Uniqueness of currents in a network of finite total resistance

Agelos Georgakopoulos

Technische Universität Graz
and
Mathematisches Seminar
Universität Hamburg

Graz, 2.7.09
Applications of electrical networks

Electrical networks have many applications in mathematics:
Applications of electrical networks

Electrical networks have many applications in mathematics:

- in the study of Random Walks
Applications of electrical networks

Electrical networks have many applications in mathematics:

- in the study of Random Walks
- in the study of Riemannian manifolds
Applications of electrical networks

Electrical networks have many applications in mathematics:

- in the study of Random Walks
- in the study of Riemannian manifolds
- in Combinatorics

\[
\begin{bmatrix}
x | u, v \\
y | u, v \\
z | u, v
\end{bmatrix} = \begin{bmatrix} u \\
y \\
\log(\cos|u|\sec|v|) \end{bmatrix}
\]
The discrete Network Problem

The setup:

A graph $G = (V, E)$

A function $r : E \rightarrow \mathbb{R}^+$ (the resistances)

A source and a sink $p, q \in V$

A constant $I \in \mathbb{R}$ (the intensity of the current)

The problem:

Find a p-q flow in G with intensity I that satisfies Kirchhoff's cycle law:

$$\sum_{\vec{e} \in \vec{E}} (C) v(\vec{e}) = 0$$

where $v(\vec{e}) := f(\vec{e}) r(e)$ (Ohm's law)
The discrete Network Problem

A graph \(G = (V, E) \)

The setup:
The discrete Network Problem

The setup:

A graph $G = (V, E)$
a function $r : E \rightarrow \mathbb{R}_+$ (the resistances)

The problem:

Find a p-q flow in G with intensity I that satisfies Kirchhoff's cycle law:

$$\sum_{\vec{e} \in \vec{E}} (C_{\vec{e}} \cdot v(\vec{e})) = 0$$

where $v(\vec{e}) := f(\vec{e}) \cdot r(e)$ (Ohm's law)
The discrete Network Problem

A graph $G = (V, E)$
a function $r : E \to \mathbb{R}_+$ (the resistances)
a source and a sink $p, q \in V$

The setup:

$$\sum_{\vec{e} \in \vec{E}} (C) v(\vec{e}) = 0$$

where $v(\vec{e}) = f(\vec{e}) r(e)$ (Ohm’s law)
The discrete Network Problem

The setup:

A graph $G = (V, E)$
a function $r : E \to \mathbb{R}_+$ (the resistances)
a source and a sink $p, q \in V$
a constant $I \in \mathbb{R}$ (the intensity of the current)
The discrete Network Problem

The setup:

A graph $G = (V, E)$
a function $r : E \to \mathbb{R}^+$ (the resistances)
a source and a sink $p, q \in V$
a constant $I \in \mathbb{R}$ (the intensity of the current)

Find a $p-q$ flow in G with intensity I that satisfies Kirchhoff’s cycle law:

The problem:
The discrete Network Problem

The setup:

A graph $G = (V, E)$
a function $r : E \to \mathbb{R}_+$ (the resistances)
a source and a sink $p, q \in V$
a constant $I \in \mathbb{R}$ (the intensity of the current)

The problem:

Find a p-q flow in G with intensity I that satisfies Kirchhoff’s cycle law:

$$\sum_{\bar{e} \in \bar{E}(C)} v(\bar{e}) = 0$$
The discrete Network Problem

The setup:

A graph $G = (V, E)$
a function $r : E \to \mathbb{R}_+$ (the resistances)
a source and a sink $p, q \in V$
a constant $I \in \mathbb{R}$ (the intensity of the current)

Find a p-q flow in G with intensity I that satisfies Kirchhoff’s cycle law:

The problem:

$$\sum_{\bar{e} \in \bar{E}(c)} \nu(\bar{e}) = 0$$

where $\nu(\bar{e}) := f(\bar{e})r(e)$ (Ohm’s law)
Find a p-q flow in G with intensity I that satisfies Kirchhoff’s cycle law:

$$\sum_{\bar{e} \in \bar{E}(C)} \nu(\bar{e}) = 0$$

where $\nu(\bar{e}) := f(\bar{e})r(e)$ (Ohm’s law)
Uniqueness of solutions

Find a p-q flow in G with intensity I that satisfies Kirchhoff’s cycle law:

$$\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = 0$$

where $v(\vec{e}) := f(\vec{e})r(e)$ (Ohm’s law)

Finite Networks

Infinite Networks
Uniqueness of solutions

Find a p-q flow in G with intensity I that satisfies Kirchhoff’s cycle law:

$$\sum_{\bar{e} \in \bar{E}(C)} v(\bar{e}) = 0$$

where $v(\bar{e}) := f(\bar{e})r(e)$ (Ohm’s law)

Finite Networks

Unique solution

Infinite Networks
Uniqueness of solutions

Find a p-q flow in G with intensity I that satisfies Kirchhoff’s cycle law:

\[\sum_{\bar{e} \in \bar{E}(C)} v(\bar{e}) = 0 \]

where $v(\bar{e}) := f(\bar{e})r(e)$ (Ohm’s law)

Finite Networks
Unique solution

Infinite Networks
Not necessarily unique solution
Find a p-q flow in G with intensity I that satisfies Kirchhoff’s cycle law:

$$\sum_{\vec{e} \in \vec{E}(C)} \nu(\vec{e}) = 0$$

where $\nu(\vec{e}) := f(\vec{e})r(e)$ (Ohm’s law)

Finite Networks
- Unique solution

Networks of finite total resistance
- Unique solution

Infinite Networks
- Not necessarily unique solution
Non-elusive flows

The solution is not necessarily unique!

Non-elusive flow:
The net flow along any such cut must be zero:

\[p - q = 0 \]
The solution is not necessarily unique!
Non-elusive flows

The solution is not necessarily unique!
The solution is not necessarily unique!

Non-elusive flow:
The net flow along any such cut must be zero:
Theorem (G ’08)

In a network with \(\sum_{e \in E} r(e) < \infty \) there is a unique non-elusive flow with finite energy that satisfies Kirchhoff’s cycle law.
Theorem (G ’08)

In a network with \(\sum_{e \in E} r(e) < \infty \) there is a unique \textit{non-elusive} flow with finite energy that satisfies Kirchhoff’s cycle law.
Theorem (G ’08)

In a network with \(\sum_{e \in E} r(e) < \infty \) there is a unique non-elusive flow with finite energy that satisfies Kirchhoff’s cycle law.
Theorem (G ’08)

In a network with $\sum_{e \in E} r(e) < \infty$ there is a unique non-elusive flow with finite energy that satisfies Kirchhoff’s cycle law.

Energy of f: $\frac{1}{2} \sum_{e \in E} f^2(e)r(e)$
The Theorem

Theorem (G ’08)

In a network with \(\sum_{e \in E} r(e) < \infty \) there is a unique non-elusive flow with finite energy that satisfies Kirchhoff’s cycle law.

Energy of \(f \): \(\frac{1}{2} \sum_{e \in E} f^2(e)r(e) \)
The proof

Finite case:

Assume there are two 'good' flows f, g and consider $z := f - g$.
The proof

Assume there are two ‘good’ flows f, g and consider $z := f - g$

Finite case:
The proof

Assume there are two ‘good’ flows f, g and consider $z := f - g$

Finite case:
The proof

Finite case:

Assume there are two ‘good’ flows f, g and consider $z := f - g$
The proof

Finite case:

Assume there are two ‘good’ flows f, g and consider $z := f - g$
The proof

Assume there are two ‘good’ flows f, g and consider $z := f - g$

Finite case:
The proof

Assume there are two ‘good’ flows f, g and consider $z := f - g$

Finite case:
Assume there are two ‘good’ flows f, g and consider $z := f - g$
The proof

Assume there are two ‘good’ flows f, g and consider $z := f - g$

Finite case:

Infinite case:
A wild circle

Wild circles

[i.e. a homeomorphic image of S^1 in $|G|$ (discovered by Diestel & Kühn)]

Contains \aleph_0 double-rays arranged like the rational numbers.
The "gaps" between the double-rays are filled by a Cantor set of ends.
A wild circle i.e. a homeomorphic image of S^1 in $|G|$ (discovered by Diestel & Kühn)
A wild circle i.e., a homeomorphic image of S^1 in $|G|$ (discovered by Diestel & Kühn)

Contains \aleph_0 double-rays arranged like the rational numbers
A wild circle i.e. a homeomorphic image of S^1 in $|G|$ (discovered by Diestel & Kühn)

Contains \aleph_0 double-rays arranged like the rational numbers

The “gaps” between the double-rays are filled by a Cantor set of ends
The proof

Assume there are two ‘good’ flows f, g and consider $z := f - g$

Finite case:

Infinite case:
Assume, again, there are two ‘good’ flows f, g and consider

$$z := f - g$$
Assume, again, there are two ‘good’ flows f, g and consider

$$z := f - g$$
Assume, again, there are two ‘good’ flows f, g and consider

$$z := f - g$$
Finding wild circles by a limit construction

Assume, again, there are two ‘good’ flows f, g and consider

$$z := f - g$$
Assume, again, there are two ‘good’ flows f, g and consider

$$z := f - g$$
Assume, again, there are two ‘good’ flows f, g and consider

$$z := f - g$$
Assume, again, there are two ‘good’ flows f, g and consider

$$z := f - g$$
Finding wild circles by a limit construction

Assume, again, there are two ‘good’ flows f, g and consider

$$z := f - g$$
Assume, again, there are two ‘good’ flows f, g and consider

$$z := f - g$$
Assume, again, there are two ‘good’ flows f, g and consider

$$z := f - g$$
Do wild circles satisfy Kirchhoff’s cycle law?

\[\sum_{\vec{e} \in \vec{E}(C)} \vec{v}(\vec{e}) = 0 \]

\[\vec{E}(F) = \sum_{\vec{e} \in \vec{E}(F)} \vec{v}(\vec{e}) = 0 \]

IT DEPENDS!

\[\sum_{\vec{e} \in \vec{E}} \vec{v}(\vec{e}) = \sum_{F \text{ is a face boundary}} \sum_{\vec{e} \in \vec{E}(F)} \vec{v}(\vec{e}) = 0 \]

Agelos Georgakopoulos

Networks
Do wild circles satisfy Kirchhoff’s cycle law?

\[\sum_{\bar{e} \in \bar{E}(C)} v(\bar{e}) = 0 \]

It depends!
Do wild circles satisfy Kirchhoff’s cycle law?

\[\sum_{\vec{e} \in \vec{E}} v(\vec{e}) = 0 \]

IT DEPENDS!
Do wild circles satisfy Kirchhoff’s cycle law?

\[\sum_{\vec{e} \in \vec{E}} v(\vec{e}) = 0 \]

\[\vec{E}(C) = \sum_{F \text{ is a face boundary}} \vec{E}(F) \]

\[\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = 0 \]

IT DEPENDS!
Do wild circles satisfy Kirchhoff’s cycle law?

\[\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = 0 \]

\[\bar{E}(C) = \sum_{F \text{ is a face boundary}} \bar{E}(F) \]

\[\sum_{\vec{e} \in \bar{E}(C)} v(\vec{e}) = \sum_{F \text{ is a face boundary}} \sum_{\vec{e} \in \bar{E}(F)} v(\vec{e}) \]

IT DEPENDS!
Do wild circles satisfy Kirchhoff’s cycle law?

\[\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = 0 \]

\[\vec{E}(C) = \sum_{F \text{ is a face boundary}} \vec{E}(F) \]

\[\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = \sum_{F \text{ is a face boundary}} \sum_{\vec{e} \in \vec{E}(F)} v(\vec{e}) \]
Do wild circles satisfy Kirchhoff’s cycle law?

\[\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = 0 \]

\[\bar{E}(C) = \sum_{F \text{ is a face boundary}} \bar{E}(F) \]

\[\sum_{\vec{e} \in \bar{E}(C)} v(\vec{e}) = \sum_{F \text{ is a face boundary}} \sum_{\vec{e} \in \bar{E}(F)} v(\vec{e}) = 0 \]
Do wild circles satisfy Kirchhoff’s cycle law?

\[\sum \vec{e} \in \vec{E}(C) \quad \sum v(\vec{e}) = 0 \]

\[\vec{E}(C) = \sum_{F \text{ is a face boundary}} \vec{E}(F) \]

\[\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = \sum_{F \text{ is a face boundary}} \sum_{\vec{e} \in \vec{E}(F)} v(\vec{e}) = 0 \]

\[= 0 \]
Do wild circles satisfy Kirchhoff’s cycle law?

\[\sum_{\vec{e} \in \vec{E}} v(\vec{e}) = 0 \]

\[\vec{E}(C) = \sum_{F \text{ is a face boundary}} \vec{E}(F) \]

\[\sum_{\vec{e} \in \vec{E}(C)} v(\vec{e}) = \sum_{F \text{ is a face boundary}} \sum_{\vec{e} \in \vec{E}(F)} v(\vec{e}) = 0 \quad \text{? IT DEPENDS!} \]

\[= 0 \]
Do wild circles satisfy Kirchhoff’s cycle law?

\[\sum_{\vec{e} \in \vec{E}(C)} \nu(\vec{e}) = 0 \]

IT DEPENDS!

\[\sum_{\vec{e} \in \vec{E}(C)} \nu(\vec{e}) = \sum_{F \ is \ a \ face \ boundary} \sum_{\vec{e} \in \vec{E}(F)} \nu(\vec{e}) = 0 \]

OK if \(\sum r(e) < \infty \)
The second tool

We need a tool that distinguishes edges with different resistances:
The second tool

We need a tool that distinguishes edges with different resistances:

\[\ell - \text{TOP} \]
We need a tool that distinguishes edges with different resistances:

\(\ell - \text{TOP} \)

- let \(G = (V, E) \) be any graph
The second tool

We need a tool that distinguishes edges with different resistances:

ℓ-TOP

- let $G = (V, E)$ be any graph
- give each edge a length $\ell(e)$
We need a tool that distinguishes edges with different resistances:

\[\ell - \text{TOP} \]

- let \(G = (V, E) \) be any graph
- give each edge a length \(\ell(e) \)
- this induces a metric: \(d(v, w) := \inf \{ \ell(P) \mid P \text{ is a } v-w \text{ path} \} \)
The second tool

We need a tool that distinguishes edges with different resistances:

\[\ell\text-\text{TOP} \]

- let \(G = (V, E) \) be any graph
- give each edge a length \(\ell(e) \)
- this induces a metric: \(d(v, w) := \inf\{\ell(P) \mid P \text{ is a } v\text{-}w \text{ path}\} \)
- let \(|G|_\ell \) be the completion of the corresponding metric space
The second tool

We need a tool that distinguishes edges with different resistances:

\[\ell - \text{TOP} \]

- let \(G = (V, E) \) be any graph
- give each edge a **length** \(\ell(e) \)
- this induces a metric: \(d(v, w) := \inf \{ \ell(P) \mid P \text{ is a } v-w \text{ path} \} \)
- let \(|G|_\ell \) be the completion of the corresponding metric space
The second tool

We need a tool that distinguishes edges with different resistances:

\[\ell - \text{TOP} \]

- let \(G = (V, E) \) be any graph
- give each edge a length \(\ell(e) \)
- this induces a metric: \(d(v, w) := \inf\{\ell(P) \mid P \text{ is a } v-w \text{ path}\} \)
- let \(|G|_\ell \) be the completion of the corresponding metric space
The second tool

We need a tool that distinguishes edges with different resistances:

\[\ell \text{-TOP} \]

- let \(G = (V, E) \) be any graph
- give each edge a length \(\ell(e) \)
- this induces a metric: \(d(v, w) := \inf \{ \ell(P) \mid P \text{ is a } v-w \text{ path} \} \)
- let \(|G|_\ell \) be the completion of the corresponding metric space

Theorem (G ’06 (easy))

If \(\sum_{e \in E} \ell(e) < \infty \) then \(|G|_\ell \approx |G| \).
The second tool

We need a tool that distinguishes edges with different resistances:

$$\ell$$-TOP

- let $G = (V, E)$ be any graph
- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w) := \inf \{\ell(P) \mid P \text{ is a } v-w \text{ path} \}$
- let $|G|_{\ell}$ be the completion of the corresponding metric space

Theorem (G ’06 (easy))

If $\sum_{e \in E} r(e) < \infty$ then $|G|_r \approx |G|$.
Kirchhoff’s cycle law for wild circles

Theorem (Diestel & G)

The circles of an electrical network N satisfy Kirchhoff’s cycle law if the sum of the resistances in N is finite.
Theorem (G ’08)

In a network with \(\sum_{e \in E} r(e) < \infty \) there is a unique non-elusive flow with finite energy that satisfies Kirchhoff’s cycle law.
Theorem (G ’08)

In a network with $\sum_{e \in E} r(e) < \infty$ there is a unique non-elusive flow with finite energy that satisfies Kirchhoff’s cycle law.
The Dirichlet Problem

Continuous version

Let $X \subseteq \mathbb{R}^n$ be compact
Prescribe $\phi: \partial X \to \mathbb{R}$
Extend to $\phi': X \to \mathbb{R}$ that is harmonic inside X

$\nabla^2 \phi' = 0$

Discrete version

Let G be a graph
Prescribe $\phi: \partial G \to \mathbb{R}$
Extend to $\phi': G \to \mathbb{R}$ that is harmonic in G

i.e. satisfies Kirchhoff's node law

Studied intensively (Woess, Kaimanovich, Benjamini & Schramm)
The Dirichlet Problem

Continuous version

Let \(X \subseteq \mathbb{R}^n \) be compact

Discrete version

Let \(G \) be a graph

Prescribe \(\phi : \partial G \rightarrow \mathbb{R} \)

Extend to \(\phi' : G \rightarrow \mathbb{R} \) that is harmonic in \(G \)

i.e. satisfies Kirchhoff's node law

Studied intensively (Woess, Kaimanovich, Benjamini & Schramm)
The Dirichlet Problem

Continuous version

Let \(X \subseteq \mathbb{R}^n \) be compact
Prescribe \(\varphi : \partial X \rightarrow \mathbb{R} \)

Discrete version

Let \(G \) be a graph
Prescribe \(\varphi : \partial G \rightarrow \mathbb{R} \)
Extend to \(\varphi' : G \rightarrow \mathbb{R} \) that is harmonic

\[\nabla^2 \varphi' = 0 \]

Studied intensively (Woess, Kaimanovich, Benjamini & Schramm)

Agelos Georgakopoulos
Networks
The Dirichlet Problem

Continuous version

Let \(X \subseteq \mathbb{R}^n \) be compact
Prescribe \(\phi : \partial X \rightarrow \mathbb{R} \)

\[\nabla^2 \phi' = 0 \]

Discrete version

Let \(G \) be a graph
Prescribe \(\phi : \partial G \rightarrow \mathbb{R} \)

Extend to \(\phi' : X \rightarrow \mathbb{R} \) that is harmonic inside \(X \)

Agelos Georgakopoulos

Networks
Continuous version

Let \(X \subseteq \mathbb{R}^n \) be compact
Prescribe \(\varphi : \partial X \to \mathbb{R} \)

\[\nabla^2 \varphi = 0 \]

Discrete version

Let \(G \) be a graph
Prescribe \(\varphi : \partial G \to \mathbb{R} \)
Extend to \(\varphi' : X \to \mathbb{R} \) that is harmonic inside \(X \)
\[\nabla^2 \varphi' = 0 \]
The Dirichlet Problem

Continuous version

Let \(X \subseteq \mathbb{R}^n \) be compact
Prescribe \(\varphi : \partial X \rightarrow \mathbb{R} \)

Extend to \(\varphi' : X \rightarrow \mathbb{R} \) that is harmonic inside \(X \)
\(\nabla^2 \varphi' = 0 \)

Discrete version

Let \(G \) be a graph

Prescribe \(\varphi : \partial G \rightarrow \mathbb{R} \)

Extend to \(\varphi' : G \rightarrow \mathbb{R} \) that is harmonic in \(G \)
i.e. satisfies Kirchhoff’s node law

Studied intensively (Woess, Kaimanovich, Benjamini & Schramm)
The Dirichlet Problem

Continuous version

Let $X \subseteq \mathbb{R}^n$ be compact
Prescribe $\varphi : \partial X \to \mathbb{R}$

Extend to $\varphi' : X \to \mathbb{R}$ that is harmonic inside X
$\nabla^2 \varphi' = 0$

Discrete version

Let G be a graph
Prescribe $\varphi : \partial G \to \mathbb{R}$

Studied intensively (Woess, Kaimanovich, Benjamini & Schramm)
The Dirichlet Problem

Continuous version

Let $X \subseteq \mathbb{R}^n$ be compact
Prescribe $\varphi : \partial X \rightarrow \mathbb{R}$

Extend to $\varphi' : X \rightarrow \mathbb{R}$ that is harmonic inside X
$\nabla^2 \varphi' = 0$

Discrete version

Let G be a graph
Prescribe $\varphi : \partial G \rightarrow \mathbb{R}$

Studied intensively (Woess, Kaimanovich, Benjamini & Schramm)
Continuous version

Let $X \subseteq \mathbb{R}^n$ be compact
Prescribe $\phi : \partial X \to \mathbb{R}$

Extend to $\phi' : X \to \mathbb{R}$ that is harmonic inside X
$\nabla^2 \phi' = 0$

Discrete version

Let G be a graph
Prescribe $\phi : \partial G \to \mathbb{R}$

Studied intensively (Woess, Kaimanovich, Benjamini & Schramm)

Agelos Georgakopoulos

Networks
The Dirichlet Problem

Continuous version

Let $X \subseteq \mathbb{R}^n$ be compact
Prescribe $\varphi : \partial X \to \mathbb{R}$

Extend to $\varphi' : X \to \mathbb{R}$ that is harmonic inside X
$\nabla^2 \varphi' = 0$

Discrete version

Let G be a graph
Prescribe $\varphi : \partial G \to \mathbb{R}$

Extend to $\varphi' : G \to \mathbb{R}$ that is harmonic in G
The Dirichlet Problem

Continuous version

Let $X \subseteq \mathbb{R}^n$ be compact
Prescribe $\varphi : \partial X \rightarrow \mathbb{R}$

Extend to $\varphi' : X \rightarrow \mathbb{R}$ that is
harmonic inside X
$\nabla^2 \varphi' = 0$

Discrete version

Let G be a graph
Prescribe $\varphi : \partial G \rightarrow \mathbb{R}$

Extend to $\varphi' : G \rightarrow \mathbb{R}$ that is
harmonic in G
i.e. satisfies Kirchhoff’s node law

Studied intensively (Woess, Kaimanovich, Benjamini & Schramm)
The Dirichlet Problem

Continuous version

Let $X \subseteq \mathbb{R}^n$ be compact
Prescribe $\varphi : \partial X \rightarrow \mathbb{R}$

Extend to $\varphi' : X \rightarrow \mathbb{R}$ that is harmonic inside X
$\nabla^2 \varphi' = 0$

Discrete version

Let G be a graph
Prescribe $\varphi : \partial G \rightarrow \mathbb{R}$

Extend to $\varphi' : G \rightarrow \mathbb{R}$ that is harmonic in G
i.e. satisfies Kirchhoff’s node law
Studied intensively (Woess, Kaimanovich, Benjamini & Schramm)
The Dirichlet Problem

Problem

For every assignment \(r : E \rightarrow \mathbb{R}_+ \) (such that \(|G|_r \) is compact) the Dirichlet problem is solvable for every continuous \(\phi : \partial |G|_r \rightarrow \mathbb{R} \).
The Dirichlet Problem

Problem

For every assignment $r : E \to \mathbb{R}_+$ (such that $|G|_r$ is compact) the Dirichlet problem is solvable for every continuous $\phi : \partial |G|_r \to \mathbb{R}$.

Interesting because:

Theorem (Gromov ’87 (indirect proof))

For every compact metric space X there is a locally finite graph G and $r : E \to \mathbb{R}_+$ such that $X = \partial |G|_r$.

Agelos Georgakopoulos
Networks
The Dirichlet Problem

Problem

For every assignment \(r : E \rightarrow \mathbb{R}_+ \) (such that \(|G|_r \) is compact) the Dirichlet problem is solvable for every continuous \(\phi : \partial |G|_r \rightarrow \mathbb{R} \).
The Dirichlet Problem

Problem

For every assignment $r : E \to \mathbb{R}_+$ (such that $|G|_r$ is compact) the Dirichlet problem is solvable for every continuous $\phi : \partial|G|_r \to \mathbb{R}$.

The converse works:

Theorem

If $f : \overrightarrow{E} \to \mathbb{R}$ is a flow of finite energy in G satisfying Kirchhoff’s cycle law then it is possible to extend the corresponding potentials continuously to $\partial|G|_r$.
Random Walks & Electrical networks

Every edge \(e \) has a weight \(c(e) \).

Go from \(x \) to \(y \) with probability
\[
P_{x \rightarrow y} := \frac{c(xy)}{c(x)}
\]

where
\[
c(x) := \sum_{xv \in E} c(xv)
\]

\(P_{pq}(x) \) is the probability that if you start in \(x \) you will hit \(p \) before \(q \).

\[r(e) < 1\]

Connect a source of voltage 1 to \(p \), \(q \).
Every edge e has a weight $c(e)$
Every edge e has a weight $c(e)$

Go from x to y with probability

$$P_{x \rightarrow y} := \frac{c(xy)}{c(x)}$$

where $c(x) := \sum_{xv \in E} c(xv)$
Every edge e has a weight $c(e)$

Go from x to y with probability

$$P_{x \to y} := \frac{c(xy)}{c(x)}$$

where $c(x) := \sum_{xv \in E} c(xv)$

$\mathbb{P}_{pq}(x) :=$ the probability that if you start in x you will hit p before q.
Every edge e has a weight $c(e)$

Go from x to y with probability

$$P_{x\to y} := \frac{c(xy)}{c(x)}$$

where $c(x) := \sum_{xv \in E} c(xv)$

$\mathbb{P}_{pq}(x) :=$ the probability that if you start in x you will hit p before q.

$$c(e) \iff \frac{1}{r(e)}$$
Every edge e has a weight $c(e)$

Go from x to y with probability

$$P_{x \rightarrow y} := \frac{c(xy)}{c(x)}$$

where $c(x) := \sum_{xv \in E} c(xv)$

$$P_{pq}(x) := \text{the probability that if you start in } x \text{ you will hit } p \text{ before } q.$$

$$c(e) \leftrightarrow \frac{1}{r(e)}$$

Connect a source of voltage 1 to p, q
Every edge e has a weight $c(e)$

Go from x to y with probability

$$P_{x \rightarrow y} := \frac{c(xy)}{c(x)}$$

where $c(x) := \sum_{xv \in E} c(xv)$

$\mathbb{P}_{pq}(x) :=$ the probability that if you start in x you will hit p before q.

$$c(e) \iff \frac{1}{r(e)}$$

Connect a source of voltage 1 to p, q

$$\mathbb{P}_{pq}(x) = P(x)$$
\[\mathbb{P}_{pq}(x) = P(x) \]

\[\mathbb{P}_{pq}(x) := \text{the probability that if you start in } x \text{ you will hit } p \text{ before } q \]
\(\mathbb{P}_{pq}(x) = P(x) \)

\(\mathbb{P}_{pq}(x) := \) the probability that if you start in \(x \) you will hit \(p \) before \(q \)
\(\mathbb{P}_{pq}(x) = P(x) \)

\(\mathbb{P}_{pq}(x) := \) the probability that if you start in \(x \) you will hit \(p \) before \(q \)
\[\mathbb{P}_{pq}(x) = P(x) \]

\[\mathbb{P}_{pq}(x) := \text{the probability that if you start in } x \text{ you will hit } p \text{ before } q \]

Problem

*Define brownian motion on } |G|_{\ell} *
Theorem (G ’08)

In a network with $\sum_{e \in E} r(e) < \infty$ there is a unique ‘good’ current.

Problem

Define brownian motion on $|G|_\ell$

Problem

Solve the Dirichlet Problem at the $|G|_\ell$ boundary