From finite graphs to infinite; and beyond

Agelos Georgakopoulos

Mathematisches Seminar
Universität Hamburg

Göttingen, 5.3.2009
Many finite theorems fail for infinite graphs:
Many finite theorems fail for infinite graphs:

- Hamilton cycle theorems
Hamilton cycle: A cycle containing all vertices.

Some examples:
Many finite theorems fail for infinite graphs:

- Hamilton cycle theorems
Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

- Hamilton cycle theorems
- Extremal graph theory
Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

- Hamilton cycle theorems
- Extremal graph theory
- many others ...
Things that go wrong in infinite graphs

Many finite theorems fail for infinite graphs:

- Hamilton cycle theorems
- Extremal graph theory
- many others ...

⇒ need more general notions
Classical approach to ‘save’ Hamilton cycle theorems: accept double-rays as infinite cycles

\[\cdots \rightarrow \cdots \]
Classical approach to ‘save’ Hamilton cycle theorems: accept double-rays as infinite cycles

This approach only extends finite theorems in very restricted cases:
Classical approach to ‘save’ Hamilton cycle theorems: accept double-rays as infinite cycles

\[\cdots \bullet \cdot \cdots \cdots \cdots \]

This approach only extends finite theorems in very restricted cases:

Theorem (Tutte ’56)

Every finite 4-connected planar graph has a Hamilton cycle
Classical approach: accept double-rays as infinite cycles

\[\cdots \quad \bullet \quad \bullet \quad \bullet \quad \cdots \]

This approach only extends finite theorems in very restricted cases:

Theorem (Yu ’05)

Every locally finite 4-connected planar graph has a spanning double ray ...
Spanning Double-Rays

Classical approach: accept double-rays as infinite cycles

\[\cdots \cdot \cdot \cdot \cdots \]

This approach only extends finite theorems in very restricted cases:

Theorem (Yu ’05)

Every locally finite 4-connected planar graph has a spanning double ray ... unless it is 3-divisible.
Compactifying by Points at Infinity

A 3-divisible graph
A 3-divisible graph can have no spanning double ray.
A 3-divisible graph can have no spanning double ray.
A 3-divisible graph can have no spanning double ray

... but a Hamilton cycle?
end: equivalence class of rays
two rays are equivalent if no finite vertex set separates them
end: equivalence class of rays
two rays are equivalent if no finite vertex set separates them

two ends
Ends

end: equivalence class of rays

two rays are **equivalent** if no finite vertex set separates them

Two ends

One end
Ends

end: equivalence class of rays

two rays are **equivalent** if no finite vertex set separates them

![Diagram](image)

two ends

one end

uncountably many ends

Agelos Georgakopoulos

Infinite graphs
The End Compactification

Every ray converges to its end.
Every ray converges to its end
Every ray converges to its end
Give each edge e a length $\ell(e)$.
(Equivalent) definition of $|G|$

Give each edge e a length $\ell(e)$

This naturally induces a metric d_ℓ on G
Give each edge e a length $\ell(e)$

This naturally induces a metric d_ℓ on G

Denote by $|G|_\ell$ the completion of (G, d_ℓ)
Give each edge e a length $\ell(e)$

This naturally induces a metric d_ℓ on G

Denote by $|G|_\ell$ the completion of (G, d_ℓ)

Theorem (G ’06)

If $\sum_{e \in E(G)} \ell(e) < \infty$ then $|G|_\ell$ is homeomorphic to $|G|$.
Circle:
A homeomorphic image of S^1 in $|G|$.
Infinite Cycles

Circle:
A homeomorphic image of S^1 in $|G|$.

Hamilton circle:
a circle containing all vertices
Infinite Cycles

Circle:
A homeomorphic image of S^1 in $|G|$.

Hamilton circle:
a circle containing all vertices (and all ends?)
Infinite Cycles

Circle:
A homeomorphic image of S^1 in $|G|$.

Hamilton circle:
a circle containing all vertices, and thus also all ends.
Infinite Cycles

Circle:
A homeomorphic image of S^1 in $|G|$.

Hamilton circle:
a circle containing all vertices, and thus also all ends.
Circle:
A homeomorphic image of S^1 in $|G|$.
Circle:
A homeomorphic image of S^1 in $|G|$.

the wild circle of Diestel & Kühn
Theorem (Fleischner ’74)

The square of a finite 2-connected graph has a Hamilton cycle
Fleischner’s Theorem

Theorem (Fleischner ‘74)

The square of a finite 2-connected graph has a Hamilton cycle

Theorem (Thomassen ‘78)

The square of a locally finite 2-connected 1-ended graph has a Hamilton circle.
Theorem (G ’06)

The square of any locally finite 2-connected graph has a Hamilton circle.
Proof?

Agelos Georgakopoulos

Infinite graphs
Proof?
Proof?
Proof?
Proof?
Hilbert’s space filling curve:

a sequence of injective curves with a non-injective limit
Theorem (G '06)

The square of any locally finite 2-connected graph has a Hamilton circle
Theorem (G ’06)

The square of any locally finite 2-connected graph has a Hamilton circle

Corollary

Cayley graphs are “morally” hamiltonian.
Hamiltonicity in Cayley graphs

Problem (Rapaport-Strasser ’59)

Does every finite connected Cayley graph have a Hamilton cycle?
Hamiltonicity in Cayley graphs

Problem (Rapaport-Strasser ’59)

Does every finite connected Cayley graph have a Hamilton cycle?

Problem

Does every connected 1-ended Cayley graph have a Hamilton circle?
Hamiltonicity in Cayley graphs

Problem (Rapaport-Strasser ’59)

Does every finite connected Cayley graph have a Hamilton cycle?

Problem

Does every connected 1-ended Cayley graph have a Hamilton circle?
Problem (Rapaport-Strasser ’59)

Does every finite connected Cayley graph have a Hamilton cycle?

Problem

Does every connected 1-ended Cayley graph have a Hamilton circle?

Problem

Prove that every connected Cayley graph of a finitely generated group Γ has a Hamilton circle unless Γ is the amalgamated product of more than k groups over a subgroup of order k.
Many finite theorems fail for infinite graphs:

- Hamilton cycle theorems
- Extremal graph theory
- many others ...
Theorem (Mader ’72)

Any finite graph of minimum degree at least $4k$ has a k-connected subgraph.

k-connected means: you can delete any $k – 1$ vertices and the graph will still be connected.
Theorem (Mader ’72)

Any finite graph of minimum degree at least $4k$ has a k-connected subgraph.

k-connected means: you can delete any $k - 1$ vertices and the graph will still be connected.

Theorem (M. Stein ’05)

Let $k \in \mathbb{N}$ and let G be a locally finite graph such that every vertex has degree at least $6k^2 - 5k + 3$ and every end has degree at least $6k^2 - 9k + 4$. Then G has a k-connected subgraph.
The **cycle space** \(C(G) \) of a finite graph:

- A vector space over \(\mathbb{Z}_2 \)
- Consists of all sums of cycles
The cycle space $\mathcal{C}(G)$ of a finite graph:
- A vector space over \mathbb{Z}_2
- Consists of all sums of cycles
i.e., the first simplicial homology group of G.
The cycle space $\mathcal{C}(G)$ of a finite graph:
- A vector space over \mathbb{Z}_2
- Consists of all sums of cycles
i.e., the first simplicial homology group of G.

The topological cycle space $\mathcal{C}(G)$ of a locally finite graph G is defined similarly but:

...
The **cycle space** $\mathcal{C}(G)$ of a finite graph:
- A vector space over \mathbb{Z}_2
- Consists of all sums of cycles
i.e., the first simplicial homology group of G.

The **topological cycle space** $\mathcal{C}(G)$ of a locally finite graph G is defined similarly but:
- Allows edge sets of infinite circles;
The cycle space $\mathcal{C}(G)$ of a finite graph:
- A vector space over \mathbb{Z}_2
- Consists of all sums of cycles
i.e., the first simplicial homology group of G.

The topological cycle space $\mathcal{C}(G)$ of a locally finite graph G is defined similarly but:
- Allows edge sets of infinite circles;
- Allows infinite sums (whenever well-defined).
The topological Cycle Space

Known facts:
- A connected graph has an Euler tour iff every edge-cut is even (Euler)
- G is planar iff $C(G)$ has a simple generating set (MacLane)
- If G is 3-connected then its peripheral cycles generate $C(G)$ (Tutte)

Generalisations:
- Bruhn & Stein
- Bruhn & Stein
- Bruhn
Theorem (MacLane ’37)

A finite graph G is planar iff $C(G)$ has a simple generating set.

simple: no edge appears in more than two generators.
MacLane’s Planarity Criterion

Theorem (MacLane ’37)

A finite graph G is planar iff $\mathcal{C}(G)$ has a simple generating set.

simple: no edge appears in more than two generators.

Theorem (Bruhn & Stein’05)

... verbatim generalisation for locally finite G
There is a canonical homomorphism

\[f : H_1(|G|) \rightarrow \mathcal{C}(G) \]
There is a canonical homomorphism
\[f : H_1(|G|) \rightarrow \mathcal{C}(G) \]

Theorem (Diestel & Sprüssel ’07)
\[f \text{ is surjective but not injective.} \]
There is a canonical homomorphism

\[f : H_1(|G|) \to \mathcal{C}(G) \]

Theorem (Diestel & Sprüssel ’07)

\(f \) is surjective but not injective.
Problem

Modify H_1 to obtain a homology theory that captures $\mathcal{C}(G)$ when applied to $|G|$ and generalises graph-theoretical theorems to arbitrary continua.
Problem

Modify H_1 to obtain a homology theory that captures $\mathcal{C}(G)$ when applied to $|G|$ and generalises graph-theoretical theorems to arbitrary continua.

In particular:

Problem

Characterise the continua embeddable in the plane
An **electrical network** is a graph G with an assignment of resistances $r : E(G) \rightarrow \mathbb{R}^+$, and two special vertices (source – sink) pumping a flow of constant value I into the network.
An **electrical network** is a graph G with an assignment of resistances $r : E(G) \to \mathbb{R}^+$, and two special vertices (source – sink) pumping a flow of constant value I into the network.

electrical flow: A flow satisfying Kirchhoff’s second law (for finite cycles.)
An electrical network is a graph G with an assignment of resistances $r : E(G) \rightarrow \mathbb{R}^+$, and two special vertices (source – sink) pumping a flow of constant value I into the network.

electrical flow: A flow satisfying Kirchhoff’s second law (for finite cycles.

If G is finite then the electrical flow is unique, if it is infinite then there might be several; but:
Electrical Networks

An electrical network is a graph G with an assignment of resistances $r : E(G) \rightarrow \mathbb{R}^+$, and two special vertices (source – sink) pumping a flow of constant value I into the network.

electrical flow: A flow satisfying Kirchhoff’s second law (for finite cycles.

If G is finite then the electrical flow is *unique*, if it is infinite then there might be several; but:

Theorem (G ’08)

If $\sum_{e \in E} r(e) < \infty$ then there is a unique non-elusive electrical flow of finite energy.

energy $:= \sum_{e \in E} i^2(e)r(e)$.

Agelos Georgakopoulos

Infinite graphs