A new homology for infinite graphs and metric continua

Agelos Georgakopoulos

University of Warwick

Warwick, 14/3/13
Wild spaces have a huge fundamental group π_1 and 1st homology group.
Wild spaces have a huge fundamental group π_1 and 1st homology group (1st Homology group $H_1 = \text{abelianization of } \pi_1$)
Overview

- **Wild spaces** have a huge fundamental group π_1 and 1st homology group $(1\text{st Homology group } H_1 = \text{abelianization of } \pi_1)$

- We are going to *tame* H_1 by removing some ‘redundancy’
Wild spaces have a huge fundamental group π_1 and 1st homology group H_1 = abelianization of π_1.

We are going to *tame* H_1 by removing some ‘redundancy’.

... using experience from infinite graph theory.
Theorem (MacLane ’37)

A finite graph G is planar iff $C(G)$ has a simple generating set.

$C(G)$: the cycle space of $G = H_1(G)$ (simlicial or singular homology) = $\text{Abel}(\pi_1)$

simple: no edge appears in more than two generators.
Theorem (MacLane ’37)

A finite graph G is planar iff $C(G)$ has a simple generating set.

$C(G)$: the cycle space of $G = H_1(G)$ (simplicial or singular homology) = $\text{Abel}(\pi_1)$

simple: no edge appears in more than two generators.
Theorem (MacLane ’37)

A finite graph G is planar iff $C(G)$ has a simple generating set.

$C(G)$: the cycle space of $G = H_1(G)$ (simplicial or singular homology) = $\text{Abel}(\pi_1)$

simple: no edge appears in more than two generators.
Theorem (MacLane ’37)

A finite graph G is planar iff $C(G)$ has a **simple** generating set.

$C(G)$: the cycle space of $G = H_1(G)$ (simplicial or singular homology) = $Abel(\pi_1)$

simple: no edge appears in more than two generators.

But using the right homology
(topological cycle space of Diestel & Kühn) ...:

Theorem (Bruhn & Stein ’05)

... *verbatim generalisation for locally finite G.*
Theorem (MacLane ’37)

A finite graph G is planar iff $C(G)$ has a simple generating set.

$C(G)$: the cycle space of $G = H_1(G)$ (simlicial or singular homology) = $Abel(\pi_1)$

simple: no edge appears in more than two generators.
A new homology for metric spaces

Idea: put a natural distance function on $H_1(X)$...
A new homology for metric spaces

Idea: put a natural distance function on $H_1(X)$...

... and identify elements at distance 0.
A new homology for metric spaces

Idea: put a natural distance function on $H_1(X)$...
... and identify elements at distance 0.
A new homology for metric spaces

Idea: put a natural distance function on $H_1(X)$ and identify elements at distance 0.

Let

$$H'_1(X) := H_1(X) / d = 0$$

and, if you like, let $\hat{H}_1(X)$ be its completion.
A new homology for metric spaces

Idea: put a natural distance function on $H_1(X)$...

... and identify elements at distance 0.

$$d(a, b) := \inf \text{(area you need to make } a \approx b)$$
A new homology for metric spaces

Idea: put a natural distance function on $H_1(X)$...
... and identify elements at distance 0.

$$d(a, b) := \inf \text{ (area you need to make } a \approx b)$$
more precisely: $$d(a, b) := \inf_{\chi \text{ isom } \chi'} \text{ area}(\chi' \setminus \chi)$$

\approx in χ'

Agelos Georgakopoulos
A new homology for metric spaces

Idea: put a natural distance function on $H_1(X)$...
... and identify elements at distance 0.

$\textbf{Let } H'_1(X) := H_1(X)/d=0 \textbf{.}$

\begin{align*}
d(a, b) &:= \inf \text{ (area you need to make } a \approx b) \\
\text{more precisely: } d(a, b) &:= \inf_{\substack{X \text{ isom} \rightarrow X' \\\{a \approx b \text{ in } X'}} \text{ area}(X' \setminus X)
\end{align*}
A new homology for metric spaces

Idea: put a natural distance function on $H_1(X)$ and identify elements at distance 0.

\[d(a, b) := \inf (\text{area you need to make } a \approx b) \]

more precisely: \[d(a, b) := \inf_{\chi \text{ isom } X} \text{area}(X' \setminus X) \]

Let \[H'_1(X) := H_1(X) / d=0 \]
and, if you like, let $\hat{H}_1(X)$ be its completion.
A wild space by Z. Virk & A. Zastrow.
Cycle decompositions
Cycle decompositions

\[\rightarrow \]
Can you make a theorem out of this observation?
Can you make a theorem out of this observation?
Can you make a theorem out of this observation?
Proposition

Every element of $C(G)$ can be written as a union of a set of edge-disjoint cycles.
What about more continuous spaces?

Proposition

Every element of $C(G)$ can be written as a union of a set of edge-disjoint cycles.
What about more continuous spaces?

Proposition

Every element of $\mathcal{C}(G)$ can be written as a union of a set of edge-disjoint cycles.

Theorem (G' 09)

For every compact metric space X and $C \in \hat{\mathcal{H}}_1(X)$, there is a σ-representative $(z_i)_{i \in \mathbb{N}}$ of C that minimizes the length $\sum_i \ell(z_i)$ among all representatives of C.
Theorem (Diestel & Kühn)

Every element of the topological cycle space $C(G)$ of a locally finite graph G can be written as a union of a set of edge-disjoint circles.
Theorem (Diestel & Kühn)

Every element of the topological cycle space \(C(G) \) of a locally finite graph \(G \) can be written as a union of a set of edge-disjoint circles.

One of many classical theorems recently extended to infinite graphs using our new homology, the topological cycle space \(C(G) \) in an ongoing series of >30 papers by Diestel, Kühn, Bruhn, Stein, G, Sprüssel, Richter, Vella, et. al.
Theorem (G’ 09)

For every compact metric space X and $C \in \hat{H}_1(X)$, there is a σ-representative $(z_i)_{i \in \mathbb{N}}$ of C that minimizes the length $\sum_i \ell(z_i)$ among all representatives of C.
Proof sketch

Theorem (G’ 09)

*For every compact metric space X and $C \in \hat{H}_1(X)$, there is a σ-representative $(z_i)_{i \in \mathbb{N}}$ of C that minimizes the length $\sum_i \ell(z_i)$ among all representatives of C.***

Specify a subset of well-behaved elements of $\hat{H}_1(X)$, called \textbf{primitive} elements;
Theorem (G’ 09)

For every compact metric space \(X \) and \(C \in \widehat{H}_1(X) \), there is a \(\sigma \)-representative \((z_i)_{i \in \mathbb{N}}\) of \(C \) that minimizes the length \(\sum_i \ell(z_i) \) among all representatives of \(C \).

- Specify a subset of well-behaved elements of \(\widehat{H}_1(X) \), called primitive elements;
- Prove the statement for primitive elements;
Theorem (G’ 09)

For every compact metric space X and $C \in \hat{H}_1(X)$, there is a σ-representative $(z_i)_{i \in \mathbb{N}}$ of C that minimizes the length $\sum_i \ell(z_i)$ among all representatives of C.

- Specify a subset of well-behaved elements of $\hat{H}_1(X)$, called primitive elements;
- Prove the statement for primitive elements;
- Show that every other element can be expressed as a sum of primitive elements.
Proof sketch

- Specify a subset of well-behaved elements of $\widehat{H}_1(X)$, called primitive elements;
Proof sketch

Specify a subset of well-behaved elements of $\hat{H}_1(X)$, called primitive elements;

We say that $C \in \hat{H}_1(X)$ splits if there are $A, B \neq 0 \in \hat{H}_1(X)$ with

\[
C = A + B, \quad \text{and} \quad \ell(C) = \ell(A) + \ell(B).
\]
Proof sketch

Specify a subset of well-behaved elements of $\widetilde{H}_1(X)$, called primitive elements;

We say that $C \in \widetilde{H}_1(X)$ splits if there are $A, B \neq 0 \in \widetilde{H}_1(X)$ with

$$C = A + B,$$

and

$$\ell(C) = \ell(A) + \ell(B).$$

...where $\ell(C)$ is the minimal length of 1-simplices needed to represent C.

Agelos Georgakopoulos
Proof sketch

Specify a subset of well-behaved elements of $\widehat{H}_1(X)$, called \textit{primitive} elements;

We say that $C \in \widehat{H}_1(X)$ splits if there are $A, B \neq 0 \in \widehat{H}_1(X)$ with

$$C = A + B, \text{ and}$$
$$\ell(C) = \ell(A) + \ell(B).$$

...where $\ell(C)$ is the minimal length of 1-simplices needed to represent C.

Then C is \textit{primitive} if it doesn’t split.
Proof sketch

Theorem (G’ 09)

For every compact metric space X and $C \in \hat{H}_1(X)$, there is a σ-representative $(z_i)_{i \in \mathbb{N}}$ of C that minimizes the length $\sum_i \ell(z_i)$ among all representatives of C.

- Specify a subset of well-behaved elements of $\hat{H}_1(X)$, called primitive elements;
- Prove the statement for primitive elements;
- Show that every other element can be expressed as a sum of primitive elements.
Let \((\Gamma, +)\) be an abelian metrizable topological group, and suppose a function \(\ell : \Gamma \to \mathbb{R}^+\) is given satisfying the following properties

- \(\ell(a) = 0\) iff \(a = 0\);
- \(\ell(a + b) \leq \ell(a) + \ell(b)\) for every \(a, b \in \Gamma\);
- if \(b = \lim a_i\) then \(\ell(b) \leq \lim \inf \ell(a_i)\);
- Some “isoperimetric inequality” holds: e.g. \(d(a, 0) \leq U\ell^2(a)\)
 for some fixed \(U\) and for every \(a \in \Gamma\).

Then every element of \(\Gamma\) is a (possibly infinite) sum of primitive elements.
The Conjecture

Theorem (MacLane ’37)
A finite graph G is planar iff $C(G)$ has a simple generating set.

Let X be a compact, 1–dimensional, locally connected, metrizable space that has no cut point. Then X is planar iff there is a simple set S of loops in X and a metric d inducing the topology of X so that the set $U = \{ \chi \in \hat{H}_1(X) | \chi \in S \}$ 'spans' $\hat{H}_1(X)$.

Agelos Georgakopoulos
The Conjecture

Let X be a compact, 1–dimensional, locally connected, metrizable space that has no cut point. Then X is planar iff there is a simple set S of loops in X and a metric d inducing the topology of X so that the set $U := \{[\chi] \in \tilde{H}_1(X) \mid \chi \in S\}$ ‘spans’ $\tilde{H}_1(X)$.

Theorem (MacLane ’37)

A finite graph G is planar iff $C(G)$ has a simple generating set.
\(\ell - \text{TOP} \)

Let \(G = (V, E) \) be any graph. Give each edge a length \(\ell(e) \). This induces a metric:

\[
d(v, w) := \inf \{ \ell(P) \mid P \text{ is a } v-w \text{ path} \}
\]

Let \(|G|_{\ell} \) be the completion of the corresponding metric space.

Theorem (Bourdon & Pajot, ...)

For every compact metric space \(X \) there is a locally finite graph \(G \) and \(\ell : E \to \mathbb{R}^+ \) such that the boundary of \(|G|_{\ell} \) is isometric to \(X \).
let $G = (V, E)$ be any graph
let $G = (V, E)$ be any graph
give each edge a **length** $\ell(e)$
let $G = (V, E)$ be any graph

give each edge a length $\ell(e)$

this induces a metric: $d(v, w) := \inf \{ \ell(P) \mid P \text{ is a } v\text{-}w \text{ path} \}$
let $G = (V, E)$ be any graph

- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w) := \inf\{\ell(P) \mid P \text{ is a } v\text{-}w \text{ path}\}$
- let $|G|_\ell$ be the completion of the corresponding metric space
let $G = (V, E)$ be any graph

give each edge a length $\ell(e)$

this induces a metric: $d(v, w) := \inf\{\ell(P) \mid P \text{ is a } v\text{-}w \text{ path}\}$

let $|G|_\ell$ be the completion of the corresponding metric space

Theorem (G ’06)

If $\sum_{e \in E(G)} \ell(e) < \infty$ then $|G|_\ell \approx |G|$. ...and \tilde{H}_1 coincides with the topological cycle space and with $\tilde{H}_1(X)$.
let $G = (V, E)$ be any graph

- give each edge a length $\ell(e)$
- this induces a metric: $d(v, w) := \inf \{ \ell(P) \mid P \text{ is a } v-w \text{ path} \}$
- let $|G|_\ell$ be the completion of the corresponding metric space

Theorem (G ’06, ’09)

If $\sum_{e \in E(G)} \ell(e) < \infty$ then $|G|_\ell \approx |G|$, and \hat{H}_1 coincides with the topological cycle space and with $\hat{H}_1(X)$.

Theorem (Bourdon & Pajot, ...)

For every compact metric space X there is a locally finite graph G and $\ell : E \to \mathbb{R}^+$ such that the boundary of $|G|_\ell$ is isometric to X.

Agelos Georgakopoulos
let $G = (V, E)$ be any graph

give each edge a length $\ell(e)$

this induces a metric: $d(v, w) := \inf\{\ell(P) \mid P \text{ is a } v\text{-}w \text{ path}\}$

let $|G|_\ell$ be the completion of the corresponding metric space

Problem

Does every compact metrizable space X admit a metric such that $\tilde{H}_1(X) = \check{H}_1(X)$?
let $G = (V, E)$ be any graph

give each edge a length $\ell(e)$

this induces a metric: $d(v, w) := \inf\{\ell(P) \mid P$ is a v-w path$\}$

let $|G|_\ell$ be the completion of the corresponding metric space

Theorem (Bourdon & Pajot, ...)

*For every compact metric space X there is a locally finite graph G and $\ell : E \to R_+$ such that the boundary of $|G|_\ell$ is isometric to X.***
Applications of $|G|_{\ell}$

Applications of $|G|_{\ell}$ (\ell-TOP)
Applications of ℓ-TOP

- used by Floyd to study Kleinian groups (*Invent. math. ’80*)
Applications of $|G|_\ell$ (\ell-TOP)

- used by Floyd to study Kleinian groups (Invent. math. ’80)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. ’96, Preprint ’09)
Applications of $|G|_\ell$ (ℓ-TOP)

- used by Floyd to study Kleinian groups (Invent. math. ’80)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. ’96, Preprint ’09)
- application in the study of the Cycle Space of an infinite graph (G & Sprüssel Electr. J. Comb)
Applications of $|G|_\ell$ (\textit{\ell}-TOP)

- used by Floyd to study Kleinian groups (\textit{Invent. math.} '80)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (\textit{Invent. math.} '96, \textit{Preprint} '09)
- application in the study of the Cycle Space of an infinite graph (G & Spr"ussel \textit{Electr. J. Comb})
- applied to Electrical Networks (G, \textit{JLMS} '10)
Applications of $|G|_\ell$ (ℓ-TOP)

- used by Floyd to study Kleinian groups \((\text{Invent. math. '80})\)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings \((\text{Invent. math. '96, Preprint '09})\)
- application in the study of the Cycle Space of an infinite graph \((G & \text{Sprüssel ELECTR. J. Comb})\)
- applied to Electrical Networks \((G, \text{JLMS '10})\)
- Carlson studied the Dirichlet Problem at the boundary \((\text{Analysis on graphs and its applications})\)
Applications of $|G|_\ell$ (ℓ-TOP)

- used by Floyd to study Kleinian groups (*Invent. math.* ’80)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (*Invent. math.* ’96, Preprint ’09)
- application in the study of the Cycle Space of an infinite graph (G & Sprüssel *Electr. J. Comb*)
- applied to Electrical Networks (G, *JLMS* ’10)
- Carlson studied the Dirichlet Problem at the boundary (*Analysis on graphs and its applications*)
- used by Colin de Verdiere et. al. to study Laplace and Schrödinger operators
Applications of $|G|_\ell$ (ℓ-TOP)

- used by Floyd to study Kleinian groups (Invent. math. ’80)
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings (Invent. math. ’96, Preprint ’09)
- application in the study of the Cycle Space of an infinite graph (G & Sprüssel Electr. J. Comb)
- applied to Electrical Networks (G, JLMS ’10)
- Carlson studied the Dirichlet Problem at the boundary (Analysis on graphs and its applications)
- used by Colin de Verdiere et. al. to study Laplace and Schrödinger operators
Applications of $|G|_{\ell}$

Applications of $|G|_{\ell}$ (\textit{\ell-TOP})

- used by Floyd to study Kleinian groups \textit{(Invent. math. ’80)}
- used by Benjamini and Schramm for Random Walks/harmonic functions/sphere Packings \textit{(Invent. math. ’96, Preprint ’09)}
- application in the study of the Cycle Space of an infinite graph \textit{(G & Sprüssel Electr. J. Comb)}
- applied to Electrical Networks \textit{(G, JLMS ’10)}
- Carlson studied the Dirichlet Problem at the boundary \textit{(Analysis on graphs and its applications)}
- used by Colin de Verdiere et. al. to study Laplace and Schrödinger operators

All above authors “discovered” $|G|_{\ell}$ independently!
Further Problems

- Generalise to higher dimensions
Further Problems

- Generalise to higher dimensions
- Generalise other graph-theoretical theorems to continua/fractals

Sources:

These slides are available online

Agelos Georgakopoulos
Further Problems

- Generalise to higher dimensions
- Generalise other graph-theoretical theorems to continua/fractals
- Can you modify \hat{H}_1 to obtain a homology that is invariant under homotopy–equivalence?

Sources:

These slides are available online

Agelos Georgakopoulos
Further Problems

- Generalise to higher dimensions
- Generalise other graph-theoretical theorems to continua/fractals
- Can you modify \hat{H}_1 to obtain a homology that is invariant under homotopy–equivalence?
- Try to ‘tame’ π_1 by similar methods

Sources:
AG: "Graph topologies induced by edge lengths" Discrete Math., 311, 1523–1542, 2011.
These slides are available online
Further Problems

- Generalise to higher dimensions
- Generalise other graph-theoretical theorems to continua/fractals
- Can you modify \widehat{H}_1 to obtain a homology that is invariant under homotopy–equivalence?
- Try to ‘tame’ π_1 by similar methods
- Compute \widehat{H}_1 for your favourite space
Further Problems

- Generalise to higher dimensions
- Generalise other graph-theoretical theorems to continua/fractals
- Can you modify \widehat{H}_1 to obtain a homology that is invariant under homotopy–equivalence?
- Try to ‘tame’ π_1 by similar methods
- Compute \widehat{H}_1 for your favourite space
Further Problems

- Generalise to higher dimensions
- Generalise other graph-theoretical theorems to continua/fractals
- Can you modify \widehat{H}_1 to obtain a homology that is invariant under homotopy-equivalence?
- Try to ‘tame’ π_1 by similar methods
- Compute \widehat{H}_1 for your favourite space

Sources:

These slides are available online.
Theorem (G' 09)

For every compact metric space \(X \) and \(C \in \hat{H}_1(X) \), there is a representative \((z_i)_{i \in \mathbb{N}}\) of \(C \) that minimizes the length \(\sum_i \ell(z_i) \) among all representatives of \(C \).

\[
d(a, b) := \inf_{\x \xrightarrow{\text{isom}} \x'} \text{area}(\x' \setminus \x). \text{ Let } H'_1(X) := H_1(X) / d=0
\]

Conjecture

Let \(X \) be a compact, 1–dimensional, locally connected, metrizable space that has no cut point. Then \(X \) is planar iff there is a simple set \(S \) of loops in \(X \) and a metric \(d \) inducing the topology of \(X \) so that the set \(U := \{[\chi] \in \hat{H}_1(X) \mid \chi \in S\} \) ‘spans’ \(\hat{H}_1(X) \).