Group Walk Random Graphs

Agelos Georgakopoulos

Vancouver, 10.9.14
Random Graphs flashback

1269 papers on MathSciNet with "random graph" in their title
Random Graphs flashback

1269 papers on MathSciNet with "random graph" in their title

... most of which on the Erdős-Renyi model $G(n, p)$:
Random Graphs flashback

1269 papers on MathSciNet with "random graph" in their title

... most of which on the Erdős-Renyi model $G(n, p)$:

- n vertices
- each pair joined with an edge, independently, with same probability $p = p(n)$.
1269 papers on MathSciNet with "random graph" in their title.

Random Graphs flashback

1269 papers on MathSciNet with "random graph" in their title.

Random Graphs flashback

1269 papers on MathSciNet with "random graph" in their title.

100. [Bollobás, B. Long paths in sparse random graphs. Combinatorica. 1982] shows that if \(p = \frac{c}{n} \), then almost every graph in \(G(n, p) \) contains a path of length at least \((1 - a(c))n\), where \(a(c) \) is an exponentially decreasing function of \(c \).
Random Graphs flashback

1269 papers on MathSciNet with "random graph" in their title.

100. [Bollobás, B. Long paths in sparse random graphs. Combinatorica. 1982]
=> shows that if \(p = \frac{c}{n} \), then almost every graph in \(G(n, p) \) contains a path of length at least \((1 - a(c))n\), where \(a(c) \) is an exponentially decreasing function of \(c \).

=> derives large deviation principles for the empirical neighbourhood measure of colored random graphs, defined as the number of vertices of a given colour with a given number of adjacent vertices of each colour. . . .
Random Graphs from trees
Random Graphs from trees

Simulation on the binary tree by A. Janse van Rensburg.
A nice property
A nice property
A nice property

Proposition

$$\mathbb{E}(\# \text{ edges } xy \text{ in } G_n(T) \text{ with } x \text{ in } X \text{ and } y \text{ in } Y)$$ converges.
A nice property

Proposition

\[E(\# \text{ edges } xy \text{ in } G_n(T) \text{ with } x \text{ in } X \text{ and } y \text{ in } Y) \]

converges.
A nice property

Proposition

\[E(\# \text{ edges } xy \text{ in } G_n(T) \text{ with } x \in X \text{ and } y \in Y) \]

converges.

?
<table>
<thead>
<tr>
<th></th>
<th>One set</th>
<th>Two sets</th>
<th>Three sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycled Binary Tree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Grid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Grid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamplighter</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4: Random graphs generated for various host graphs. Note the difference in number of components, isolated vertices, and component diameter.

Using the k-balls of the graphs in the preceding section (with boundaries as stated), we construct the random graphs $R_k(G, B)$. For all host graphs chosen, the probability that there was at least one isolated vertex (which implies that the graph was disconnected) tended to 1 as $k \to 1$. We examine several properties of the resulting random graphs:

- Number of isolated vertices
- Number of components
- Value: size of largest component / size of smallest component
- Diameter of largest connected component

For certain graphs, we also run random walks until the generated graph R_k is connected. In what follows, 10,000 random graphs were generated for each k-value, and an average was taken.

Simulations by C. Midgley.
Problem 1: The (expected) number of connected components (or isolated vertices) is asymptotically proportional to $|B_n|$.

Problem 2: The expected diameter of the largest component is asymptotically $c \log |B_n|$.

Backed by simulations by C. Midgley.
Metaproblem 1: Which properties of the random graphs are determined by the group of the host graph H and do not depend on the choice of a generating set?
What’s the point?

Metaproblem 1: Which properties of the random graphs are determined by the group of the host graph H and do not depend on the choice of a generating set?

Metaproblem 2: Which group-theoretic properties of the host group are reflected in graph-theoretic properties of the random graphs?
The classical Douglas formula

\[E(h) = \int_0^{2\pi} \int_0^{2\pi} (\hat{h}(\eta) - \hat{h}(\zeta))^2 \Theta(\zeta, \eta) \, d\eta \, d\zeta \]

calculates the (Dirichlet) energy of a harmonic function \(h \) on \(\mathbb{D} \) from its boundary values \(\hat{h} \) on the circle \(\partial\mathbb{D} \).
Energy in finite electrical networks

\[E(h) = \sum_{a,b \in B} (h(a) - h(b))^2 C_{ab}, \]

Compare with Douglas:

\[E(h) = \int_{\Omega} \int_{\Omega} \left(\hat{h}(\eta) - \hat{h}(\zeta) \right)^2 \Theta(\zeta, \eta) \, d\eta \, d\zeta \]

How can we generalise this to an arbitrary domain?

To an infinite graph?
Energy in finite electrical networks

\[E(h) = \sum_{a,b \in B} (h(a) - h(b))^2 C_{ab}, \]

Compare with Douglas: \[E(h) = \int_0^{2\pi} \int_0^{2\pi} (\hat{h}(\eta) - \hat{h}(\zeta))^2 \Theta(\zeta, \eta) d\eta d\zeta \]
Energy in finite electrical networks

\[E(h) = \sum_{a, b \in B} (h(a) - h(b))^2 C_{ab}, \]

Compare with Douglas: \[E(h) = \int_0^{2\pi} \int_0^{2\pi} (\hat{h}(\eta) - \hat{h}(\zeta))^2 \Theta(\zeta, \eta) d\eta d\zeta \]

How can we generalise this to an arbitrary domain?
Energy in finite electrical networks

\[E(h) = \sum_{a,b \in B} (h(a) - h(b))^2 C_{ab}, \]

Compare with Douglas: \(E(h) = \int_0^{2\pi} \int_0^{2\pi} (\hat{h}(\eta) - \hat{h}(\zeta))^2 \Theta(\zeta, \eta) d\eta d\zeta \)

How can we generalise this to an arbitrary domain? To an infinite graph?
The classical Poisson formula

\[h(z) = \int_0^1 \hat{h}(\theta) P(z, \theta) d\theta \]

where \(P(z, \theta) := \frac{1-|z|^2}{|e^{2\pi i \theta} - z|^2} \), recovers every continuous harmonic function \(h \) on \(\mathbb{D} \) from its boundary values \(\hat{h} \) on the circle \(\partial \mathbb{D} \).
The classical Poisson formula

\[h(z) = \int_0^1 \hat{h}(\theta) P(z, \theta) d\theta = \int_0^1 \hat{h}(\theta) d\nu_z(\theta) \]

where \(P(z, \theta) := \frac{1-|z|^2}{|e^{2\pi i \theta} - z|^2} \),
recovers every continuous harmonic function \(h \) on \(\mathbb{D} \) from its boundary values \(\hat{h} \) on the circle \(\partial \mathbb{D} \).
The Poisson-Furstenberg boundary

The Poisson boundary of an (infinite) graph G consists of:
- a measurable space (\mathcal{P}_G, Σ), and
The Poisson-Furstenberg boundary

The Poisson boundary of an (infinite) graph G consists of
- a measurable space (\mathcal{P}_G, Σ), and
- a family of probability measures $\{\nu_z, z \in V_G\}$,
such that

- a measurable space (\mathcal{P}_G, Σ), and
- a family of probability measures $\{\nu_z, z \in V_G\}$,
The Poisson-Furstenberg boundary

The Poisson boundary of an (infinite) graph G consists of
- a measurable space (\mathcal{P}_G, Σ), and
- a family of probability measures $\{\nu_z, z \in V_G\}$,
such that

 - every bounded harmonic function h can be obtained by

 $$h(z) = \int_{\mathcal{P}_G} \hat{h}(\eta) d\nu_z(\eta)$$

Agelos Georgakopoulos
The Poisson boundary of an (infinite) graph G consists of
- a measurable space (\mathcal{P}_G, Σ), and
- a family of probability measures $\{\nu_z, z \in V_G\}$, such that
 - every bounded harmonic function h can be obtained by
 $$ h(z) = \int_{\mathcal{P}_G} \hat{h}(\eta) d\nu_z(\eta) $$
 - this $\hat{h} \in L^\infty(\mathcal{P}_G)$ is unique up to modification on a null-set;
The Poisson boundary of an (infinite) graph G consists of
- a measurable space (\mathcal{P}_G, Σ), and
- a family of probability measures $\{\nu_z, z \in V_G\}$, such that

- every bounded harmonic function h can be obtained by
 \[h(z) = \int_{\mathcal{P}_G} \hat{h}(\eta) d\nu_z(\eta) \]

- this $\hat{h} \in L^\infty(\mathcal{P}_G)$ is unique up to modification on a null-set;

- conversely, for every $\hat{h} \in L^\infty(\mathcal{P}_G)$ the function $z \mapsto \int_{\mathcal{P}_G} \hat{h}(\eta) d\nu_z(\eta)$ is bounded and harmonic.

i.e. there is Poisson-like formula establishing an isometry between the Banach spaces $H^\infty(G)$ and $L^\infty(\mathcal{P}_G)$.
The Poisson-Furstenberg boundary

Selected work on the Poisson boundary

- Introduced by Furstenberg to study semi-simple Lie groups \([\textit{Annals of Math. '63}]\)
- Kaimanovich & Vershik give a general criterion using the entropy of random walk \([\textit{Annals of Probability '83}]\)
- Kaimanovich identifies the Poisson boundary of hyperbolic groups, and gives general criteria \([\textit{Annals of Math. '00}]\)
\[E(h) = \sum_{a,b \in B} (h(a) - h(b))^2 C_{ab}, \]

Compare with Douglas: \[E(h) = \int_0^{2\pi} \int_0^{2\pi} (\hat{h}(\eta) - \hat{h}(\zeta))^2 \Theta(\zeta, \eta) d\eta d\zeta \]
Energy in finite electrical networks

\[E(h) = \sum_{a,b \in B} (h(a) - h(b))^2 C_{ab}, \]

Compare with Douglas: \[E(h) = \int_0^{2\pi} \int_0^{2\pi} (\hat{h}(\eta) - \hat{h}(\zeta))^2 \Theta(\zeta, \eta) d\eta d\zeta \]

[Doob '62] generalises this to Green spaces (or Riemannian manifolds) using their Martin boundary.
The energy of harmonic functions

Theorem (G & Kaimanovich ’14+)

For every locally finite network G, there is a measure C on $\mathcal{P}^2(G)$ such that for every harmonic function u the energy $E(u)$ equals

$$\int_{\mathcal{P}^2} \left(\hat{u}(\eta) - \hat{u}(\zeta) \right)^2 \, dC(\eta, \zeta).$$
The energy of harmonic functions

Theorem (G & Kaimanovich ’14+)

For every locally finite network G, there is a measure C on $P^2(G)$ such that for every harmonic function u the energy $E(u)$ equals

$$\int_{P^2} (\hat{u}(\eta) - \hat{u}(\zeta))^2 \, dC(\eta, \zeta).$$

... similarly to Douglas’ formula

$$E(h) = \int_0^{2\pi} \int_0^{2\pi} (\hat{h}(\eta) - \hat{h}(\zeta))^2 \Theta(\zeta, \eta) \, d\eta \, d\zeta.$$
The energy of harmonic functions

Theorem (G & Kaimanovich ’14+)

For every locally finite network G, there is a measure C on $P^2(G)$ such that for every harmonic function u the energy $E(u)$ equals

$$\int_{P^2} (\hat{u}(\eta) - \hat{u}(\zeta))^2 \, dC(\eta, \zeta).$$

... similarly to Douglas’ formula

$$E(h) = \int_0^{2\pi} \int_0^{2\pi} (\hat{h}(\eta) - \hat{h}(\zeta))^2 \Theta(\zeta, \eta) \, d\eta \, d\zeta$$

What is this measure C?
What is this measure C?

$$\int_{\mathcal{P}_2} (\hat{u}(\eta) - \hat{u}(\zeta))^2 \, dC(\eta, \zeta).$$
What is this measure C?

$$\int_{\mathcal{P}_2} \left(\tilde{u}(\eta) - \tilde{u}(\zeta) \right)^2 dC(\eta, \zeta).$$

$C(X, Y) := \lim_n \mathbb{E}(\# \text{ edges } xy \in G_n(H) \text{ with } x \text{ ‘close to’ } X, \text{ and } y \text{ ‘close to’ } Y)$
Theorem (G & V. Kaimanovich ’14+)

For every locally finite network G, there is a measure C on $\mathcal{P}^2(G)$ such that for every harmonic function u the energy $E(u)$ equals

$$\int_{\mathcal{P}^2} \left(\widehat{u}(\eta) - \widehat{u}(\zeta) \right)^2 dC(\eta, \zeta).$$
Doob’s formula:

\[E(h) = q \int_{\mathcal{M}^2} (\hat{u}(\eta) - \hat{u}(\zeta))^2 \Theta(\zeta, \eta) d\eta d\zeta, \]
Doob’s formula:

$$E(h) = q \int_{\mathcal{M}^2} (\hat{u}(\eta) - \hat{u}(\zeta))^2 \Theta(\zeta, \eta) d\eta d\zeta,$$

for h fine-continuous quasi-everywhere [Doob ’63].
The Naim Kernel

Doob’s formula:

\[
E(h) = q \int_{M^2} (\hat{u}(\eta) - \hat{u}(\zeta))^2 \Theta(\zeta, \eta) d\eta d\zeta,
\]

for \(h \) fine-continuous quasi-everywhere [Doob ’63].

where the Naim Kernel \(\Theta \) is defined as

\[
\Theta(\zeta, \eta) := \lim_{z_n \to \zeta, y_n \to \eta} \frac{F(z_n, y_n)}{G(o, o)} \frac{F(z_n, o)}{F(o, y_n)}
\]
The Naim Kernel

Doob’s formula:

\[E(h) = q \int_{\mathcal{M}} (\hat{u}(\eta) - \hat{u}(\zeta))^2 \Theta(\zeta, \eta) d\eta d\zeta, \]

for \(h \) fine-continuous quasi-everywhere [Doob ’63].

where the **Naim Kernel** \(\Theta \) is defined as

\[\Theta(\zeta, \eta) := \frac{1}{G(o, o)} \lim_{z_n \to \zeta, y_n \to \eta} \frac{F(z_n, y_n)}{F(z_n, o)F(o, y_n)} \]

... in the fine topology [Naim ’57].
The Naim Kernel

Doob’s formula:

\[E(h) = q \int_{\mathcal{M}^2} (\hat{u}(\eta) - \hat{u}(\zeta))^2 \Theta(\zeta, \eta) \, d\eta \, d\zeta, \]

for \(h \) fine-continuous quasi-everywhere [Doob '63].

where the **Naim Kernel** \(\Theta \) is defined as

\[\Theta(\zeta, \eta) := \lim_{z_n \to \zeta, y_n \to \eta} \frac{F(z_n, y_n)}{G(o, o) \, F(z_n, o) \, F(o, y_n)} \]

... in the fine topology [Naim '57].

Remark:

\[\frac{1}{\Theta(z, y)} = G(o, o) \Pr(o < y | y), \]

where \(\Pr_z(o < y | y) \) is the conditional probability to visit \(o \) before \(y \) subject to visiting \(y \).
Convergence of the Naim Kernel

\[
\Theta(\zeta, \eta) := \frac{1}{G(o, o)} \lim_{z_n \to \zeta, y_n \to \eta} \frac{F(z_n, y_n)}{F(z_n, o)F(o, y_n)}
\]

Problem: Let \((z_i)_{i \in \mathbb{N}}\) and \((w_i)_{i \in \mathbb{N}}\) be independent simple random walks from \(o\). Then \(\lim_{n, m \to \infty} \Theta(z_n, w_m)\) exists almost surely.
Convergence of the Naim Kernel

$$\Theta(\zeta, \eta) := \frac{1}{G(o, o)} \lim_{z_n \to \zeta, y_n \to \eta} \frac{F(z_n, y_n)}{F(z_n, o) F(o, y_n)}$$

Problem: Let $(z_i)_{i \in \mathbb{N}}$ and $(w_i)_{i \in \mathbb{N}}$ be independent simple random walks from o. Then $\lim_{n, m \to \infty} \Theta(z_n, w_m)$ exists almost surely.
E(h) = \sum_{a,b \in B} (h(a) - h(b))^2 C_{ab},
\(E(h) = \sum_{a,b \in B} (h(a) - h(b))^2 C_{ab}, \)

where \(C_{ab} = d(a)F(a, b), \)
\[E(h) = \sum_{a,b \in B} (h(a) - h(b))^2 C_{ab}, \]

where \(C_{ab} = d(a)F(a,b), \)

and it turns out that \(C_{ab} = d(o)\Theta(a,b)F(o,a)F(o,b). \)
\(E(h) = \sum_{a,b \in B} (h(a) - h(b))^2 C_{ab}, \)

where \(C_{ab} = d(a)F(a, b), \)

and it turns out that \(C_{ab} = d(o)\Theta(a, b)F(o, a)F(o, b). \)

Proposition

For every measurable \(X, Y \subseteq P(G)\)

\[
C_n(X, Y) = E(\Theta^n(x_n, y_n)1_{XY}).
\]

Therefore, \(C(X, Y) = \lim_n E(\Theta^n(x_n, y_n)1_{XY}). \)
Random Interlacements \mathcal{I} [Sznitman]:

- A Poisson point process whose 'points' are 2-way infinite trajectories
- Applied to study the vacant set on the discrete 3D-torus
- Governed by a certain σ-finite measure ν

Claim: $C(X, Y) = \nu(1_{XY}^\infty)$.

Agelos Georgakopoulos
Random Interlacements \mathcal{I} [Szniatman]:
- A Poisson point process whose ‘points’ are 2-way infinite trajectories
Random Interlacements \mathcal{I} [Sznitman]:
- A Poisson point process whose ‘points’ are 2-way infinite trajectories
- applied to study the vacant set on the discrete 3D-torus
Random Interlacements \mathcal{I} [Sznitman]:
- A Poisson point process whose ‘points’ are 2-way infinite trajectories
- applied to study the vacant set on the discrete 3D-torus
- governed by a certain σ-finite measure ν
Random Interlacements \mathcal{I} [Sznitman]:
- A Poisson point process whose ‘points’ are 2-way infinite trajectories
- applied to study the vacant set on the discrete 3D-torus
- governed by a certain σ-finite measure ν

Claim: $C(X, Y) = \nu(1_{XY} \mathcal{W}^*)$.
The effective conductance measure C, The Naim kernel Θ, Random Interlacements \mathcal{I}, and Group Walk Random Graphs $G_n(H)$
The effective conductance measure C, The Naim kernel Θ, Random Interlacements I, and Group Walk Random Graphs $G_n(H)$ are closely related.
The effective conductance measure C, The Naim kernel $Θ$, Random Interlacements I, and Group Walk Random Graphs $G_n(H)$ are closely related.

Can we use the one to study the other?
The effective conductance measure C, The Naim kernel Θ, Random Interlacements \mathcal{I}, and Group Walk Random Graphs $G_n(H)$ are closely related.

Can we use the one to study the other?

Can we use them to study groups?