Assouad type dimensions and homogeneity of fractals

Jonathan M. Fraser

The University of St Andrews
A ‘dimension’ is a function that assigns a (usually positive, finite real) number to a metric space which attempts to quantify how ‘large’ the set is.
A ‘dimension’ is a function that assigns a (usually positive, finite real) number to a metric space which attempts to quantify how ‘large’ the set is. In particular, it usually studies how much space the set takes up on small scales.
A ‘dimension’ is a function that assigns a (usually positive, finite real) number to a metric space which attempts to quantify how ‘large’ the set is. In particular, it usually studies how much space the set takes up on small scales.

Common examples of ‘dimensions’ are the Hausdorff, packing and box dimensions.
A ‘dimension’ is a function that assigns a (usually positive, finite real) number to a metric space which attempts to quantify how ‘large’ the set is. In particular, it usually studies how much space the set takes up on small scales.

Common examples of ‘dimensions’ are the Hausdorff, packing and box dimensions.

Fractals are sets with a complex structure on small scales and thus they may have fractional dimension!
A ‘dimension’ is a function that assigns a (usually positive, finite real) number to a metric space which attempts to quantify how ‘large’ the set is. In particular, it usually studies how much space the set takes up on small scales.

Common examples of ‘dimensions’ are the Hausdorff, packing and box dimensions.

Fractals are sets with a complex structure on small scales and thus they may have fractional dimension!

People working in dimension theory and fractal geometry are often concerned with the rigorous computation of the dimensions of abstract classes of fractal sets.
However, fractals and dimensions often crop up in a wide variety of contexts, with links and applications being found in diverse areas of mathematics, for example, geometric measure theory, dynamical systems, probability theory and differential equations.
Figure: A Kakeya needle set.
Dynamical systems

Figure: Chaotic solution to the Lorenz system.
Probability theory

Figure: Fractal percolation.
Figure: Kelvin-Helmholtz instability
Consider a unit line segment.
Consider a unit line segment.

How many balls of diameter $\frac{1}{8}$ do we need to cover it?
Consider a unit line segment.

How many balls of diameter $1/8$ do we need to cover it? $8 = (1/8)^{-1}$
Consider a unit line segment.

How many balls of diameter $1/8$ do we need to cover it? $\ldots 8 = (1/8)^{-1}$

In general we will need roughly r^{-1} balls of diameter r to cover the line segment \ldots
Consider a unit line segment.

How many balls of diameter $1/8$ do we need to cover it? $8 = (1/8)^{-1}$

In general we will need roughly r^{-1} balls of diameter r to cover the line segment . . .

. . . and the ‘dimension’ of the line segment is 1.
Let \((X, d)\) be a compact metric space. For any non-empty subset \(F \subseteq X\) and \(r > 0\), let \(N_r(F)\) be the smallest number of open sets with diameter less than or equal to \(r\) required to cover \(F\).
Let \((X, d)\) be a compact metric space. For any non-empty subset \(F \subseteq X\) and \(r > 0\), let \(N_r(F)\) be the smallest number of open sets with diameter less than or equal to \(r\) required to cover \(F\). Heuristically,

\[N_r(F) \approx r^{-\dim F}. \]
Let \((X, d)\) be a compact metric space. For any non-empty subset \(F \subseteq X\) and \(r > 0\), let \(N_r(F)\) be the smallest number of open sets with diameter less than or equal to \(r\) required to cover \(F\). Heuristically,

\[N_r(F) \approx r^{-\dim F}. \]

In fact, solving for \(\dim F\) formally yields the upper and lower box dimensions.
The Assouad dimension

- The Assouad dimension was introduced by Assouad in the 1970s.
The Assouad dimension

- The Assouad dimension was introduced by Assouad in the 1970s
- Important tool in the study of quasi-conformal mappings, embeddability problems and PDEs

Robinson: Dimensions, Embeddings, and Attractors
Heinonen: Lectures on Analysis on Metric Spaces

Jonathan M. Fraser Assouad type dimensions
The Assouad dimension was introduced by Assouad in the 1970s. An important tool in the study of quasi-conformal mappings, embeddability problems and PDEs. In fact the initial motivation was to prove the following theorem: a metric space can be quasisymmetrically embedded into some Euclidean space if and only if it has finite Assouad dimension.
The Assouad dimension was introduced by Assouad in the 1970s. It is an important tool in the study of quasi-conformal mappings, embeddability problems and PDEs. In fact, the initial motivation was to prove the following theorem: a metric space can be quasisymmetrically embedded into some Euclidean space if and only if it has finite Assouad dimension.

Robinson: *Dimensions, Embeddings, and Attractors*
Heinonen: *Lectures on Analysis on Metric Spaces.*
Minimal attention in the literature on fractals,
The Assouad dimension

- Minimal attention in the literature on fractals, until recently...
The Assouad dimension

- Minimal attention in the literature on fractals, until recently...

 2011 - Mackay: Assouad dimension of Lalley-Gatzouras carpets

The Assouad dimension gives 'coarse but local' information about a set, unlike the Hausdorff dimension which gives 'fine but global' information.
Minimal attention in the literature on fractals, until recently...

2011 - Mackay: Assouad dimension of Lalley-Gatzouras carpets
2011 - Olsen: Assouad dimension of graph-directed Moran fractals

The Assouad dimension gives 'coarse but local' information about a set, unlike the Hausdorff dimension which gives 'fine but global' information.
The Assouad dimension

- Minimal attention in the literature on fractals, until recently...

 2011 - Mackay: Assouad dimension of Lalley-Gatzouras carpets
 2011 - Olsen: Assouad dimension of graph-directed Moran fractals
 2012 - Käenmäki-Lehrbäck-Vuorinen: Relationships with Whitney covers and tubular neighbourhoods

- The Assouad dimension gives 'coarse but local' information about a set, unlike the Hausdorff dimension which gives 'fine but global' information.
The Assouad dimension

- Minimal attention in the literature on fractals, until recently...

2011 - Mackay: Assouad dimension of Lalley-Gatzouras carpets
2011 - Olsen: Assouad dimension of graph-directed Moran fractals
2012 - Käenmäki-Lehrbäck-Vuorinen: Relationships with Whitney covers and tubular neighbourhoods
2013 - F.: Assouad dimension of Barański carpets, quasi-self-similar sets and self-similar sets with overlaps

The Assouad dimension gives 'coarse but local' information about a set, unlike the Hausdorff dimension which gives 'fine but global' information.
The Assouad dimension

- Minimal attention in the literature on fractals, until recently...

2011 - Mackay: Assouad dimension of Lalley-Gatzouras carpets
2011 - Olsen: Assouad dimension of graph-directed Moran fractals
2012 - Käenmäki-Lehrbäck-Vuorinen: Relationships with Whitney covers and tubular neighbourhoods
2013 - F.: Assouad dimension of Barański carpets, quasi-self-similar sets and self-similar sets with overlaps

- The Assouad dimension gives ‘coarse but local’ information about a set, unlike the Hausdorff dimension which gives ‘fine but global’ information.
The Assouad dimension of a non-empty subset F of X is defined by

$$\dim_A F = \inf \left\{ \alpha : \text{there exists constants } C, \rho > 0 \text{ such that,} \right.$$

for all $0 < r < R \leq \rho$, we have

$$\sup_{x \in F} N_r(B(x, R) \cap F) \leq C \left(\frac{R}{r} \right)^\alpha \right\}.$$
The lower dimension

We will also be concerned with the natural dual to Assouad dimension, which we call the *lower dimension*.

\[\dim_{\text{L}} F = \sup \{ \alpha : \text{there exist constants } C, \rho > 0 \text{ such that, for all } 0 < r < R \leq \rho, \text{ we have} \inf_{x \in F} N_r(B(x, R) \cap F) \geq C(R/r)\alpha \} \]

This quantity was introduced by Larman in the 1960s, where it was called the *minimal dimensional number*. It has also been referred to by other names, for example: the *lower Assouad dimension* by K¨aenm¨aaki, Lehrb¨ack and Vuorinen and the *uniformity dimension* (Tuomas Sahlsten, personal communication).
The lower dimension

We will also be concerned with the natural dual to Assouad dimension, which we call the lower dimension. The lower dimension of F is defined by

$$\dim_L F = \sup \left\{ \alpha : \text{there exists constants } C, \rho > 0 \text{ such that,} \right. $$

$$\left. \text{for all } 0 < r < R \leq \rho, \text{ we have} \right. $$

$$\inf_{x \in F} \left| B(x, R) \cap F \right| \geq C \left(\frac{R}{r} \right)^{\alpha} \right\}.$$

This quantity was introduced by Larman in the 1960s, where it was called the minimal dimensional number.
We will also be concerned with the natural dual to Assouad dimension, which we call the *lower dimension*. The lower dimension of F is defined by

$$\dim_L F = \sup \left\{ \alpha : \text{there exists constants } C, \rho > 0 \text{ such that,} \right. \\ \left. \text{for all } 0 < r < R \leq \rho, \text{ we have} \right. \\ \left. \inf_{x \in F} N_r(B(x, R) \cap F) \geq C \left(\frac{R}{r} \right)^\alpha \right\}.$$

This quantity was introduced by Larman in the 1960s, where it was called the *minimal dimensional number*. It has also been referred to by other names, for example: the *lower Assouad dimension* by Käenmäki, Lehrbäck and Vuorinen and the *uniformity dimension* (Tuomas Sahlsten, personal communication).
For a totally bounded subset F of a metric space, we have

$$\dim_L F \leq \dim_B F \leq \overline{\dim}_B F \leq \dim_A F.$$
Relationships between dimensions

For a totally bounded subset F of a metric space, we have

$$\dim_L F \leq \dim_B F \leq \overline{\dim}_B F \leq \dim_A F.$$

The lower dimension is in general not comparable to the Hausdorff dimension or packing dimension. However, if F is compact, then

$$\dim_P F \leq \dim_L F \leq \dim_H F \leq \overline{\dim}_B F \leq \dim_A F.$$
Basic properties

<table>
<thead>
<tr>
<th>Property</th>
<th>\dim_H</th>
<th>\dim_P</th>
<th>\dim_B</th>
<th>$\dim_{\bar{B}}$</th>
<th>\dim_{L}</th>
<th>\dim_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monotone</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>Finitely stable</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>Countably stable</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Lipschitz stable</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Bi-Lipschitz stable</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Stable under taking closures</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Open set property</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>Measurable</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
‘Dimension pairs’ are intimately related to the dimension theory of product spaces and there is a pleasant symmetry in the formulae.
Basic properties: products

‘Dimension pairs’ are intimately related to the dimension theory of product spaces and there is a pleasant symmetry in the formulae. We have

\[\dim_H X + \dim_H Y \leq \dim_H (X \times Y) \leq \dim_H X + \dim_P Y \]

\[\leq \dim_P (X \times Y) \leq \dim_P X + \dim_P Y, \]
‘Dimension pairs’ are intimately related to the dimension theory of product spaces and there is a pleasant symmetry in the formulae. We have

\[\dim_H X + \dim_H Y \leq \dim_H (X \times Y) \leq \dim_H X + \dim_P Y \]

\[\leq \dim_P (X \times Y) \leq \dim_P X + \dim_P Y, \]

\[\dim_B X + \dim_B Y \leq \dim_B (X \times Y) \leq \dim_B X + \overline{\dim}_B Y \]

\[\leq \overline{\dim}_B (X \times Y) \leq \overline{\dim}_B X + \overline{\dim}_B Y \]
Basic properties: products

The Assouad dimension and lower dimension are also a natural ‘dimension pair’.

Theorem (Assouad ’77-’79, F. ’13)

For metric spaces X and Y, we have

\[
\dim_L X + \dim_L Y \leq \dim_L (X \times Y) \leq \dim_L X + \dim_A Y
\]

\[
\leq \dim_A (X \times Y) \leq \dim_A X + \dim_A Y.
\]
The Assouad dimension and lower dimension are also a natural ‘dimension pair’.

Theorem (Assouad ’77-’79, F. ’13)

For metric spaces X and Y, we have

$$
\dim_L X + \dim_L Y \leq \dim_L (X \times Y) \leq \dim_L X + \dim_A Y \leq \dim_A (X \times Y) \leq \dim_A X + \dim_A Y.
$$

Note: there are many natural ‘product metrics’ to impose on the product space $X \times Y$, but any reasonable choice is bi-Lipschitz equivalent to the metric $d_{X \times Y}$ on $X \times Y$ defined by

$$
 d_{X \times Y}((x_1, y_1), (x_2, y_2)) = \max\{d_X(x_1, x_2), d_Y(y_1, y_2)\}.
$$
Iterated function systems

Iterated function systems (IFSs) provide many of the basic ‘toy models’ of fractals. It is a natural way of creating the self-similarity seen in many examples of real life and theoretical fractals.
Iterated function systems (IFSs) provide many of the basic ‘toy models’ of fractals. It is a natural way of creating the self-similarity seen in many examples of real life and theoretical fractals.

Let \((X, d)\) be a compact metric space. An iterated function system (IFS) is a finite collection \(\{S_i\}_{i \in I}\) of contracting self maps on \(X\). It is a fundamental result in fractal geometry that for every IFS there exists a unique non-empty compact set \(F\), called the attractor, which satisfies

\[
F = \bigcup_{i \in I} S_i(F).
\]
Iterated function systems

Iterated function systems (IFSs) provide many of the basic ‘toy models’ of fractals. It is a natural way of creating the self-similarity seen in many examples of real life and theoretical fractals.

Let \((X, d)\) be a compact metric space. An iterated function system (IFS) is a finite collection \(\{S_i\}_{i \in I}\) of contracting self maps on \(X\). It is a fundamental result in fractal geometry that for every IFS there exists a unique non-empty compact set \(F\), called the attractor, which satisfies

\[
F = \bigcup_{i \in I} S_i(F).
\]

If an IFS consists solely of similarity transformations, then the attractor is called a self-similar set. Likewise, if \(X\) is a Euclidean space and the mappings are all translate linear (affine) transformations, then the attractor is called self-affine.
Iterated function systems

Figure: Left: The self-similar Sierpiński Triangle. Right: The self-affine Barnsley Fern.
Self-similar sets

Self-similar sets are in a certain sense the most basic type of fractal. Let $c_i \in (0, 1)$ denote the contraction ratio for the similarity map S_i. Then the solution s to the famous Hutchinson-Moran formula

$$\sum_{i \in I} c_i^s = 1$$

is known as the similarity dimension of the system and is the ‘best guess’ for the Hausdorff dimension of the attractor F.
It is well-known that any self-similar set (regardless of overlaps) satisfies:

$$\dim_H F = \dim_B F = \overline{\dim}_B F = \underline{\dim}_B F = \dim_P F \leq s$$

where s is the similarity dimension.
It is well-known that any self-similar set (regardless of overlaps) satisfies:

$$\dim_H F = \dim_B F = \dim_B F = \dim_P F \leq s$$

where s is the similarity dimension. It is also well-known that self-similar sets satisfying the OSC are Ahlfors regular and that Ahlfors regular sets have equal Assouad dimension and lower dimension,
It is well-known that any self-similar set (regardless of overlaps) satisfies:

\[\dim_H F = \underline{\dim}_B F = \overline{\dim}_B F = \dim_P F \leq s \]

where \(s \) is the similarity dimension. It is also well-known that self-similar sets satisfying the OSC are Ahlfors regular and that Ahlfors regular sets have equal Assouad dimension and lower dimension, so if a self-similar set satisfies the OSC, then

\[\dim_L F = \dim_H F = \underline{\dim}_B F = \overline{\dim}_B F = \dim_P F = \dim_A F = s. \]
It is well-known that any self-similar set (regardless of overlaps) satisfies:

$$\dim_H F = \dim_B^\ast F = \dim_B F = \dim_P F \leq s$$

where s is the similarity dimension. It is also well-known that self-similar sets satisfying the OSC are Ahlfors regular and that Ahlfors regular sets have equal Assouad dimension and lower dimension, so if a self-similar set satisfies the OSC, then

$$\dim_L F = \dim_H F = \dim_B^\ast F = \dim_B F = \dim_P F = \dim_A F = s.$$

Olsen (’12) asked if the Assouad dimension of a self-similar set with overlaps can ever exceed the upper box dimension.
Answer:
Self-similar sets with overlaps

Answer: Yes!
Answer: Yes!

Theorem (F. ’13)

Any self-similar set satisfies

\[\dim_L F = \dim_H F = \dim_B F = \overline{\dim}_B F = \dim_P F \leq \dim_A F \]

and the final inequality can be strict.
Proof

We need to prove two things:

(1) Any self-similar set satisfies \(\dim_L F = \dim_H F \)

and

(2) There exists a self-similar set with \(\overline{\dim}_B F < \dim_A F \)
Proof

We need to prove two things:

(1) Any self-similar set satisfies $\dim_L F = \dim_H F$

and

(2) There exists a self-similar set with $\dim_B F < \dim_A F$

(1) is easy and in fact we can prove this relationship for a more general class of quasi-self-similar sets (in the sense of McLaughlin ‘87, Falconer ‘89).
We need to prove two things:

(1) Any self-similar set satisfies $\dim_L F = \dim_H F$

and

(2) There exists a self-similar set with $\dim_B F < \dim_A F$

(1) is easy and in fact we can prove this relationship for a more general class of quasi-self-similar sets (in the sense of McLaughlin ’87, Falconer ’89).

We will now prove (2) by constructing an example.
Let $\alpha, \beta, \gamma \in (0, 1)$ be such that $(\log \beta)/(\log \alpha) \notin \mathbb{Q}$ and define similarity maps S_1, S_2, S_3 on $[0, 1]$ as follows

$$S_1(x) = \alpha x, \quad S_2(x) = \beta x \quad \text{and} \quad S_3(x) = \gamma x + (1 - \gamma).$$
Let $\alpha, \beta, \gamma \in (0, 1)$ be such that $(\log \beta)/(\log \alpha) \notin \mathbb{Q}$ and define similarity maps S_1, S_2, S_3 on $[0, 1]$ as follows

$$S_1(x) = \alpha x, \quad S_2(x) = \beta x \quad \text{and} \quad S_3(x) = \gamma x + (1 - \gamma).$$

Let F be the self-similar attractor of $\{S_1, S_2, S_3\}$. We will now prove that $\dim_A F = 1$ and, in particular, the Assouad dimension is independent of α, β, γ provided they are chosen with the above property.
Proof

Let $\alpha, \beta, \gamma \in (0, 1)$ be such that $(\log \beta)/(\log \alpha) \notin \mathbb{Q}$ and define similarity maps S_1, S_2, S_3 on $[0, 1]$ as follows

$$S_1(x) = \alpha x, \quad S_2(x) = \beta x \quad \text{and} \quad S_3(x) = \gamma x + (1 - \gamma).$$

Let F be the self-similar attractor of $\{S_1, S_2, S_3\}$. We will now prove that $\dim_A F = 1$ and, in particular, the Assouad dimension is independent of α, β, γ provided they are chosen with the above property. We will use the following proposition due to Mackay and Tyson.

Proposition

Let $X \subset \mathbb{R}$ be compact and let F be a compact subset of X. Let T_k be a sequence of similarity maps defined on \mathbb{R} and suppose that $T_k(F) \cap X \to_{d_H} \hat{F}$ for some non-empty compact set \hat{F}. Then $\dim_A \hat{F} \leq \dim_A F$. The set \hat{F} is called a weak tangent to F.
Proof

We will now show that $[0, 1]$ is a weak tangent to F in the above sense. Let $X = [0, 1]$ and assume without loss of generality that $\alpha < \beta$. For each $k \in \mathbb{N}$ let T_k be defined by

$$T_k(x) = \beta^{-k}x.$$
Proof

We will now show that $[0, 1]$ is a weak tangent to F in the above sense. Let $X = [0, 1]$ and assume without loss of generality that $\alpha < \beta$. For each $k \in \mathbb{N}$ let T_k be defined by

$$T_k(x) = \beta^{-k}x.$$

Since

$$E_k := \{\alpha^m \beta^n : m \in \mathbb{N}, n \in \{-k, \ldots, \infty\}\} \cap [0, 1] \subset T_k(F) \cap [0, 1]$$

for each k it suffices to show that $E_k \rightarrow_{d_H} [0, 1]$.

Jonathan M. Fraser
Assouad type dimensions
Proof

We will now show that \([0, 1]\) is a weak tangent to \(F\) in the above sense. Let \(X = [0, 1]\) and assume without loss of generality that \(\alpha < \beta\). For each \(k \in \mathbb{N}\) let \(T_k\) be defined by

\[T_k(x) = \beta^{-k} x. \]

Since

\[E_k := \{ \alpha^m \beta^n : m \in \mathbb{N}, n \in \{-k, \ldots, \infty\}\} \cap [0, 1] \subset T_k(F) \cap [0, 1] \]

for each \(k\) it suffices to show that \(E_k \rightarrow_{d_H} [0, 1]\). Indeed, we have

\[E_k \rightarrow_{d_H} \bigcup_{k \in \mathbb{N}} E_k \cap [0, 1] \]
Proof

We will now show that \([0, 1]\) is a weak tangent to \(F\) in the above sense. Let \(X = [0, 1]\) and assume without loss of generality that \(\alpha < \beta\). For each \(k \in \mathbb{N}\) let \(T_k\) be defined by

\[
T_k(x) = \beta^{-k}x.
\]

Since

\[
E_k := \{\alpha^m\beta^n : m \in \mathbb{N}, n \in \{-k, \ldots, \infty\}\} \cap [0, 1] \subset T_k(F) \cap [0, 1]
\]

for each \(k\) it suffices to show that \(E_k \rightarrow_{d_{\mathcal{H}}} [0, 1]\). Indeed, we have

\[
E_k \rightarrow_{d_{\mathcal{H}}} \bigcup_{k \in \mathbb{N}} E_k \cap [0, 1] = \{\alpha^m\beta^n : m \in \mathbb{N}, n \in \mathbb{Z}\} \cap [0, 1]
\]
Proof

We will now show that $[0, 1]$ is a weak tangent to F in the above sense. Let $X = [0, 1]$ and assume without loss of generality that $\alpha < \beta$. For each $k \in \mathbb{N}$ let T_k be defined by

$$T_k(x) = \beta^{-k} x.$$

Since

$$E_k := \{\alpha^m \beta^n : m \in \mathbb{N}, n \in \{-k, \ldots, \infty\}\} \cap [0, 1] \subset T_k(F) \cap [0, 1]$$

for each k it suffices to show that $E_k \rightarrow_{d_{\mathcal{H}}} [0, 1]$. Indeed, we have

$$E_k \rightarrow_{d_{\mathcal{H}}} \bigcup_{k \in \mathbb{N}} E_k \cap [0, 1]$$

$$= \{\alpha^m \beta^n : m \in \mathbb{N}, n \in \mathbb{Z}\} \cap [0, 1]$$

$$= [0, 1].$$
Proof

To see why $\{\alpha^m \beta^n : m \in \mathbb{N}, n \in \mathbb{Z}\} \cap [0, 1] = [0, 1]$ we apply Dirichlet’s Theorem in the following way.
Proof

To see why \(\{ \alpha^m \beta^n : m \in \mathbb{N}, n \in \mathbb{Z} \} \cap [0, 1] = [0, 1] \) we apply Dirichlet’s Theorem in the following way. It suffices to show that

\[
\{ m \log \alpha + n \log \beta : m \in \mathbb{N}, n \in \mathbb{Z} \}
\]

is dense in \((-\infty, 0)\).
To see why \(\{\alpha^m \beta^n : m \in \mathbb{N}, n \in \mathbb{Z}\} \cap [0, 1] = [0, 1] \) we apply Dirichlet’s Theorem in the following way. It suffices to show that

\[
\{m \log \alpha + n \log \beta : m \in \mathbb{N}, n \in \mathbb{Z}\}
\]

is dense in \((-\infty, 0)\). We have

\[
m \log \alpha + n \log \beta = (n \log \alpha) \left(\frac{m}{n} + \frac{\log \beta}{\log \alpha}\right)
\]
To see why \(\{\alpha^m\beta^n : m \in \mathbb{N}, n \in \mathbb{Z}\} \cap [0, 1] = [0, 1] \) we apply Dirichlet’s Theorem in the following way. It suffices to show that
\[
\{m \log \alpha + n \log \beta : m \in \mathbb{N}, n \in \mathbb{Z}\}
\]
is dense in \((-\infty, 0)\). We have
\[
m \log \alpha + n \log \beta = (n \log \alpha) \left(\frac{m}{n} + \frac{\log \beta}{\log \alpha}\right)
\]
and Dirichlet’s Theorem gives that there exists infinitely many \(n\) such that
\[
\left| \frac{m}{n} + \frac{\log \beta}{\log \alpha} \right| < \frac{1}{n^2}
\]
for some \(m\).
Proof

To see why $\{\alpha^m \beta^n : m \in \mathbb{N}, n \in \mathbb{Z}\} \cap [0, 1] = [0, 1]$ we apply Dirichlet’s Theorem in the following way. It suffices to show that

$$\{m \log \alpha + n \log \beta : m \in \mathbb{N}, n \in \mathbb{Z}\}$$

is dense in $(-\infty, 0)$. We have

$$m \log \alpha + n \log \beta = (n \log \alpha) \left(\frac{m}{n} + \frac{\log \beta}{\log \alpha} \right)$$

and Dirichlet’s Theorem gives that there exists infinitely many n such that

$$\left| \frac{m}{n} + \frac{\log \beta}{\log \alpha} \right| < 1/n^2$$

for some m. Since $\log \beta/\log \alpha$ is irrational, we may choose m, n to make

$$0 < |m \log \alpha + n \log \beta| < \frac{|\log \alpha|}{n}$$

with n arbitrarily large.
Proof

To see why \(\{\alpha^m\beta^n : m \in \mathbb{N}, n \in \mathbb{Z}\} \cap [0, 1] = [0, 1] \) we apply Dirichlet’s Theorem in the following way. It suffices to show that

\[\{m \log \alpha + n \log \beta : m \in \mathbb{N}, n \in \mathbb{Z}\} \]

is dense in \((-\infty, 0)\). We have

\[m \log \alpha + n \log \beta = (n \log \alpha) \left(\frac{m}{n} + \frac{\log \beta}{\log \alpha} \right) \]

and Dirichlet’s Theorem gives that there exists infinitely many \(n \) such that

\[\left| \frac{m}{n} + \frac{\log \beta}{\log \alpha} \right| < \frac{1}{n^2} \]

for some \(m \). Since \(\log \beta / \log \alpha \) is irrational, we may choose \(m, n \) to make

\[0 < |m \log \alpha + n \log \beta| < \frac{|\log \alpha|}{n} \]

with \(n \) arbitrarily large. We can thus make \(m \log \alpha + n \log \beta \) arbitrarily small and this gives the result.
If we choose α, β, γ such that $s < 1$, then

$$\dim_L F = \dim_H F = \dim_B F \leq s < 1 = \dim_A F.$$
The dimension theory of certain classes of planar self-affine sets, commonly referred to as self-affine carpets, has attracted enormous attention in the literature in the last 30 years.
The dimension theory of certain classes of planar self-affine sets, commonly referred to as self-affine carpets, has attracted enormous attention in the literature in the last 30 years.

This began with the Bedford-McMullen carpets with numerous generalisations being introduced by, for example, Lalley-Gatzouras (’92), Barański (’07), Feng-Wang (’05) and F. (’12).
Figure: A self-affine Bedford-McMullen carpet with $m = 4$, $n = 5$. The shaded rectangles on the left indicate the 6 maps in the IFS.
Self-affine carpets

Bedford-McMullen

Gatzouras-Lalley

Barański

Feng-Wang

Assouad type dimensions
Self-affine carpets

Some notation . . .
Self-affine carpets

Jonathan M. Fraser

Assouad type dimensions
Self-affine carpets

S_1
Self-affine carpets

Jonathan M. Fraser

Assouad type dimensions
Self-affine carpets
Self-affine carpets

Jonathan M. Fraser

Assouad type dimensions
Self-affine carpets

\[C_1 = \{ 1, 2, \times, 3, 4 \} \]
Self-affine carpets

Jonathan M. Fraser

Assouad type dimensions
Theorem (Mackay ’11)
Let F be a self-affine carpet in the Bedford-McMullen or Lalley-Gatzouras class. Then
\[\dim_A F = s_1 + \max_{i \in C_1} t_{1,i} \]
Theorem (Mackay ’11)
Let F be a self-affine carpet in the Bedford-McMullen or Lalley-Gatzouras class. Then

$$\dim_A F = s_1 + \max_{i \in C_1} t_{1,i}$$

Theorem (F. ’13)
Let F be a self-affine carpet in the Bedford-McMullen or Lalley-Gatzouras class. Then

$$\dim_L F = s_1 + \min_{i \in C_1} t_{1,i}$$
Theorem (F. ’13)

Let F be a self-affine carpet in the Barański class (and not in the Lalley-Gatzouras class). Then

$$\dim A F = \max_{j=1,2} \max_{i \in C_j} \left(s_j + t_{j,i} \right)$$

and

$$\dim L F = \min_{j=1,2} \min_{i \in C_j} \left(s_j + t_{j,i} \right)$$
Thank you!

