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Abstract

We introduce a technique for studying nonuniformly hyperbolic flows with
unbounded roof functions. In particular, we establish the decay of correlation
rate 1/t for all infinite horizon planar periodic Lorentz gases. (Previously this
result was proved only in some special cases.)

Our method is useful for analysing the statistical properties of other classes
of flows with unbounded roof functions. For geometric Lorenz attractors (in-
cluding the classical Lorenz attractor), consequences include a greatly simplified
proof of the central limit theorem and almost sure invariance principle.

1 Introduction

For the planar periodic Lorentz gas with infinite horizon, it has been widely antici-
pated [7] that correlations in continuous time decay at the rate 1/t. Melbourne [12]
proved that this rate holds for sufficiently regular observables in certain special cases,
including the classical one where the obstacles are circular disks. However, in general
the results in [12] yield only the decay rate O(1/t1−ε) where ε > 0 is arbitrarily small.

Roughly speaking, slowness of mixing of nonuniformly hyperbolic flows can arise
from (i) slowness of mixing of certain Poincaré maps, and/or (ii) unboundedness of
the return time for the flow to the Poincaré cross-section (from now on called the
roof function). The method in [12] deals well with mechanism (i) and less well with
mechanism (ii), and infinite horizon Lorentz gases fall under the second category. A
related issue arises in work of [9] which gives the correct statistical limit laws for
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geometric Lorenz attractors, but with a convoluted proof due to unbounded roof
functions.

In this paper, we present a different method for dealing with nonuniformly hy-
perbolic flows with unbounded roof function. For geometric Lorenz attractors, we
obtain greatly simplified proofs. For Lorentz gases we obtain optimal results (again
with less effort):

Theorem 1.1 Suppose that φt is the flow corresponding to an infinite horizon planar
periodic Lorentz gas (with convex scatters of nonvanishing curvature and C3 bound-
aries). Let ν denote Liouville measure. Then for sufficiently regular observables v, w,
the correlation function ρ(t) =

∫
v w ◦ φt dν −

∫
v dν

∫
w dν satisfies |ρ(t)| ≤ Cv,wt

−1

for all t > 0.

Remark 1.2 As in Dolgopyat [5], sufficiently regular observables are those having
sufficiently many uniformly Hölder derivatives in the flow direction.

The new method in this paper is rearrangement of certain Young tower models [20,
21, 3] so that the roof function becomes bounded without altering statistical properties
of the flow. The change from unbounded to bounded roof function is compensated
for by a deterioration in the tails of the Young tower. As discussed above, techniques
for statistical properties of flows deal better with poor tails than unbounded roof
functions, and so rearrangement of the tower is advantageous.

In particular, the situation for the general infinite horizon Lorentz gas is as follows.
In [12], the correct result was obtained up to a logarithmic factor for the associated
semiflow (quotiented along stable manifolds) and up to a factor tε for the flow. As
verified in Section 4 of the current paper, a result of Szász & Varjú [18] can be used
to remove logarithmic factors for the semiflow (hence yielding the optimal result for
the semiflow). However, this method cannot deal with the factor tε for the flow.
Our approach in this paper combined with [12] yields a logarithmic factor for both
the semiflow and the flow. Applying [18] removes the logarithmic factors yielding
Theorem 1.1.

The remainder of this paper is organised as follows. In Section 2, we recall some
background material about Young towers and suspension flows. In Section 3, we in-
troduce the idea of rearranging towers and consider applications to Lorentz gases and
Lorenz attractors. In Section 4, we apply [18] to complete the proof of Theorem 1.1.

2 Suspension flows, towers, and induced roof func-

tions

Suspension flows Given a map f : X → X with ergodic invariant probability
measure µ and an integrable roof function h : X → R+, we define the suspension
Xh = {(x, u) ∈ X ×R : 0 ≤ u ≤ h(x)}/ ∼ where (x, h(x)) ∼ (fx, 0). The suspension
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flow φt : Xh → Xh is given by φt(x, u) = (x, u + t) computed modulo ∼. An
ergodic flow-invariant probability measure is given by µh = µ × Lebesgue/h̄ where
h̄ =

∫
X
h dµ.

Young towers Young [20, 21] introduced a class of nonuniformly hyperbolic maps
T : M → M modelled by Young towers. In particular, there is a set Y ⊂ M
possessing an appropriate hyperbolic structure. Furthermore, there exists a countable
measurable partition {Yj} of Y and a return time function r : Y → Z+ constant on
partition elements, such that the induced map F = T r : Y → Y is smooth and
uniformly hyperbolic with physical (SRB) measure µY .

The corresponding Young tower ∆ is defined to be ∆ = {(y, `) ∈ Y × Z : 0 ≤
` < r(y)} with tower map f : ∆ → ∆ given by f(y, `) = (y, ` + 1) for ` ≤ r(y) − 2
and f(y, r(y) − 1) = (Fy, 0). The projection π : ∆ → M , π(y, `) = T `y, is a
semiconjugacy. We note that r need not be the first return time to Y for T : M →M
but is the first return for f : ∆→ ∆, so f is a extension of T . Provided r ∈ L1(µY ),
we obtain an f -invariant ergodic probability measure µ on ∆ (and correspondingly
π∗µ on M) given by µ = µY × counting/r̄ where r̄ =

∫
Y
r dµY .

Given θ ∈ (0, 1), we define the symbolic metric dθ on Y by setting dθ(x, y) = θs(x,y)

where s(x, y) is the least integer n ≥ 0 such that F nx and F ny lie in distinct partition
elements Yj. This extends to a metric on ∆ with dθ((x, `), (y,m)) = dθ(x, y) if ` = m
and 1 otherwise.

Let ∆j,` = Yj×{`} denote the corresponding partition elements of ∆. An observ-
able v : ∆→ R is said to be locally Lipschitz if v|∆j,` is Lipschitz wrt dθ for each j, `,
with Lipschitz constant |v1∆j,`

|θ and Lipschitz norm ‖v1∆j,`
‖θ = |v1∆j,`

|∞ + |v1∆j,`
|θ.

If supj,` ‖v1∆j,`
‖θ <∞, then v is uniformly locally Lipschitz. Similarly, we define the

notion of (uniformly) locally Lipschitz observable on Y .

Induced roof functions Suppose that T : X → X is a Poincaré map for a flow
with roof function h0 : X → R. Suppose further that T : X → X is modelled by a
Young tower f : ∆→ ∆ with return time function r : Y → Z+. Then the underlying
flow is modelled by the suspension flow ∆h where h = h0 ◦ π and π : ∆ → X is
projection. As above, we suppose that r and h are integrable and refer to ergodic
invariant probability measures µY , µ, µh on Y , ∆, and ∆h respectively.

An alternative model is obtained from ∆h by taking Y as the cross-section to the
flow with induced roof function H(y) =

∑r(y)−1
`=0 h(y, `). The flow on Y H is identical

to the flow on ∆h, so the suspension flow Y H is an extension of the underlying flow.
For clarity of exposition we introduce some more notation. Given y ∈ Y let

h1(y) = max0≤k<r(y) h(T ky), and `1(y) = min{0 ≤ k < r(y) : h(T ky) = h1(y)}, that
is, the first iterate for which the maximum value h1 is attained. Let r(j) = r|Yj

and
set Yj,i = {y ∈ Yj : `1(y) = i}, 0 ≤ i < r(j). This defines a refinement of the
original partition {Yj} of Y . Correspondingly, ∆j,i,` = Yj,i × {`} defines a refinement
of the original partition {∆j,`} of ∆. Below we use the fact that f ` defines a measure

3



preserving isomorphism between ∆j,i,0 and ∆j,i,` (equipped with the measure µ) for
all j ≥ 1, 0 ≤ i, ` < r(j).

Proposition 2.1 µY (H > n) ≤ µY (r > k) + r̄µ(h > n/k) for all k ≥ 1, n ≥ 1.

Proof If r(y) ≤ k and H(y) > n, then h◦f ` > n/k for at least one ` ∈ {0, . . . , k−1},
in particular, h1(y) = h(f `1(y)y) > n/k. Restricting to y ∈ Yj,i for i < r(j) ≤ k, we
have

µY (y ∈ Yj,i : H(y) > n) ≤ µY (y ∈ Yj,i : h(f i(y, 0)) > n/k)

= r̄µ(x ∈ ∆j,i,0 : h(f ix) > n/k) = r̄µ(x ∈ ∆j,i,i : h(x) > n/k).

Summing up over 0 ≤ i < r(j) ≤ k we obtain

µY (y ∈ Y : r(y) ≤ k,H(y) > n) ≤ r̄µ(x ∈ ∆ : h(x) > n/k),

and so µY (H > n) ≤ µY (r > k) + µY (r ≤ k,H > n) ≤ µY (r > k) + r̄µ(h > n/k) as
required.

For future reference, we list some special cases of Proposition 2.1.

Corollary 2.2 (a) If µY (r > n) decays exponentially and µ(h > n) = O(n−(β+1)),
then the optimal choice is k = C log n for some large enough constant C, which
implies µY (H > n) = O((log n)β+1n−(β+1)).

(b) If µY (r > n) = O(e−cn) and µ(h > n) = O(e−dn), then the optimal choice is

k =
√
dn/c, which implies µY (H > n) = O(e−(cdn)

1
2 ).

(c) If µY (r > n) = O(n−(β1+1)) and µ(h > n) = O(n−(β2+1)), then the optimal
choice is k = nα with α = β2+1

β1+β2+2
, which implies µY (H > n) = O(n−(β+1))

where β = β1β2−1
β1+β2+2

.

3 Rearrangements of towers

Suppose as in Section 2 that we have a flow (φt,Λ, ν) modelled by a suspension flow
∆h over a tower ∆ with return map F : Y → Y , return time function r : Y → Z+,
roof function h : ∆ → R+, and induced roof function H(y) =

∑r(y)−1
`=0 h(y, `). Note

that the extension flow on ∆h is determined by (F, Y, µY ), r and h.
Now let (F, Y, µY ) remain unchanged but replace r and h by a modified return

time function r̃ and a modified roof function h̃. Then we can define the corresponding
modified Young tower ∆̃ and modified suspension ∆̃h̃.

If the induced roof function is unchanged: H(y) =
∑r̃(y)−1

`=0 h̃(y, `), then the sus-

pension flow on ∆̃h̃ is identical to the suspension flow on Y H and hence is identical
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to the suspension flow on ∆h. Thus ∆̃h̃ is an alternative extension of the underlying
flow. The aim is to carry out this modification in such a way that h̃ is bounded above
and below.

Lemma 3.1 Suppose that H is locally Lipschitz and bounded below. Suppose further
that there exists δ > 0 such that infYj

H ≥ δ|H1Yj
|θ for all j. Then we can choose

r̃ : Y → Z+ and h̃ : ∆̃→ R+ so that

(a) h̃ is uniformly locally Lipschitz and bounded below.

(b) H(y) =
∑r̃(y)−1

`=0 h̃(y, `).

Proof Define r̃1Yj
=
[
‖H1Yj

‖θ
]

+ 1 and h̃(y, `) = H(y)/r̃(y) for all y ∈ Yj, 0 ≤ ` <

r̃(y). Part (b) is immediate. Also, ‖h̃1∆j,`
‖θ = ‖H1Yj

‖θ/(r̃1Yj
) ≤ 1 so h̃ is uniformly

locally Lipschitz.
It remains to verify that h̃ is bounded below. Let y ∈ Yj, 0 ≤ ` < r(y). Since H

is bounded below, there is a constant ε > 0 such that

h̃(y, `) =
H(y)[

‖H1Yj
‖θ
]

+ 1
≥ ε

H(y)

‖H1Yj
‖θ
.

Moreover,

H(y)

‖H1Yj
‖θ
≥

infYj
H

|H1Yj
|∞ + |H1Yj

|θ
=

infYj
H

infYj
H + supYj

H − infYj
H + |H1Yj

|θ

≥
infYj

H

infYj
H + 2|H1Yj

|θ
≥

infYj
H

infYj
H + 2δ−1 infYj

H
= (1 + 2δ−1)−1.

Hence h̃(y, `) ≥ ε(1 + 2δ−1)−1 > 0 as required.

Remark 3.2 Since h̃ is bounded above and below, it is immediate that µY (H >
n) ≈ µY (r̃ > n). By Proposition 2.1, we have an estimate for µY (r̃ > n).

Corollary 3.3 Suppose that the hypotheses of Lemma 3.1 are satisfied and that
µY (H > n) = O((log n)γn−(β+1)), where β > 0, γ ≥ 0. Then typically correla-
tions decay at the rate O((log t)γt−β) for sufficiently regular observables, and the word
“typically” can be removed if there is a contact structure as in the case of a Lorentz
gas.

Proof By Remark 3.2, µY (r̃ > n) = O((log n)γn−(β+1)). Since h̃ is bounded above
and below, the result follows from [12, Theorem 2.6] and [12, Subsection 5.3].
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Corollary 3.4 Suppose that the hypotheses of Lemma 3.1 are satisfied and that
µY (H > n) = O(n−(β+1)). Let v : Λ → R be a mean zero uniformly Hölder ob-
servable of the flow.

(a) If β > 0, then we have the large deviations estimate

ν
{
t−1
∣∣∣∫ t

0

v ◦ φs ds
∣∣∣ > ε

}
≤ C(ε, ‖v‖)t−β for all t > 0.

(b) If β > 1, then the (vector-valued) almost sure invariance principle holds. In
particular, t−1/2

∫ t
0
v ◦ φs ds →d G as t → ∞, where G is normally distributed

with mean zero and variance σ2 ≥ 0.

(c) If β > 1, then qth moments converge for all q < 2β. That is,
limt→∞

∫
Λ
|t−1/2

∫ t
0
v ◦ φs ds|q dν = E|G|q.

Proof Part (a) follows from [14] and [13]. Part (b) follows from [15]. Part (c) follows
from [17].

Remark 3.5 As usual, statistical limit laws of the type discussed in Corollary 3.4
are valid much more generally than decay of correlations. In contrast to Corollary 3.3,
it suffices that the observables are Hölder. Furthermore, no “typicality” condition is
required on the flow.

Now we consider various situations where this method applies.

Example 3.6 (Lorenz attractors) If H is locally Lipschitz and bounded below,
and supj |H1Yj

|θ <∞, then Lemma 3.1 is applicable. This situation is likely to arise
when the roof function h has a logarithmic singularity, since Young towers are built
to achieve bounded distortion, counteracting the distortion of log-Jacobian. In doing
so, a byproduct is that |H1Yj

|θ is bounded.
A specific example is the classical Lorenz attractor [10, 19] (or more generally, the

class of geometric Lorenz attractors [1, 8]). It standard to construct the Young tower
so that µY (r > n) decays exponentially and |H1Yj

|θ is bounded. Since the singularity
of the roof function is logarithmic, µ(h > n) also decays exponentially. By Corol-
lary 2.2(b), µY (H > n) decays at least stretched exponentially. By Corollary 3.4(b),
we obtain the vector-valued almost sure invariance principle (and hence the func-
tional CLT and functional LIL), recovering the result of [9]. Note that [9] required a
complicated inducing scheme to take account of the joint unboundedness of r and h,
whereas the argument here requires a much simpler inducing scheme independent of
h.

The result described in this paper has been used in [17] to obtain convergence
of moments of all orders (Corollary 3.4(c)). Further, by Corollary 3.4(a), we obtain
superpolynomial large deviations estimates. This is exactly the kind of estimate
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required in [16] to obtain convergence of fast-slow skew product flows to stochastic
limits when the fast dynamics is governed by the Lorenz attractor. (In fact, it is
known [2] that large deviations decay exponentially for all continuous observables v,
however, here we establish that the constant C = C(ε, ‖v‖) depends on v only via
‖v‖, which is crucial for [16].)

For completeness, we recall that little is known about decay of correlations for the
Lorenz attractor. By [11], geometric Lorenz attractors are always mixing, and it is
a consequence of [12] that typical geometric Lorenz attractors have superpolynomial
decay of correlations (for sufficiently regular observables). It follows from [6, 12] that
superpolynomial decay is open and dense for geometric Lorenz attractors, but the
specific case of the Lorenz attractor is still not known. The results in this paper yield
nothing new about decay of correlations for geometric Lorenz attractors.

Example 3.7 (Lorentz gases) A second class of examples is provided by situations
where there is a constant C > 0 such that, for all j, supYj

H ≤ C infYj
H and

|H1Yj
|θ ≤ C supYj

H.
For planar periodic Lorentz gases, partition elements Yj are refined at each grazing

collision occurring before the return to Y , so it is evident that the roof function
h : ∆→ R+ satisfies sup∆j,`

h ≤ C inf∆j,`
h and |h1∆j,`

|θ ≤ C sup∆j,`
h for all j, ` with

0 ≤ ` < r1Yj
. Hence the required estimates are satisfied by H.

Moreover, µY (r > n) decays exponentially [3] and it is well-known that µ([h] =
n) = O(n−3), so that µ(h > n) = O(n−2) in the infinite horizon case, hence it follows
from Corollary 2.2(a) that µY (H > n) = O((log n)2n−2). By Corollary 3.3, we deduce
that correlations for the Lorentz flow decay at the rate O((log t)2t−1). This recovers
the result in [12] for the semiflow and is already an improvement for the flow.

As shown in Section 4, the logarithmic factor in the estimate for µY (H > n) can
be removed and by Corollary 3.3, we obtain the optimal decay rate 1/t.

Example 3.8 We end with a hypothetical class of examples, where r and h both
have polynomial tails, µY (r > n) = O(n−(β1+1)) and µ(h > n) = O(n−(β2+1)). By
Corollary 2.2(c), we obtain µY (H > n) = O(n−(β+1)) where β = β1β2−1

β1+β2+2
.

If β1β2 > 1 (so that β > 0), then typically correlations decay at the rate O(t−β) by
Corollary 3.3, and we obtain the large deviations estimate O(t−β) by Corollary 3.4(a).
If β > 1, then we can apply Corollary 3.4(b) and (c).

4 Decay rate for the infinite horizon Lorentz gas

In this section, we return to the infinite horizon planar periodic Lorentz gas and
complete the proof of Theorem 1.1. As described in Example 3.7, it suffices by
Corollary 3.3 to remove the logarithmic factor in the tail estimate for the induced
roof function H.
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Lemma 4.1 For infinite horizon planar periodic Lorentz gases, µY (H > n) =
O(n−2).

Recall that

µY (y ∈ Y : r(y) > n) = O(e−cn) for some c > 0. (4.1)

µ(x ∈ X : h(x) > n) = O(n−2). (4.2)

By Corollary 2.2(a), we have µY (H > n) = O((log n)2n−2). The crucial ingredient
for proving Lemma 4.1 is due to Szász & Varjú [18].

Lemma 4.2 ( [18, Lemma 16], [4, Lemma 5.1] ) There are constants p, q > 0
with the following property. For any b sufficiently large there is a constant C =
C(b) > 0 such that

µ
{
x ∈ X : [h(x)] = m and h(T jx) > m1−q for some j ∈ {1, . . . , b logm}

}
≤ Cm−pµ(x ∈ X : [h(x)] = m),

for all m ≥ 1.

For b > 0, define

Yb(n) = {y ∈ Y : r(y) ≤ b log n and max
0≤`<r(y)

h(T `y) ≤ 1
2
n and H(y) ≥ n}.

Corollary 4.3 For b sufficiently large, µY (Yb(n)) = o(n−2).

Proof Let y ∈ Yb(n). We will use some of the notations, in particular h1(= h1(y))
and `1(= `1(y)) from Section 2. Further, define h2 = max0≤`<r(y), ` 6=`1{h(T `y)}, and
mi = [hi], i = 1, 2. Then we have

n

2b log n
− 1 ≤ m2 ≤ m1 ≤

n

2
. (4.3)

(Proof: It is clear that m2 ≤ m1 ≤ n/2, and n ≤ H ≤ h1 + (b log n − 1)h2 ≤
n/2 + (b log n)h2.)

The inequalities (4.3) imply that there are two free flights h ◦ T ` of comparable
lengths h1, h2, during the iterates ` = 0, . . . , b log n. Choosing b sufficiently large, it
follows from Lemma 4.2 that

µY (Yb(n)) ≤ Cm−p2 µ(x ∈ X : [h(x)] = m2).

By (4.2),

µY (Yb(n))� m
−(2+p)
2 � (n−1 log n)2+p = o(n−2)

as required.
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Proof of Lemma 4.1 We continue to use the notation of Section 2. As in the proof
of Proposition 2.1, we have

µY {y ∈ Y : max
0≤`<r(y)

h(T `y) > n/2} = r̄µ{y ∈ Y : h(T `1(y)y) > n/2}

= r̄µ{T `1(y)y : h(T `1(y)y) > n/2} ≤ r̄µ{x ∈ ∆ : h(x) > n/2},

and so µY {y ∈ Y : max0≤`<r(y) h(T `y) > n/2} = O(n−2) by (4.2). Hence it follows
from Corollary 4.3 that

µY {y ∈ Y : r(y) ≤ b log n and H(y) ≥ n} = O(n−2).

Finally, by (4.1), µY (r > b log n)) = O(n−bc) = o(n−2) for any b > 2/c and so
µY (H ≥ n) = O(n−2) as required.
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