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The Assouad dimension

I The Assouad dimension was introduced by Assouad in the 1970s

I Important tool in the study of quasi-conformal mappings,
embeddability problems and PDEs

I Minimal attention in the literature on fractals, until recently...

2011 - Mackay: Assouad dimension of Lalley-Gatzouras carpets
2011 - Olsen: Assouad dimension of graph-directed Moran fractals
2012 - Käenmäki-Lehrbäck-Vuorinen: Relationships with Whitney
covers and tubular neighbourhoods
2013 - F.: Assouad dimension of Barański carpets, quasi-self-similar
sets and self-similar sets with overlaps

I The Assouad dimension gives ‘coarse but local’ information about a
set, unlike the Hausdorff dimension which gives ‘fine but global’
information.
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2012 - Käenmäki-Lehrbäck-Vuorinen: Relationships with Whitney
covers and tubular neighbourhoods
2013 - F.: Assouad dimension of Barański carpets, quasi-self-similar
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2012 - Käenmäki-Lehrbäck-Vuorinen: Relationships with Whitney
covers and tubular neighbourhoods
2013 - F.: Assouad dimension of Barański carpets, quasi-self-similar
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The Assouad dimension

Let (X , d) be a metric space and for any non-empty subset F ⊆ X and
r > 0, let Nr (F ) be the smallest number of open sets with diameter less
than or equal to r required to cover F .

The Assouad dimension of a
non-empty subset F of X is defined by

dimA F = inf

{
α : there exists constants C , ρ > 0 such that,

for all 0 < r < R 6 ρ, we have

sup
x∈F

Nr

(
B(x ,R) ∩ F

)
6 C

(
R

r

)α }
.
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The lower dimension

We will also be concerned with the natural dual to Assouad dimension,
which we call the lower dimension.

The lower dimension of F is defined
by

dimL F = sup

{
α : there exists constants C , ρ > 0 such that,

for all 0 < r < R 6 ρ, we have

inf
x∈F

Nr

(
B(x ,R) ∩ F

)
> C

(
R

r

)α }
.

This quantity was introduced by Larman in the 1960s, where it was called

the minimal dimensional number. It has also been referred to by other

names, for example: the lower Assouad dimension by Käenmäki,

Lehrbäck and Vuorinen and the uniformity dimension (Tuomas Sahlsten,

personal communication).
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Relationships between dimensions

For a totally bounded subset F of a metric space, we have

dimL F 6 dimBF 6 dimBF 6 dimA F .

The lower dimension is in general not comparable to the Hausdorff
dimension or packing dimension. However, if F is compact, then

dimP F

6 6

dimL F 6 dimH F dimBF 6 dimA F .
6 6

dimBF
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Basic properties

Property dimH dimP dimB dimB dimL dimA

Monotone X X X X × X
Finitely stable X X × X × X
Countably stable X X × × × ×
Lipschitz stable X X X X × ×
Bi-Lipschitz stable X X X X X X
Stable under taking closures × × X X X X
Open set property X X X X × X
Measurable X × X X X X
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Basic properties: products

‘Dimension pairs’ are intimately related to the dimension theory of
product spaces and there is a pleasant symmetry in the formulae.

We
have

dimH X + dimH Y 6 dimH(X × Y ) 6 dimH X + dimP Y

6 dimP(X × Y ) 6 dimP X + dimP Y ,

dimBX + dimBY 6 dimB(X × Y ) 6 dimBX + dimBY

6 dimB(X × Y ) 6 dimBX + dimBY
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Basic properties: products

The Assouad dimension and lower dimension are also a natural
‘dimension pair’.

Theorem (Assouad ’77-’79, F. ’13)
For metric spaces X and Y , we have

dimL X + dimL Y 6 dimL(X × Y ) 6 dimL X + dimA Y

6 dimA(X × Y ) 6 dimA X + dimA Y .

Note: there are many natural ‘product metrics’ to impose on the product
space X × Y , but any reasonable choice is bi-Lipschitz equivalent to the
metric dX×Y on X × Y defined by

dX×Y
(
(x1, y1), (x2, y2)

)
= max{dX (x1, x2), dY (y1, y2)}.
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Self-similar sets with overlaps

It is well-known that any self-similar set (regardless of overlaps) satisfies:

dimH F = dimBF = dimBF = dimP F 6 s

where s is the similarity dimension.

It is also well-known that self-similar
sets satisfying the OSC are Ahlfors regular and that Ahlfors regular sets
have equal Assouad dimension and lower dimension, so if a self-similar
set satisfies the OSC, then

dimL F = dimH F = dimBF = dimBF = dimP F = dimA F = s.

Olsen (’12) asked if the Assouad dimension of a self-similar set with

overlaps can ever exceed the upper box dimension.
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Self-similar sets with overlaps

Answer:

Yes!

Theorem (F. ’13)
Any self-similar set satisfies

dimL F = dimH F = dimBF = dimBF = dimP F 6 dimA F

and the final inequality can be strict.
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Proof

We need to prove two things:

(1) Any self-similar set satisfies dimL F = dimH F

and

(2) There exists a self-similar set with dimBF < dimA F

(1) is easy and in fact we can prove this relationship for a more general
class of quasi-self-similar sets (in the sense of McLaughlin ’87, Falconer
’89).

We will now prove (2) by constructing an example.
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Proof

Let α, β, γ ∈ (0, 1) be such that (log β)/(logα) /∈ Q and define similarity
maps S1,S2,S3 on [0, 1] as follows

S1(x) = αx , S2(x) = βx and S3(x) = γx + (1− γ).

Let F be the self-similar attractor of {S1,S2,S3}. We will now prove that
dimA F = 1 and, in particular, the Assouad dimension is independent of
α, β, γ provided they are chosen with the above property. We will use the
following proposition due to Mackay and Tyson.

Proposition
Let X ⊂ R be compact and let F be a compact subset of X . Let Tk be a
sequence of similarity maps defined on R and suppose that
Tk(F ) ∩ X →dH F̂ for some non-empty compact set F̂ . Then
dimA F̂ 6 dimA F . The set F̂ is called a weak tangent to F .
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Proof

We will now show that [0, 1] is a weak tangent to F in the above sense.
Let X = [0, 1] and assume without loss of generality that α < β. For
each k ∈ N let Tk be defined by

Tk(x) = β−kx .

Since

Ek :=
{
αmβn : m ∈ N, n ∈ {−k, . . . ,∞}

}
∩ [0, 1] ⊂ Tk(F ) ∩ [0, 1]

for each k it suffices to show that Ek →dH [0, 1]. Indeed, we have

Ek →dH

⋃
k∈N

Ek ∩ [0, 1]

= {αmβn : m ∈ N, n ∈ Z} ∩ [0, 1]

= [0, 1].
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Proof

To see why {αmβn : m ∈ N, n ∈ Z} ∩ [0, 1] = [0, 1] we apply Dirichlet’s
Theorem in the following way.

It suffices to show that

{m logα + n log β : m ∈ N, n ∈ Z}

is dense in (−∞, 0). We have

m logα + n log β = (n logα)

(
m

n
+

log β

logα

)
and Dirichlet’s Theorem gives that there exists infinitely many n such that∣∣∣m

n
+

log β

logα

∣∣∣ < 1/n2

for some m. Since log β/ logα is irrational, we may choose m, n to make

0 < |m logα + n log β| < |logα|
n

with n arbitrarily large. We can thus make m logα + n log β arbitrarily

small and this gives the result.
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with n arbitrarily large. We can thus make m logα + n log β arbitrarily

small and this gives the result.
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Proof

If we choose α, β, γ such that s < 1, then

dimL F = dimH F = dimB F 6 s < 1 = dimA F .
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Self-affine carpets

The dimension theory of certain classes of planar self-affine sets,
commonly referred to as self-affine carpets, has attracted enormous
attention in the literature in the last 30 years.

This began with the Bedford-McMullen carpets with numerous

generalisations being introduced by, for example, Lalley-Gatzouras (’92),

Barański (’07), Feng-Wang (’05) and F. (’12).
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Self-affine carpets

Figure: A self-affine Bedford-McMullen carpet with m = 4, n = 5. The
shaded rectangles on the left indicate the 6 maps in the IFS.
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Self-affine carpets
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Self-affine carpets

Some notation . . .
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Self-affine carpets

Theorem (Mackay ’11)
Let F be a self-affine carpet in the Bedford-McMullen or
Lalley-Gatzouras class. Then

dimA F = s1 + max
i∈C1

t1,i

Theorem (F. ’13)
Let F be a self-affine carpet in the Bedford-McMullen or
Lalley-Gatzouras class. Then

dimL F = s1 + min
i∈C1

t1,i
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Self-affine carpets

Theorem (F. ’13)
Let F be a self-affine carpet in the Barański class (and not in the
Lalley-Gatzouras class). Then

dimA F = max
j=1,2

max
i∈Cj

(
sj + tj,i

)
and

dimL F = min
j=1,2

min
i∈Cj

(
sj + tj,i

)
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Outline of the proof: upper bound for Assouad dimension

We rely on a delicate covering argument. In particular, we wish to show
that for all ε > 0 any approximate square Q(i,R) of radius R can be
covered by no more than

Cε

(
R

r

)s+ε

balls of radius r , where s = maxj=1,2 maxi∈Cj

(
sj + tj,i

)
is the target

dimension.

We need to split Q(i,R) into three parts and cover each part separately

using a different technique.
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Outline of the proof: lower bound for Assouad dimension

The key idea is to construct a weak tangent which is the appropriate
product of an orthogonal projection of F with a self-similar slice of F .

This is essentially the same argument that was used in Mackay ’11,

however, there are some extra difficulties due to the fact that all of the

maps are not ‘lined up’ as in the Lalley-Gatzouras case. Mackay is able

to choose one map to ‘follow into the construction’, whereas in certain

cases we have to choose one map for a long time and then switch to a

map which we can ‘follow in’ to find the ‘correct tangent’. This is so the

map we ultimately choose is ‘lined up’ in the correct way.
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Outline of the proof: upper bound for lower dimension

Since lower dimension is a natural dual to Assouad dimension and tends
to ‘mirror’ the Assouad dimension in many ways, one might expect, given
that weak tangents provide a very natural way to find lower bounds for
Assouad dimension, that weak tangents might provide a way of giving
upper bounds for lower dimension.

One might näıvely expect the
following statement to be true:

“Let X ⊂ R2 be compact and let F be a compact subset of X . Let Tk

be a sequence of similarity maps defined on R2 and suppose that
Tk(F ) ∩ X →dH F̂ . Then dimL F̂ > dimL F .”

However, it is easy to see that this is false as one can often find weak

tangents with isolated points, and hence lower dimension equal to zero,

even if the original set has positive lower dimension.
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Outline of the proof: upper bound for lower dimension

As such we need to modify the definition of weak tangent in the
following way.

Proposition (very weak tangents)
Let X ⊂ Rn be compact and let F be a compact subset of X . Let Tk be
a sequence of bi-Lipschitz maps defined on Rn with Lipschitz constants
ak , bk > 1 such that

ak |x − y | 6 |Tk(x)− Tk(y)| 6 bk |x − y | (x , y ∈ Rn)

and
sup
k

bk/ak = C0 < ∞

Also assume that there exists a uniform constant θ ∈ (0, 1] such that for
all r ∈ (0, 1] and x̂ ∈ F̂ , there exists ŷ ∈ F̂ such that
B(ŷ , rθ) ⊆ B(x̂ , r) ∩ X ; then

dimL F 6 dimL F̂ .
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Outline of the proof: upper bound for lower dimension

We can now construct a very weak tangent to F with the correct

dimension.
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Outline of the proof: lower bound for lower dimension

We use a delicate covering argument similar to that used in the proof of
the upper bound for Assouad dimension. Initially we expected the
argument to be totally symmetrical, but surprisingly this turned out not
to be the case and the argument requires an extra step.

We do not have time to elaborate on this, but the basic problem is that
when we split the approximate square up into three different bits to cover
separately, one of the terms gives the wrong dimension. We must hence
justify that the other two terms do not ‘disappear’, allowing us to drop
the problematic term. The key idea is to iterate inside the approximate
square using a subsystem where the maps are ‘lined up’ in the same way.

This technique is reminiscent of that used by Ferguson-Jordan-Shmerkin
(’10) when studying projections of self-affine carpets.

Indeed this idea came from a conversation I had with Thomas in Hong

Kong in December, so thanks again!
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Thank you!
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