The planar cubic Cayley graphs

Agelos Georgakopoulos

Technische Universität Graz

Paris, 17.02.11
Let Γ be a group, and S a generating set of Γ. Define the corresponding Cayley graph $G = \text{Cay}(\Gamma, S)$ by:

- $V(G) = \Gamma$,
- for every $g \in \Gamma$ and $s \in \{a, b, c, \ldots\}$, put in an edge: $g \cdot s \rightarrow gs$.

\[\langle \alpha, \beta |, \beta^2, \alpha^4, (\alpha \beta)^2 \rangle \]
Let Γ be a group, and S a generating set of Γ. Define the corresponding Cayley graph $G = \text{Cay}(\Gamma, S)$ by:

\[
\langle \alpha, \beta \mid \beta^2, \alpha^4, (\alpha \beta)^2 \rangle
\]
Let Γ be a group, and S a generating set of Γ. Define the corresponding **Cayley graph** $G = \text{Cay}(\Gamma, S)$ by:

- $V(G) = \Gamma$,
Let Γ be a group, and S a generating set of Γ. Define the corresponding **Cayley graph** $G = \text{Cay}(\Gamma, S)$ by:

- $V(G) = \Gamma$,
- for every $g \in \Gamma$ and $s \in \{a, b, c, \ldots\}$, put in an edge:
 $g \cdot s \rightarrow gs$
Sabidussi’s Theorem

Theorem (Sabidussi’s Theorem)

A properly edge-coloured digraph is a Cayley graph iff for every \(x, y \in V(G) \) there is a colour-preserving automorphism mapping \(x \) to \(y \).

Properly edge-coloured := no vertex has two incoming or two outgoing edges with the same colour.

Let \(\Gamma \) be a group, and \(S \) a generating set of \(\Gamma \). Define the corresponding Cayley graph \(G = Cay(\Gamma, S) \) by:

- \(V(G) = \Gamma \),
- for every \(g \in \Gamma \) and \(s \in \{ a, b, c, \ldots \} \), put in an edge:
 \[
 g \quad s \quad gs
 \]
Charactisation of the finite planar groups

Theorem (Maschke 1886)

Every finite planar group is a group of isometries of S^2.

planar group := a group having at least 1 planar Cayley graph.
Let $\Gamma = \langle a, b, c, \ldots \mid R_1, R_2 \ldots \rangle$ be a group presentation. Define the corresponding simplified Cayley complex $CC \langle a, b, c, \ldots \mid R_1, R_2 \ldots \rangle$ by:
Let $\Gamma = \langle a, b, c, \ldots | R_1, R_2 \ldots \rangle$ be a group presentation.
Define the corresponding simplified Cayley complex $CC \langle a, b, c, \ldots | R_1, R_2 \ldots \rangle$ by:

- $V(G) = \Gamma$,
- for every $g \in \Gamma$ and $s \in \{a, b, c, \ldots\}$, put in an edge: $g \cdot s \rightarrow gs$
Let $\Gamma = \langle a, b, c, \ldots \mid R_1, R_2 \ldots \rangle$ be a group presentation. Define the corresponding simplified Cayley complex $CC \langle a, b, c, \ldots \mid R_1, R_2 \ldots \rangle$ by:

- $V(G) = \Gamma$,
- for every $g \in \Gamma$ and $s \in \{a, b, c, \ldots\}$, put in an edge: $g \cdot s \rightarrow gs$,
- for every closed walk C induced by a relator R_i, glue in a disc along C.

Given a planar Cayley graph, can you find a presentation in which the relators induce precisely the face boundaries? Yes!
Let $\Gamma = \langle a, b, c, \ldots | R_1, R_2 \ldots \rangle$ be a group presentation. Define the corresponding simplified Cayley complex $CC \langle a, b, c, \ldots | R_1, R_2 \ldots \rangle$ by:

- $V(G) = \Gamma$
- for every $g \in \Gamma$ and $s \in \{a, b, c, \ldots\}$, put in an edge: $g \cdot s \rightarrow gs$
- for every closed walk C induced by a relator R_i, glue in a disc along C.

Given a planar Cayley graph, can you find a presentation in which the relators induce precisely the face boundaries?
Let $\Gamma = \langle a, b, c, \ldots | R_1, R_2 \ldots \rangle$ be a group presentation. Define the corresponding simplified Cayley complex $CC \langle a, b, c, \ldots | R_1, R_2 \ldots \rangle$ by:

- $V(G) = \Gamma$,
- for every $g \in \Gamma$ and $s \in \{a, b, c, \ldots\}$, put in an edge: $\bullet \xrightarrow{g \cdot s} \bullet$
- for every closed walk C induced by a relator R_i, glue in a disc along C.

Given a planar Cayley graph, can you find a presentation in which the relators induce precisely the face boundaries?

Yes!
Proving Maschke’s Theorem

Given a finite plane Cayley graph G, consider the following group presentation:

Generators: the edge-colours of G;
Relators: the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$. Let X be the corresponding simplified Cayley complex. X is homeomorphic to S^2. Since $\Gamma(G)$ acts on X, we have:

Theorem (Maschke 1886): Every finite planar group is a group of homeomorphisms of S^2.

Agelos Georgakopoulos

Planar Cayley graphs
Given a finite plane Cayley graph G, consider the following group presentation:

- **Generators**: the edge-colours of G;
Given a finite plane Cayley graph G, consider the following group presentation:

- **Generators**: the edge-colours of G;
- **Relators**: the facial words starting at a fixed vertex.

Let X be the corresponding simplified Cayley complex. X is homeomorphic to S^2 since $\Gamma(G)$ acts on X.

Theorem (Maschke 1886) Every finite planar group is a group of homeomorphisms of S^2.
Proving Maschke’s Theorem

Given a finite plane Cayley graph G, consider the following group presentation:

- **Generators**: the edge-colours of G;
- **Relators**: the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$.
Proving Maschke’s Theorem

Given a finite plane Cayley graph G, consider the following group presentation:
- **Generators**: the edge-colours of G;
- **Relators**: the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$

Theorem (Whitney ’32)

Let G be a 3-connected plane graph. Then every automorphism of G extends to a homeomorphism of the sphere.
Proving Maschke’s Theorem

Given a finite plane Cayley graph G, consider the following group presentation:

- *Generators*: the edge-colours of G;
- *Relators*: the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$.
Given a finite plane Cayley graph G, consider the following group presentation:

- **Generators**: the edge-colours of G;
- **Relators**: the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$

Let X be the corresponding simplified Cayley complex.
Proving Maschke's Theorem

Given a finite plane Cayley graph \(G \), consider the following group presentation:

- **Generators**: the edge-colours of \(G \);
- **Relators**: the facial words starting at a fixed vertex.

This is indeed a presentation of \(\Gamma(G) \)

Let \(X \) be the corresponding simplified Cayley complex.

\(X \) is homeomorphic to \(S^2 \)
Proving Maschke’s Theorem

Given a finite plane Cayley graph G, consider the following group presentation:

- **Generators**: the edge-colours of G;
- **Relators**: the facial words starting at a fixed vertex.

This is indeed a presentation of $\Gamma(G)$

Let X be the corresponding simplified Cayley complex.

X is homeomorphic to S^2

Since $\Gamma(G)$ acts on X, we have:

Theorem (Maschke 1886)

*Every finite planar group is a group of homeomorphisms of S^2.***
The 1-ended planar groups

Theorem ((classic) Macbeath, Wilkie, ...)

Every 1-ended planar Cayley graph corresponds to a group of isometries of \mathbb{R}^2 or \mathbb{H}^2.
The 1-ended planar groups

Theorem ((classic) Macbeath, Wilkie, ...)

Every 1-ended planar Cayley graph corresponds to a group of isometries of \mathbb{R}^2 or \mathbb{H}^2.

Planar Cayley graphs
Planar groups \leftarrow fundamental groups of surfaces

Theorem (G '10)
A group has a planar simplified Cayley complex if and only if it has a VAP-free Cayley graph.
Planar groups $\prec \rightarrow$ fundamental groups of surfaces

... general classical theory, but only for groups with a planar simplified Cayley complex
Planar groups $\Leftarrow \Rightarrow$ fundamental groups of surfaces

... general classical theory, but only for groups with a planar simplified Cayley complex

What about the other ones?
Planar groups $\leftarrow \rightarrow$ fundamental groups of surfaces

... general classical theory, but only for groups with a planar simplified Cayley complex

What about the other ones?

Theorem (G ’10)

A group has a planar simplified Cayley complex if and only if it has a VAP-free Cayley graph.
What about the non VAP-free ones?

Open Problems:

Problem (Mohar) How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

Problem (Droms et. al.) Is there an effective enumeration of the planar locally finite Cayley graphs?

Conjecture (Bonnington & Watkins / B. & Mohar) Every planar 3-connected locally finite transitive graph has at least one face bounded by a cycle.

Problem (G & Mohar) Is every planar 3-connected Cayley graph hamiltonian?

... and what about all the classical theory?
What about the non VAP-free ones?

Open Problems:

Problem (Mohar)

How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

Problem (Droms et. al.)

Is there an effective enumeration of the planar locally finite Cayley graphs?

Conjecture (Bonnington & Watkins/B. & Mohar)

Every planar 3-connected locally finite transitive graph has at least one face bounded by a cycle.

Problem (G & Mohar)

Is every planar 3-connected Cayley graph hamiltonian?

... and what about all the classical theory?
What about the non VAP-free ones?

Open Problems:

Problem (Mohar)

How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

Problem (Droms et. al.)

Is there an effective enumeration of the planar locally finite Cayley graphs?

Conjecture (Bonnington & Watkins/B. & Mohar)

Every planar 3-connected locally finite transitive graph has at least one face bounded by a cycle.

Problem (G & Mohar)

Is every planar 3-connected Cayley graph hamiltonian?

... and what about all the classical theory?
Open Problems:

Problem (Mohar)
How can you split a planar Cayley graph with \(> 1 \) ends into simpler Cayley graphs?

Problem (Droms et. al.)
Is there an effective enumeration of the planar locally finite Cayley graphs?

Conjecture (Bonnington & Watkins/B. & Mohar)
Every planar 3-connected locally finite transitive graph has at least one face bounded by a cycle.
What about the non VAP-free ones?

Open Problems:

Problem (Mohar)
How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

Problem (Droms et. al.)
Is there an effective enumeration of the planar locally finite Cayley graphs?

Conjecture (Bonnington & Watkins/ B. & Mohar)
Every planar 3-connected locally finite transitive graph has at least one face bounded by a cycle.

Problem (G & Mohar)
Is every planar 3-connected Cayley graph hamiltonian?
What about the non VAP-free ones?

Open Problems:

Problem (Mohar)
How can you split a planar Cayley graph with > 1 ends into simpler Cayley graphs?

Problem (Droms et. al.)
Is there an effective enumeration of the planar locally finite Cayley graphs?

Conjecture (Bonnington & Watkins/ B. &Mohar)
Every planar 3-connected locally finite transitive graph has at least one face bounded by a cycle.

Problem (G & Mohar)
Is every planar 3-connected Cayley graph hamiltonian?

... and what about all the classical theory?
Theorem (G ’10)

Let G be a planar cubic Cayley graph. Then G is colour-isomorphic to precisely one element of the list.

Conversely, for every element of the list and any choice of parameters, the corresponding Cayley graph is planar.
Theorem (G ’10)

Let G be a planar cubic Cayley graph. Then G is colour-isomorphic to precisely one element of the list.

Conversely, for every element of the list and any choice of parameters, the corresponding Cayley graph is planar.
What about the non VAP-free ones?

Open Problems:

Problem (Mohar)
How can you split a planar Cayley graph with \(>1\) ends into simpler Cayley graphs?

Problem (Droms et. al.)
Is there an effective enumeration of the planar locally finite Cayley graphs?

Conjecture (Bonnington & Watkins)
Every planar 3-connected locally finite transitive graph has at least one face bounded by a cycle.

Problem (G & Mohar)
Is every planar 3-connected Cayley graph hamiltonian?

... and what about all the classical theory?
Examples

Planar Cayley graphs
Examples

Planar Cayley graphs
Examples

Planar Cayley graphs
Corollary (G ’10)

Every planar cubic Cayley graph has an almost planar Cayley complex.
Corollary (G & Hamann ’11)

Every planar Cayley graph has an almost planar Cayley complex.
Examples

Corollary (G & Hamann ’11)

Every planar Cayley graph has an almost planar Cayley complex...
maybe
Conjecture (Bonnington & Watkins)

Every planar 3-connected locally finite transitive graph has at least one face bounded by a cycle.
Conjecture (Bonnington & Watkins)

Every planar 3-connected locally finite transitive graph has at least one face bounded by a cycle.

FALSE!
Cayley graphs without finite face boundaries
Cayley graphs without finite face boundaries
Cayley graphs without finite face boundaries

Planar Cayley graphs
Spot the societies!
Spot the societies!
Theorem (Stallings ’71)

Every group with \(>1\) ends can be written as an HNN-extension or an amalgamation product over a finite subgroup.
Theorem (Stallings ’71)

Every group with >1 ends can be written as an HNN-extension or an amalgamation product over a finite subgroup.
Theorem (Stallings ’71)

Every group with >1 ends can be written as an HNN-extension or an amalgamation product over a finite subgroup.
Conjecture

Let $G = \text{Cay}(\Gamma, S)$ be a Cayley graph with > 1 ends. Then there is a non-trivial splitting of G as a union of subdivisions of Cayley graphs.

Corollary (G ’10)

True for planar cubic Cayley graphs.
Conjecture

Let $G = \text{Cay}(\Gamma, S)$ be a Cayley graph with > 1 ends. Then there is a non-trivial splitting of G as a union of subdivisions of Cayley graphs.

Corollary (G '10)

True for planar cubic Cayley graphs.
Conjecture

Let $G = \text{Cay}(\Gamma, S)$ be a Cayley graph with > 1 ends. Then there is a non-trivial splitting of G as a union of subdivisions of Cayley graphs.

Corollary (G '10)

True for planar cubic Cayley graphs.
Conjecture

Let $G = \text{Cay}(\Gamma, S)$ be a Cayley graph with > 1 ends. Then there is a non-trivial splitting of G as a union of subdivisions of Cayley graphs.
Conjecture

Let $G = \text{Cay}(\Gamma, S)$ be a Cayley graph with > 1 ends. Then there is a non-trivial splitting of G as a union of subdivisions of Cayley graphs.

Corollary (G ’10)

True for planar cubic Cayley graphs.
1. $\langle a, b \mid b^2, a^n \rangle$, $n \in \{\infty, 2, 3, \ldots\}$
2. $\langle b, c, d \mid b^2, c^2, d^2, (bc)^n \rangle$, $n \in \{\infty, 1, 2, 3, \ldots\}$

$\kappa(G) = 1$

3. $G \cong \text{Cay} \langle a, b \mid b^2, (ab)^n \rangle$, $n \geq 2$
4. $G \cong \text{Cay} \langle a, b \mid b^2, (aba^{-1}b^{-1})^n \rangle$, $n \geq 1$
5. $G \cong \text{Cay} \langle a, b \mid b^2, a^4, (a^2b)^2 \rangle$
6. $G \cong \text{Cay} \langle b, c, d \mid b^2, c^2, d^2, (bc)^{2n}, (bc)(bd)^m \rangle$, $m \geq 2$
7. $G \cong \text{Cay} \langle b, c, d \mid b^2, c^2, d^2, (bc)^{2n}, (bcd)^m \rangle$, $n, m \geq 2$
8. $G \cong \text{Cay} \langle b, c, d \mid b^2, c^2, d^2, (bc)^{2n}, (bd)^m \rangle$, $n, m \geq 2$
9. $G \cong \text{Cay} \langle b, c, d \mid b^2, c^2, d^2, (bd)^m \rangle$, $n \geq 1, m \geq 2$
10. $G \cong \text{Cay} \langle b, c, d \mid b^2, c^2, d^2, (bcd)^m \rangle$, $m \geq 1$
11. $G \cong \text{Cay} \langle b, c, d \mid b^2, c^2, d^2, (bc)^n, (cd)^m \rangle$, $n \geq 1$

$\kappa(G) = 2$

12. $G \cong \text{Cay} \langle a, b \mid b^2, a^n, (ab)^m \rangle$, $n \geq 3, m \geq 2$
13. $G \cong \text{Cay} \langle a, b \mid b^2, a^n, (aba^{-1}b^{-1})^m \rangle$, $n \geq 3, m \geq 1$
14. $G \cong \text{Cay} \langle a, b \mid b^2, (ab)^m \rangle$, $m \geq 1$
15. $G \cong \text{Cay} \langle a, b \mid b^2, (ab^2)^m, m \geq 1 \rangle$

$\kappa(G) = 3$, G is 1-ended or finite, with two generators

16. $G \cong \text{Cay} \langle b, c, d \mid b^2, c^2, d^2, (bc)^n \rangle$, $n \geq 1$
17. $G \cong \text{Cay} \langle b, c, d \mid b^2, c^2, d^2, (bcd)^n \rangle$, $n \geq 1$
18. $G \cong \text{Cay} \langle b, c, d \mid b^2, c^2, d^2, (bd)^n \rangle$, $n \geq 2, m \geq 1$
19. $G \cong \text{Cay} \langle b, c, d \mid b^2, c^2, d^2, (cd)^n, (cd)^m \rangle$, $n, m, p \geq 2$

$\kappa(G) = 3$, G is 1-ended or finite, with three generators

20. $G \cong \text{Cay} \langle a, b \mid b^2, (ab)^m, a^n \rangle$, $n \geq 3, m \geq 2$
21. $G \cong \text{Cay} \langle a, b \mid b^2, (aba^{-1}b^{-1})^m, a^n \rangle$, $n \geq 3, m \geq 1$
22. $G \cong \text{Cay} \langle a, b \mid b^2, a^n, (ab)^m \rangle$, $n \geq 2$
23. $G \cong \text{Cay} \langle a, b \mid b^2, (ab)^m, (aba^{-1}b^{-1})^n \rangle$, $n, m, p \geq 2$
24. $G \cong \text{Cay} \langle a, b \mid b^2, (ab)^m, (ab)^m \rangle$, $m \geq 2$
25. $G \cong \text{Cay} \langle a, b \mid b^2, (ab)^m, (ab)^m \rangle$, $n \geq 2, m \geq 2$

$\kappa(G) = 3$, G is multi-ended, with two generators

Table 1: Classification of the cubic planar Cayley graphs. All presentations are planar in the sense of Section 1.4.