Discrete Riemann mapping and the Poisson boundary

Agelos Georgakopoulos

THE UNIVERSITY OF WARWICK

Lyon, 22/5/14
The Riemann mapping theorem

Theorem (Riemann? 1851, Carathéodory 1912)

For every simply connected open set $\Omega \subseteq \mathbb{C}$, $\Omega \neq \emptyset$, there is a bijective conformal map from Ω onto the open unit disk.
The Riemann mapping theorem

Theorem (Riemann? 1851, Carathéodory 1912)

For every simply connected open set $\Omega \subset \mathbb{C}, \Omega \neq \emptyset$, there is a bijective conformal map from Ω onto the open unit disk.

Theorem (Koebe 1920)

For every open set $\Omega \subset \mathbb{C}, \Omega \neq \emptyset$ with finitely many boundary components, there is a bijective conformal map from Ω onto a circle domain.
The circle packing theorem

The Koebe-Andreev-Thurston circle packing theorem

For every finite planar graph G, there is a circle packing in the plane (or S^2) with nerve G. The packing is unique (up to Möbius transformations) if G is a triangulation of S^2.
The Koebe-Andreev-Thurston circle packing theorem
The Koebe-Andreev-Thurston circle packing theorem

Circle Packing \leftrightarrow Conformal map

Figure 3: An circle packing approximation of an triangulated domain to an triangulation of a combinatorially equivalent circle packing; are from Oded’s thesis; thanks to Andrei Mishchenko for creating

[S. Rohde: “Oded Schramm: From Circle Packing to SLE”, ’10]
Circle Packing \(\iff\) Conformal map

The Koebe-Andreev-Thurston circle packing theorem

Circle Packing \(\iff\) Conformal map
The Koebe-Andreev-Thurston circle packing theorem

Circle Packing \leftrightarrow Conformal map
The Koebe-Andreev-Thurston circle packing theorem

Circle Packing \iff Conformal map

Figure 3: An circle packing approximation of an triangulated domain and its nerve completion to an triangulation of its combinatorially equivalent circle packing. From Oded's thesis; thanks to Andrey Mishchenko for creating the diagrams.
The Koebe-Andreev-Thurston circle packing theorem

Circle Packing \iff Conformal map

Figure 3: An circle packing approximation of an triply connected domain and its nerve and completion to an triangulation of 52 and an combinatorially equivalent circle packing; $\{u-pn_\text{vax-vcxn}\} \text{aren from Odedu's thesis; thanks to Andreyn Mishchenkon for creating vdxn 6}

[S. Rohde: "Oded Schramm: From Circle Packing to SLE", '10]
The Koebe-Andreev-Thurston circle packing theorem

Circle Packing \iff Conformal map

Figure 3: An circle packing approximation of an triangulated domain and its nerve is one from Oded's thesis; thanks to Andrei Mishchenko for creating vdx.

S. Rohde: "Oded Schramm: From Circle Packing to SLE", '10

Agelos Georgakopoulos
The Koebe-Andreev-Thurston circle packing theorem

Circle Packing \iff Conformal map

Figure 3: An circle packing approximation of an triply connected domain and its nerve completion to an triangulation of 52 and an combinatorially equivalent circle packing; \times are from Oded’s thesis; thanks to Andrei Mishchenko for creating \times

Agelos Georgakopoulos
The Koebe-Andreev-Thurston circle packing theorem

Circle Packing \leftrightarrow Conformal map

Figure 3: An circle packing approximation of a triangle domain and its nerve completion to an triangulation of an circle packing; $\alpha - \omega$ are from Oded’s thesis; thanks to Andrei Mishchenko for creating ω.
The Koebe-Andreev-Thurston circle packing theorem

Circle Packing \iff Conformal map

Figure 3: An circle packing approximation of an triply connected domain and its nerve and completion to an triangulation of an and an combinatorially equivalent circle packing; are from Oded's thesis; thanks to Andrei Mishchenko for creating

\[S. \text{ Rohde: "Oded Schramm: From Circle Packing to SLE", '10 } \]
Circle Packing \iff Conformal map

The Koebe-Andreev-Thurston circle packing theorem

Circle Packing \Rightarrow Conformal map

S. Rohde: "Oded Schramm: From Circle Packing to SLE", '10

Agelos Georgakopoulos
The Koebe-Andreev-Thurston circle packing theorem

Circle Packing \Rightarrow Conformal map

Circle Packing \Rightarrow Conformal map

S. Rohde: "Oded Schramm: From Circle Packing to SLE", '10
Circle Packing \iff Conformal map

The Koebe-Andreev-Thurston circle packing theorem

$\{u-pn\ V(vn Vn 7

\) vaxn (b)
vcxn (d)
Figure 3: An circlen packing approximation of an triangulon and an combinatorionally equivalent circlen packing; vax-vcxn aron from Odedusn thesis; thanks ton Andreyn Mishchenkon forn creating vdn

[S. Rohde: “Oded Schramm: From Circle Packing to SLE”, ’10]

Agelos Georgakopoulos
Theorem (Brooks, Smith, Stone & Tutte ’40)

... for every finite planar graph G, there is a square tiling with incidence graph G ...
Properties of square tilings

- Every edge is mapped to a square;
- Vertices correspond to horizontal segments tangent with their edges;
- There is no overlap of squares, and no 'empty' space left;
- The square tiling of the dual of G can be obtained from that of G by a 90° rotation.

Agelos Georgakopoulos
Properties of square tilings

- every edge is mapped to a square;
Properties of square tilings

- every edge is mapped to a square;
- vertices correspond to horizontal segments tangent with their edges;
Properties of square tilings

- every edge is mapped to a square;
- vertices correspond to horizontal segments tangent with their edges;
- there is no overlap of squares, and no ‘empty’ space left;
Properties of square tilings

- every edge is mapped to a square;
- vertices correspond to horizontal segments tangent with their edges;
- there is no overlap of squares, and no ‘empty’ space left;
- the square tiling of the dual of G can be obtained from that of G by a 90° rotation.
Properties of square tilings

- every edge is mapped to a square;
- vertices correspond to horizontal segments tangent with their edges;
- there is no overlap of squares, and no ‘empty’ space left;
- the square tiling of the dual of G can be obtained from that of G by a 90° rotation.
The construction of square tilings

Think of the graph as an electrical network;

- Place each vertex x at height equal to the potential $h(x)$;
- Use a duality argument to determine the width coordinates.
Think of the graph as an electrical network;
impose an electrical current from \(p \) to \(q \);
Think of the graph as an electrical network;
impose an electrical current from p to q;
let the square corresponding to edge e have side length
the flow $i(e)$;
Think of the graph as an electrical network; impose an electrical current from p to q; let the square corresponding to edge e have side length the flow $i(e)$; place each vertex x at height equal to the potential $h(x)$;
Think of the graph as an electrical network;
impose an electrical current from \(p \) to \(q \);
let the square corresponding to edge \(e \) have side length the flow \(i(e) \);
place each vertex \(x \) at height equal to the potential \(h(x) \);
use a duality argument to determine the width coordinates.
The construction of square tilings

Think of the graph as an electrical network; impose an electrical current from p to q; let the square corresponding to edge e have side length $i(e)$; place each vertex x at height equal to the potential $h(x)$; use a duality argument to determine the width coordinates.
Think of the graph as an electrical network; impose an electrical current from \(p \) to \(q \); let the square corresponding to edge \(e \) have side length the flow \(i(e) \); place each vertex \(x \) at height equal to the potential \(h(x) \); use a duality argument to determine the width coordinates.
The construction of square tilings

The square tilings of Benjamini & Schramm

Theorem (Benjamini & Schramm ’96)

Every transient (infinite) graph G of bounded degree that has a uniquely absorbing embedding in the plane admits a square tiling.
The square tilings of Benjamini & Schramm

Theorem (Benjamini & Schramm ’96)

Every transient (infinite) graph G of bounded degree that has a uniquely absorbing embedding in the plane admits a square tiling. Moreover, random walk on G converges a.s. to a point in C.

C
The classical Poisson formula

\[h(z) = \int_{0}^{2\pi} \hat{h}(\theta) P(z, \theta) d\theta \]

where \(P(z, \theta) := \frac{1 - |z|^2}{|e^{i\theta} - z|^2} \),

recovers every continuous harmonic function \(h \) on \(\mathbb{D} \) from its boundary values \(\hat{h} \) on the circle \(\partial \mathbb{D} \).
The classical Poisson formula

\[h(z) = \int_0^{2\pi} \hat{h}(\theta) P(z, \theta) d\theta = \int_0^{2\pi} \hat{h}(\theta) d\nu_z(\theta) \]

where \(P(z, \theta) := \frac{1-|z|^2}{|\mathbf{e}^{i\theta} - z|^2} \),

recovers every continuous harmonic function \(h \) on \(\mathbb{D} \) from its boundary values \(\hat{h} \) on the circle \(\partial \mathbb{D} \).
The Poisson integral representation formula

The classical Poisson formula

\[h(z) = \int_0^{2\pi} \hat{h}(\theta) P(z, \theta) d\theta = \int_0^{2\pi} \hat{h}(\theta) d\nu_z(\theta) \]

where \(P(z, \theta) := \frac{1-|z|^2}{|e^{i\theta} - z|^2} \),

recovers every continuous harmonic function \(h \) on \(\mathbb{D} \) from its boundary values \(\hat{h} \) on the circle \(\partial \mathbb{D} \).
Can the bounded harmonic functions on a plane graph G be expressed as a Poisson-like integral using C?
The boundary of the square tiling coincides with the Poisson boundary

Can the bounded harmonic functions on a plane graph G be expressed as a Poisson-like integral using C?

A function $h : V(G) \to \mathbb{R}$, is harmonic, if $h(x) = \sum_{y \sim x} h(y)/d(x)$.
The boundary of the square tiling coincides with the Poisson boundary.

Question (Benjamini & Schramm ’96)

Does the Poisson boundary of every graph as above coincide with the boundary of its square tiling?
The boundary of the square tiling coincides with the Poisson boundary

Question (Benjamini & Schramm '96)

Does the Poisson boundary of every graph as above coincide with the boundary of its square tiling?

Theorem (G '12)

Yes!
The Poisson-Furstenberg boundary

The Poisson boundary of an (infinite) graph G consists of
- a measurable space (\mathcal{P}_G, Σ), and
The Poisson-Furstenberg boundary

The Poisson boundary of an (infinite) graph G consists of
- a measurable space (\mathcal{P}_G, Σ), and
- a family of probability measures $\{\nu_z, z \in V_G\}$,
such that

Agelos Georgakopoulos
The Poisson-Furstenberg boundary

The Poisson boundary of an (infinite) graph G consists of
- a measurable space (\mathcal{P}_G, Σ), and
- a family of probability measures $\{\nu_z, z \in V_G\}$,
such that

- every bounded harmonic function h can be obtained by

\[
h(z) = \int_{\mathcal{P}_G} \hat{h}(\eta) d\nu_z(\eta)
\]
The Poisson boundary of an (infinite) graph G consists of
- a measurable space (\mathcal{P}_G, Σ), and
- a family of probability measures $\{\nu_z, z \in V_G\}$, such that

 every bounded harmonic function h can be obtained by

 $$h(z) = \int_{\mathcal{P}_G} \hat{h}(\eta) d\nu_z(\eta)$$

 this $\hat{h} \in L^\infty(\mathcal{P}_G)$ is unique up to modification on a null-set;
The Poisson-Furstenberg boundary

The Poisson boundary of an (infinite) graph G consists of
- a measurable space (\mathcal{P}_G, Σ), and
- a family of probability measures $\{\nu_z, z \in V_G\}$,
such that

- every bounded harmonic function h can be obtained by
 $$h(z) = \int_{\mathcal{P}_G} \hat{h}(\eta) d\nu_z(\eta)$$

- this $\hat{h} \in L^\infty(\mathcal{P}_G)$ is unique up to modification on a null-set;
- conversely, for every $\hat{h} \in L^\infty(\mathcal{P}_G)$ the function
 $z \mapsto \int_{\mathcal{P}_G} \hat{h}(\eta) d\nu_z(\eta)$ is bounded and harmonic.

i.e. there is Poisson-like formula establishing an isometry between the Banach spaces $H^\infty(G)$ and $L^\infty(\mathcal{P}_G)$.
Selected work on the Poisson boundary

- Introduced by Furstenberg to study semi-simple Lie groups
 [Annals of Math. '63]

- Kaimanovich & Vershik give a general criterion using the entropy of random walk
 [Annals of Probability '83]

- Kaimanovich identifies the Poisson boundary of hyperbolic groups, and gives general criteria
 [Annals of Math. '00]

General survey:

- Erschler: Poisson-Furstenberg Boundaries, Large-scale Geometry and Growth of Groups
 [Proceedings of ICM 2010]

Textbooks:

- Woess: Random Walks on Infinite Graphs and Groups
- Lyons & Peres: Probability on Trees and Networks
Theorem (G ’12)

For every bounded degree graph admitting a square tiling, the Poisson boundary coincides with C.
Probabilistic interpretation of the tiling

Lemma (G ’12)

Let C be a ‘horizontal’ circle in the tiling T of G, and let B the set of points of G at which C ‘dissects’ T. Then the widths of the points of B in T coincide with the probability distribution of the first visit to B by brownian motion on G starting at o.

Agelos Georgakopoulos
Lemma (G ’12)

Let C be a ‘horizontal’ circle in the tiling T of G, and let B the set of points of G at which C ‘dissects’ T. Then the widths of the points of B in T coincide with the probability distribution of the first visit to B by brownian motion on G starting at o.
Lemma

For every ‘meridian’ M in T, the probability that brownian motion on G starting at o will ‘cross’ M clockwise equals the probability to cross M counter-clockwise.
Lemma

For every ‘meridian’ M in T, the probability that brownian motion on G starting at o will ‘cross’ M clockwise equals the probability to cross M counter-clockwise.
Conjecture (Northshield ’93)

Let G be an accumulation-free plane, non-amenable graph with bounded vertex degrees. Then the Northshield circle of G is a realisation of its Poisson boundary.
Conjecture (Northshield ’93)

Let G be an accumulation-free plane, non-amenable graph with bounded vertex degrees. Then the Northshield circle of G is a realisation of its Poisson boundary.

Theorem (G ’13)

Indeed.
Theorem (G ’13)

Let G be an infinite, Gromov-hyperbolic, non-amenable, 1-ended, plane graph with bounded degrees and no infinite faces. Then the following 5 boundaries of G (and the corresponding compactifications of G) are canonically homeomorphic to each other:

- the hyperbolic boundary
- the Martin boundary [Ancona]
- the boundary of the square tiling
- the Northshield circle $\partial_\infty(G)$ and
- the transience boundary $\partial_\prec(G)$ [Northshield].
Conjecture (G)

Let M be a complete, simply connected Riemannian surface with sectional curvatures bounded between two negative constants. Let $f : M \to \mathbb{D}$ be a conformal map. Then for every 1-way infinite geodesic γ in M, the image $f(\gamma)$ converges to a point in the boundary \mathbb{S}^1 of \mathbb{D}, and this convergence determines a homeomorphism from the sphere at infinity of M to \mathbb{S}^1.
Open problems

Problem

Is every planar graph with the Liouville property amenable?

–For Cayley graphs this is true even without planarity [Kaimanovich & Vershik];
–for general graphs it is false even assuming bounded degrees [e.g. Benjamini & Kozma].
Open problems

Problem

Is every planar graph with the Liouville property amenable?

–For Cayley graphs this is true even without planarity [Kaimanovich & Vershik];
–for general graphs it is false even assuming bounded degrees [e.g. Benjamini & Kozma].

Problem

Is there a planar, Gromov-hyperbolic graph with bounded degrees, no infinite faces, and the Liouville property?
Here come some ‘geometric’ random graphs
The classical Douglas formula

\[E(h) = \int_0^{2\pi} \int_0^{2\pi} (\hat{h}(\eta) - \hat{h}(\zeta))^2 \Theta(z, \eta) d\eta \]

calculates the (Dirichlet) energy of a harmonic function \(h \) on \(\mathbb{D} \) from its boundary values \(\hat{h} \) on the circle \(\partial \mathbb{D} \).
Energy in finite electrical networks

\[E(h) = \sum_{a,b \in B} (h(a) - h(b))^2 C_{ab}, \]

where \(C_{ab} \) is the capacitance between nodes \(a \) and \(b \).

Compare with Douglas:

\[E(h) = \int_{2\pi}^{0} \int_{2\pi}^{0} \left(\hat{h}(\eta) - \hat{h}(\zeta) \right)^2 \Theta(z, \eta) \, d\eta \]
Energy in finite electrical networks

\[E(h) = \sum_{a,b \in B} (h(a) - h(b))^2 C^{ab}, \]

where \(C^{ab} = d(a)P_a(b) \)
Energy in finite electrical networks

\[E(h) = \sum_{a,b \in B} (h(a) - h(b))^2 C^{ab}, \]

where \(C^{ab} = d(a) \mathbb{P}_a(b) \)

Compare with Douglas: \(E(h) = \int_0^{2\pi} \int_0^{2\pi} (\hat{h}(\eta) - \hat{h}(\zeta))^2 \Theta(z, \eta) \, d\eta \)
Theorem (G & V. Kaimanovich ’14+)

For every locally finite network G, there is a measure C on $\mathcal{P}^2(G)$ such that for every harmonic function u the energy $E(u)$ equals

$$\int_{\mathcal{P}^2} \left(\hat{u}(\eta) - \hat{u}(\zeta) \right)^2 \, dC(\eta, \zeta).$$
The energy of harmonic functions

Theorem (G & V. Kaimanovich ’14+)

For every locally finite network G, there is a measure C on $P^2(G)$ such that for every harmonic function u the energy $E(u)$ equals

$$\int_{P^2} (\widehat{u}(\eta) - \widehat{u}(\zeta))^2 dC(\eta, \zeta).$$

This is a discrete version of a result of [Doob ’62] on Green spaces (or Riemannian manifolds), which generalises Douglas’ formula $E(h) = \int_0^{2\pi} \int_0^{2\pi} (\hat{h}(\eta) - \hat{h}(\zeta))^2 \Theta(z, \eta)d\eta$.
Energy in finite electrical networks

\[E(h) = \sum_{a,b \in B} (h(a) - h(b))^2 \ C^{ab} \]
Summary