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Dimension theory

A ‘dimension’ is a function that assigns a (usually positive, finite real)
number to a metric space which attempts to quantify how ‘large’ the set
is.

In particular, it usually studies how much space the set takes up on
small scales.

Common examples of ‘dimensions’ are the Hausdorff, packing and box
dimensions.

Fractals are sets with a complex structure on small scales and thus they
may have fractional dimension!

People working in dimension theory and fractal geometry are often

concerned with the rigorous computation of the dimensions of abstract

classes of fractal sets.
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Dimension theory

However, fractals and dimensions often crop up in a wide variety of
contexts, with links and applications being found in diverse areas of
mathematics, for example, geometric measure theory, dynamical systems,
probability theory and differential equations.
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Geometric measure theory

Figure: A Kakeya needle set.
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Dynamical systems

Figure: Chaotic solution to the Lorenz system.
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Probability theory

Figure: Fractal percolation.
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Differential equations: fluid dynamics

Figure: Kelvin-Helmholtz instability
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Dimension

Consider a unit line segment.

How many balls of diameter 1/8 do we need to cover it?

In general we will need roughly r−1 balls of diameter r to cover the line
segment . . .

. . . and the ‘dimension’ of the line segment is 1.
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Dimension

Let (X , d) be a compact metric space. For any non-empty subset F ⊆ X
and r > 0, let Nr (F ) be the smallest number of open sets with diameter
less than or equal to r required to cover F .

Heuristically,

Nr (F ) ≈ r− dim F .

In fact, solving for dim F formally yields the upper and lower box

dimensions.
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The Assouad dimension

I The Assouad dimension was introduced by Assouad in the 1970s

I Important tool in the study of quasi-conformal mappings,
embeddability problems and PDEs

I In fact the initial motivation was to prove the following theorem: a
metric space can be quasisymmetrically embedded into some
Euclidean space if and only if it has finite Assouad dimension.

Robinson: Dimensions, Embeddings, and Attractors
Heinonen: Lectures on Analysis on Metric Spaces.
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The Assouad dimension

I Minimal attention in the literature on fractals,

until recently...

2011 - Mackay: Assouad dimension of Lalley-Gatzouras carpets
2011 - Olsen: Assouad dimension of graph-directed Moran fractals
2012 - Käenmäki-Lehrbäck-Vuorinen: Relationships with Whitney
covers and tubular neighbourhoods
2013 - F.: Assouad dimension of Barański carpets, quasi-self-similar
sets and self-similar sets with overlaps

I The Assouad dimension gives ‘coarse but local’ information about a
set, unlike the Hausdorff dimension which gives ‘fine but global’
information.
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2012 - Käenmäki-Lehrbäck-Vuorinen: Relationships with Whitney
covers and tubular neighbourhoods

2013 - F.: Assouad dimension of Barański carpets, quasi-self-similar
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The Assouad dimension

The Assouad dimension of a non-empty subset F of X is defined by

dimA F = inf

{
α : there exists constants C , ρ > 0 such that,

for all 0 < r < R 6 ρ, we have

sup
x∈F

Nr

(
B(x ,R) ∩ F

)
6 C

(
R

r

)α }
.
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The lower dimension

We will also be concerned with the natural dual to Assouad dimension,
which we call the lower dimension.

The lower dimension of F is defined
by

dimL F = sup

{
α : there exists constants C , ρ > 0 such that,

for all 0 < r < R 6 ρ, we have

inf
x∈F

Nr

(
B(x ,R) ∩ F

)
> C

(
R

r

)α }
.

This quantity was introduced by Larman in the 1960s, where it was called

the minimal dimensional number. It has also been referred to by other

names, for example: the lower Assouad dimension by Käenmäki,

Lehrbäck and Vuorinen and the uniformity dimension (Tuomas Sahlsten,

personal communication).
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Relationships between dimensions

For a totally bounded subset F of a metric space, we have

dimL F 6 dimBF 6 dimBF 6 dimA F .

The lower dimension is in general not comparable to the Hausdorff
dimension or packing dimension. However, if F is compact, then

dimP F

6 6

dimL F 6 dimH F dimBF 6 dimA F .
6 6

dimBF
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Basic properties

Property dimH dimP dimB dimB dimL dimA

Monotone X X X X × X
Finitely stable X X × X × X
Countably stable X X × × × ×
Lipschitz stable X X X X × ×
Bi-Lipschitz stable X X X X X X
Stable under taking closures × × X X X X
Open set property X X X X × X
Measurable X × X X X X

Jonathan M. Fraser Assouad type dimensions



Basic properties: products

‘Dimension pairs’ are intimately related to the dimension theory of
product spaces and there is a pleasant symmetry in the formulae.

We
have

dimH X + dimH Y 6 dimH(X × Y ) 6 dimH X + dimP Y

6 dimP(X × Y ) 6 dimP X + dimP Y ,

dimBX + dimBY 6 dimB(X × Y ) 6 dimBX + dimBY

6 dimB(X × Y ) 6 dimBX + dimBY
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Basic properties: products

The Assouad dimension and lower dimension are also a natural
‘dimension pair’.

Theorem (Assouad ’77-’79, F. ’13)
For metric spaces X and Y , we have

dimL X + dimL Y 6 dimL(X × Y ) 6 dimL X + dimA Y

6 dimA(X × Y ) 6 dimA X + dimA Y .

Note: there are many natural ‘product metrics’ to impose on the product
space X × Y , but any reasonable choice is bi-Lipschitz equivalent to the
metric dX×Y on X × Y defined by

dX×Y
(
(x1, y1), (x2, y2)

)
= max{dX (x1, x2), dY (y1, y2)}.
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Iterated function systems

Iterated function systems (IFSs) provide many of the basic ‘toy models’
of fractals. It is a natural way of creating the self-similarity seen in many
examples of real life and theoretical fractals.

Let (X , d) be a compact metric space. An iterated function system (IFS)
is a finite collection {Si}i∈I of contracting self maps on X . It is a
fundamental result in fractal geometry that for every IFS there exists a
unique non-empty compact set F , called the attractor, which satisfies

F =
⋃
i∈I

Si (F ).

If an IFS consists solely of similarity transformations, then the attractor is

called a self-similar set. Likewise, if X is a Euclidean space and the

mappings are all translate linear (affine) transformations, then the

attractor is called self-affine.
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Iterated function systems

Figure: Left: The self-similar Sierpiński Triangle. Right: The self-affine
Barnsley Fern.
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Self-similar sets

Self-similar sets are in a certain sense the most basic type of fractal. Let
ci ∈ (0, 1) denote the contraction ratio for the similarity map Si . Then
the solution s to the famous Hutchinson-Moran formula∑

i∈I

cs
i = 1

is known as the similarity dimension of the system and is the ‘best guess’
for the Hausdroff dimension of the attractor F .
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Self-similar sets with overlaps

It is well-known that any self-similar set (regardless of overlaps) satisfies:

dimH F = dimBF = dimBF = dimP F 6 s

where s is the similarity dimension.

It is also well-known that self-similar
sets satisfying the OSC are Ahlfors regular and that Ahlfors regular sets
have equal Assouad dimension and lower dimension, so if a self-similar
set satisfies the OSC, then

dimL F = dimH F = dimBF = dimBF = dimP F = dimA F = s.

Olsen (’12) asked if the Assouad dimension of a self-similar set with

overlaps can ever exceed the upper box dimension.
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Self-similar sets with overlaps

Answer:

Yes!

Theorem (F. ’13)
Any self-similar set satisfies

dimL F = dimH F = dimBF = dimBF = dimP F 6 dimA F

and the final inequality can be strict.
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Proof

We need to prove two things:

(1) Any self-similar set satisfies dimL F = dimH F

and

(2) There exists a self-similar set with dimBF < dimA F

(1) is easy and in fact we can prove this relationship for a more general
class of quasi-self-similar sets (in the sense of McLaughlin ’87, Falconer
’89).

We will now prove (2) by constructing an example.
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Proof

Let α, β, γ ∈ (0, 1) be such that (log β)/(logα) /∈ Q and define similarity
maps S1,S2,S3 on [0, 1] as follows

S1(x) = αx , S2(x) = βx and S3(x) = γx + (1− γ).

Let F be the self-similar attractor of {S1,S2,S3}. We will now prove that
dimA F = 1 and, in particular, the Assouad dimension is independent of
α, β, γ provided they are chosen with the above property. We will use the
following proposition due to Mackay and Tyson.

Proposition
Let X ⊂ R be compact and let F be a compact subset of X . Let Tk be a
sequence of similarity maps defined on R and suppose that
Tk(F ) ∩ X →dH F̂ for some non-empty compact set F̂ . Then
dimA F̂ 6 dimA F . The set F̂ is called a weak tangent to F .
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Tk(F ) ∩ X →dH F̂ for some non-empty compact set F̂ . Then
dimA F̂ 6 dimA F . The set F̂ is called a weak tangent to F .
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We will now show that [0, 1] is a weak tangent to F in the above sense.
Let X = [0, 1] and assume without loss of generality that α < β. For
each k ∈ N let Tk be defined by

Tk(x) = β−kx .

Since

Ek :=
{
αmβn : m ∈ N, n ∈ {−k, . . . ,∞}

}
∩ [0, 1] ⊂ Tk(F ) ∩ [0, 1]

for each k it suffices to show that Ek →dH [0, 1]. Indeed, we have

Ek →dH

⋃
k∈N

Ek ∩ [0, 1]

= {αmβn : m ∈ N, n ∈ Z} ∩ [0, 1]

= [0, 1].

Jonathan M. Fraser Assouad type dimensions



Proof

We will now show that [0, 1] is a weak tangent to F in the above sense.
Let X = [0, 1] and assume without loss of generality that α < β. For
each k ∈ N let Tk be defined by

Tk(x) = β−kx .

Since

Ek :=
{
αmβn : m ∈ N, n ∈ {−k , . . . ,∞}

}
∩ [0, 1] ⊂ Tk(F ) ∩ [0, 1]

for each k it suffices to show that Ek →dH [0, 1].

Indeed, we have

Ek →dH

⋃
k∈N

Ek ∩ [0, 1]

= {αmβn : m ∈ N, n ∈ Z} ∩ [0, 1]

= [0, 1].

Jonathan M. Fraser Assouad type dimensions



Proof

We will now show that [0, 1] is a weak tangent to F in the above sense.
Let X = [0, 1] and assume without loss of generality that α < β. For
each k ∈ N let Tk be defined by

Tk(x) = β−kx .

Since

Ek :=
{
αmβn : m ∈ N, n ∈ {−k , . . . ,∞}

}
∩ [0, 1] ⊂ Tk(F ) ∩ [0, 1]

for each k it suffices to show that Ek →dH [0, 1]. Indeed, we have

Ek →dH

⋃
k∈N

Ek ∩ [0, 1]

= {αmβn : m ∈ N, n ∈ Z} ∩ [0, 1]

= [0, 1].

Jonathan M. Fraser Assouad type dimensions



Proof

We will now show that [0, 1] is a weak tangent to F in the above sense.
Let X = [0, 1] and assume without loss of generality that α < β. For
each k ∈ N let Tk be defined by

Tk(x) = β−kx .

Since

Ek :=
{
αmβn : m ∈ N, n ∈ {−k , . . . ,∞}

}
∩ [0, 1] ⊂ Tk(F ) ∩ [0, 1]

for each k it suffices to show that Ek →dH [0, 1]. Indeed, we have

Ek →dH

⋃
k∈N

Ek ∩ [0, 1]

= {αmβn : m ∈ N, n ∈ Z} ∩ [0, 1]

= [0, 1].

Jonathan M. Fraser Assouad type dimensions



Proof

We will now show that [0, 1] is a weak tangent to F in the above sense.
Let X = [0, 1] and assume without loss of generality that α < β. For
each k ∈ N let Tk be defined by

Tk(x) = β−kx .

Since

Ek :=
{
αmβn : m ∈ N, n ∈ {−k , . . . ,∞}

}
∩ [0, 1] ⊂ Tk(F ) ∩ [0, 1]

for each k it suffices to show that Ek →dH [0, 1]. Indeed, we have

Ek →dH

⋃
k∈N

Ek ∩ [0, 1]

= {αmβn : m ∈ N, n ∈ Z} ∩ [0, 1]

= [0, 1].

Jonathan M. Fraser Assouad type dimensions



Proof

To see why {αmβn : m ∈ N, n ∈ Z} ∩ [0, 1] = [0, 1] we apply Dirichlet’s
Theorem in the following way.

It suffices to show that

{m logα + n log β : m ∈ N, n ∈ Z}

is dense in (−∞, 0). We have

m logα + n log β = (n logα)

(
m

n
+

log β

logα

)
and Dirichlet’s Theorem gives that there exists infinitely many n such that∣∣∣m

n
+

log β

logα

∣∣∣ < 1/n2

for some m. Since log β/ logα is irrational, we may choose m, n to make

0 < |m logα + n log β| < |logα|
n

with n arbitrarily large. We can thus make m logα + n log β arbitrarily

small and this gives the result.
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Proof

If we choose α, β, γ such that s < 1, then

dimL F = dimH F = dimB F 6 s < 1 = dimA F .
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Self-affine carpets

The dimension theory of certain classes of planar self-affine sets,
commonly referred to as self-affine carpets, has attracted enormous
attention in the literature in the last 30 years.

This began with the Bedford-McMullen carpets with numerous

generalisations being introduced by, for example, Lalley-Gatzouras (’92),

Barański (’07), Feng-Wang (’05) and F. (’12).
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Self-affine carpets

Figure: A self-affine Bedford-McMullen carpet with m = 4, n = 5. The
shaded rectangles on the left indicate the 6 maps in the IFS.
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Self-affine carpets

Some notation . . .
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Self-affine carpets

Theorem (Mackay ’11)
Let F be a self-affine carpet in the Bedford-McMullen or
Lalley-Gatzouras class. Then

dimA F = s1 + max
i∈C1

t1,i

Theorem (F. ’13)
Let F be a self-affine carpet in the Bedford-McMullen or
Lalley-Gatzouras class. Then

dimL F = s1 + min
i∈C1

t1,i
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Self-affine carpets

Theorem (F. ’13)
Let F be a self-affine carpet in the Barański class (and not in the
Lalley-Gatzouras class). Then

dimA F = max
j=1,2

max
i∈Cj

(
sj + tj,i

)
and

dimL F = min
j=1,2

min
i∈Cj

(
sj + tj,i

)
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Thank you!
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