] is a weak tangent to F in the above sense. Let X = [0,1] and assume without loss of generality that  $\alpha < \beta$ . For each  $k \in \mathbb{N}$  let  $T_k$  be defined by

$$T_k(x) = \beta^{-k} x.$$

(4回) (4回) (4回)

We will now show that [0,1] is a weak tangent to F in the above sense. Let X = [0,1] and assume without loss of generality that  $\alpha < \beta$ . For each  $k \in \mathbb{N}$  let  $T_k$  be defined by

$$T_k(x) = \beta^{-k} x.$$

Since

$$E_k := \{ \alpha^m \beta^n : m \in \mathbb{N}, n \in \{-k, \dots, \infty\} \} \cap [0, 1] \subset T_k(F) \cap [0, 1]$$

for each k it suffices to show that  $E_k \rightarrow_{d_{\mathcal{H}}} [0,1]$ .

(4回) (4回) (日)

We will now show that [0,1] is a weak tangent to F in the above sense. Let X = [0,1] and assume without loss of generality that  $\alpha < \beta$ . For each  $k \in \mathbb{N}$  let  $T_k$  be defined by

$$T_k(x) = \beta^{-k} x.$$

Since

$$E_k := \left\{ \alpha^m \beta^n : m \in \mathbb{N}, n \in \{-k, \dots, \infty\} \right\} \cap [0, 1] \subset T_k(F) \cap [0, 1]$$

for each k it suffices to show that  $E_k 
ightarrow_{d_{\mathcal{H}}} [0,1]$ . Indeed, we have

$$E_k extsf{ad}_{\mathcal{H}} extsf{d}_{\mathcal{H}} \overline{igcup_{k\in\mathbb{N}}} \cap [0,1]$$

・ロン ・回と ・ヨン ・ヨン

We will now show that [0,1] is a weak tangent to F in the above sense. Let X = [0,1] and assume without loss of generality that  $\alpha < \beta$ . For each  $k \in \mathbb{N}$  let  $T_k$  be defined by

$$T_k(x) = \beta^{-k} x.$$

Since

$$E_k := \{ \alpha^m \beta^n : m \in \mathbb{N}, n \in \{-k, \dots, \infty\} \} \cap [0, 1] \subset T_k(F) \cap [0, 1]$$

for each k it suffices to show that  $E_k 
ightarrow_{d_{\mathcal{H}}} [0,1]$ . Indeed, we have

$$\begin{array}{rcl} E_k & \rightarrow_{d_{\mathcal{H}}} & \overline{\bigcup_{k \in \mathbb{N}} E_k} \cap [0,1] \\ & = & \overline{\{\alpha^m \beta^n : m \in \mathbb{N}, n \in \mathbb{Z}\}} \cap [0,1] \end{array}$$

・ロン ・回と ・ヨン ・ヨン

We will now show that [0,1] is a weak tangent to F in the above sense. Let X = [0,1] and assume without loss of generality that  $\alpha < \beta$ . For each  $k \in \mathbb{N}$  let  $T_k$  be defined by

$$T_k(x) = \beta^{-k} x.$$

Since

$$E_k := \left\{ \alpha^m \beta^n : m \in \mathbb{N}, n \in \{-k, \dots, \infty\} \right\} \cap [0, 1] \subset T_k(F) \cap [0, 1]$$

for each k it suffices to show that  $E_k \rightarrow_{d_{\mathcal{H}}} [0,1].$  Indeed, we have

$$\begin{split} E_k &\to_{d_{\mathcal{H}}} \quad \overline{\bigcup_{k \in \mathbb{N}} E_k} \cap [0,1] \\ &= \quad \overline{\{\alpha^m \beta^n : m \in \mathbb{N}, n \in \mathbb{Z}\}} \cap [0,1] \\ &= \quad [0,1]. \end{split}$$

・ロト ・回ト ・ヨト ・ヨト

To see why  $\overline{\{\alpha^m\beta^n: m \in \mathbb{N}, n \in \mathbb{Z}\}} \cap [0, 1] = [0, 1]$  we apply Dirichlet's Theorem in the following way.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

To see why  $\overline{\{\alpha^m\beta^n: m \in \mathbb{N}, n \in \mathbb{Z}\}} \cap [0, 1] = [0, 1]$  we apply Dirichlet's Theorem in the following way. It suffices to show that

```
\{m \log \alpha + n \log \beta : m \in \mathbb{N}, n \in \mathbb{Z}\}
```

is dense in  $(-\infty, 0)$ .

回 と くほ と くほ とう

To see why  $\overline{\{\alpha^m\beta^n : m \in \mathbb{N}, n \in \mathbb{Z}\}} \cap [0, 1] = [0, 1]$  we apply Dirichlet's Theorem in the following way. It suffices to show that

$$\{m \log lpha + n \log eta : m \in \mathbb{N}, n \in \mathbb{Z}\}$$

is dense in  $(-\infty, 0)$ . We have

$$m \log \alpha + n \log \beta = (n \log \alpha) \left(\frac{m}{n} + \frac{\log \beta}{\log \alpha}\right)$$

・ 回 と ・ ヨ と ・ ヨ と …

To see why  $\overline{\{\alpha^m\beta^n: m \in \mathbb{N}, n \in \mathbb{Z}\}} \cap [0, 1] = [0, 1]$  we apply Dirichlet's Theorem in the following way. It suffices to show that

$$\{m \log lpha + n \log eta : m \in \mathbb{N}, n \in \mathbb{Z}\}$$

is dense in  $(-\infty, 0)$ . We have

$$m\log \alpha + n\log \beta = (n\log \alpha) \left(\frac{m}{n} + \frac{\log \beta}{\log \alpha}\right)$$

and Dirichlet's Theorem gives that there exists infinitely many n such that

$$\left|\frac{m}{n} + \frac{\log\beta}{\log\alpha}\right| < 1/n^2$$

for some m.

向下 イヨト イヨト

To see why  $\overline{\{\alpha^m\beta^n: m \in \mathbb{N}, n \in \mathbb{Z}\}} \cap [0, 1] = [0, 1]$  we apply Dirichlet's Theorem in the following way. It suffices to show that

$$\{m \log \alpha + n \log \beta : m \in \mathbb{N}, n \in \mathbb{Z}\}$$

is dense in  $(-\infty, 0)$ . We have

$$m\log \alpha + n\log \beta = (n\log \alpha) \left(\frac{m}{n} + \frac{\log \beta}{\log \alpha}\right)$$

and Dirichlet's Theorem gives that there exists infinitely many n such that

$$\left|\frac{m}{n} + \frac{\log\beta}{\log\alpha}\right| < 1/n^2$$

for some *m*. Since  $\log \beta / \log \alpha$  is irrational, we may choose *m*, *n* to make

$$0 < |m\log\alpha + n\log\beta| < \frac{|\log\alpha|}{n}$$

with *n* arbitrarily large.

(4回) (4回) (4回)

To see why  $\overline{\{\alpha^m\beta^n: m \in \mathbb{N}, n \in \mathbb{Z}\}} \cap [0,1] = [0,1]$  we apply Dirichlet's Theorem in the following way. It suffices to show that

$$\{m \log lpha + n \log eta : m \in \mathbb{N}, n \in \mathbb{Z}\}$$

is dense in  $(-\infty, 0)$ . We have

$$m\log \alpha + n\log \beta = (n\log \alpha) \left(\frac{m}{n} + \frac{\log \beta}{\log \alpha}\right)$$

and Dirichlet's Theorem gives that there exists infinitely many n such that

$$\left|\frac{m}{n} + \frac{\log\beta}{\log\alpha}\right| < 1/n^2$$

for some *m*. Since  $\log \beta / \log \alpha$  is irrational, we may choose *m*, *n* to make

$$0 < |m\log\alpha + n\log\beta| < \frac{|\log\alpha|}{n}$$

with *n* arbitrarily large. We can thus make  $m \log \alpha + n \log \beta$  arbitrarily small and this gives the result.

If we choose  $\alpha, \beta, \gamma$  such that s < 1, then

$$\dim_{\mathsf{L}} F = \dim_{\mathsf{H}} F = \dim_{\mathsf{B}} F \leqslant s < 1 = \dim_{\mathsf{A}} F.$$



◆□ > ◆□ > ◆臣 > ◆臣 > ○

The dimension theory of certain classes of planar self-affine sets, commonly referred to as self-affine carpets, has attracted enormous attention in the literature in the last 30 years.

The dimension theory of certain classes of planar self-affine sets, commonly referred to as self-affine carpets, has attracted enormous attention in the literature in the last 30 years.

This began with the Bedford-McMullen carpets with numerous generalisations being introduced by, for example, Lalley-Gatzouras ('92), Barański ('07), Feng-Wang ('05) and F. ('12).



Figure: A self-affine Bedford-McMullen carpet with m = 4, n = 5. The shaded rectangles on the left indicate the 6 maps in the IFS.



Some notation ...

・ロン ・四 と ・ ヨ と ・ モ と



◆□ > ◆□ > ◆臣 > ◆臣 > ○



・ロン ・回 と ・ ヨン ・ ヨン







<ロ> (四) (四) (三) (三) (三) (三)



◆□ > ◆□ > ◆臣 > ◆臣 > ○



・ロト ・回ト ・ヨト ・ヨト

#### Theorem (Mackay '11)

# Let F be a self-affine carpet in the Bedford-McMullen or Lalley-Gatzouras class. Then

$$\dim_A F = s_1 + \max_{i \in \mathcal{C}_1} t_{1,i}$$

|| ( 同 ) || ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = )

#### Theorem (Mackay '11)

Let F be a self-affine carpet in the Bedford-McMullen or Lalley-Gatzouras class. Then

$$\dim_A F = s_1 + \max_{i \in \mathcal{C}_1} t_{1,i}$$

#### Theorem (F. '13)

Let F be a self-affine carpet in the Bedford-McMullen or Lalley-Gatzouras class. Then

$$\dim_L F = s_1 + \min_{i \in \mathcal{C}_1} t_{1,i}$$

個 と く ヨ と く ヨ と

### Theorem (F. '13)

Let F be a self-affine carpet in the Barański class (and not in the Lalley-Gatzouras class). Then

$$\dim_{A} F = \max_{j=1,2} \max_{i \in \mathcal{C}_{j}} \left( s_{j} + t_{j,i} \right)$$

and

$$\dim_L F = \min_{j=1,2} \min_{i \in C_j} \left( s_j + t_{j,i} \right)$$

回 と く ヨ と く ヨ と

Thank you!

- J. M. Fraser. On the packing dimension of box-like self-affine sets in the plane, *Nonlinearity*, **25**, (2012), 2075–2092.
- J. M. Fraser. Assouad type dimensions and homogeneity of fractals, *submitted* (2013).
- J. M. Mackay. Assouad dimension of self-affine carpets, *Conform. Geom. Dyn.* **15**, (2011), 177–187.
  - L. Olsen. On the Assouad dimension of graph directed Moran fractals, *Fractals*, **19**, (2011), 221–226.