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Decay in norm of transfer operators for semiflows

by

Ian Melbourne (Warwick), Nicolò Paviato (Warwick) and
Dalia Terhesiu (Leiden)

Abstract. We establish exponential decay in Hölder norm of transfer operators ap-
plied to smooth observables of uniformly and nonuniformly expanding semiflows with
exponential decay of correlations.

1. Introduction. Exponential decay of correlations is well-understood
for large classes of uniformly and nonuniformly expanding maps; see for
example [8, 13, 15, 16, 18, 23, 24, 25, 26, 29]. The typical method of proof
is to establish a spectral gap for the associated transfer operator L. Such a
spectral gap yields a decay rate ∥Lnv−

	
v∥ ≤ Cve

−an for v lying in a suitable
function space, where a,Cv are positive constants. Decay of correlations is
an immediate consequence of such decay for Ln.

Results on decay of correlations lead to numerous statistical limit the-
orems. Although not needed for results such as the central limit theorem,
strong norm control on Lnv is often useful for finer statistical properties. For
example, rates of convergence in the central limit theorem [14] and the asso-
ciated functional central limit theorem [4] rely heavily on control of operator
norms.

In this paper, we consider norm decay of transfer operators for uniformly
and nonuniformly expanding semiflows. Here, the standard method is to
deduce decay of the correlation function from analyticity of Laplace trans-
forms, bypassing spectral properties of Lt; see [11, 17, 22]. As far as we know,
the only result on spectral gaps for transfer operators of semiflows is due to
Tsujii [27]. However, this result is for suspension semiflows over the doubling
map with a C3 roof function, where the smoothness of the roof function
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is crucial and very restrictive. A similar result for contact Anosov flows is
proved in [28]. Both of the papers [27, 28] obtain spectral gaps for Lt acting
on a suitable anisotropic Banach space. In addition, a paper of Butterley [10]
obtains norm decay of transfer operators, but the results are quite different
from ours and the abstract setting there seems not to cover the situation con-
sidered here (see Remark 2.6 below). Apart from these, there are apparently
no previous results on norm decay of transfer operators for semiflows or flows.

Recently, in [20], we showed that spectral gaps are impossible in Hölder
spaces with exponent greater than 1/2 (and in any Banach space that embeds
in such a Hölder space). Nevertheless, our aim of controlling the Hölder
norm of Ltv for a large class of semiflows and observables v remains viable,
and our main result is the first in this direction. We consider uniformly and
nonuniformly expanding semiflows satisfying a Dolgopyat-type estimate [11].
Such an estimate plays a key role in proving exponential decay of correlations
for the semiflow. Theorem 2.3 below shows how to use this estimate to prove
exponential decay of Ltv in a Hölder norm for smooth mean zero observables
satisfying a good support condition. Apart from the Dolgopyat estimate, the
main ingredient is an operator renewal equation for semiflows [21] which
enables consideration of the operator Laplace transform

	∞
0 e−stLt dt.

The remainder of the paper is organised as follows. In Section 2, we recall
the setup for nonuniformly expanding semiflows with exponential decay of
correlations and state our main result, Theorem 2.3, on decay in norm. In
Section 3, we prove Theorem 2.3.

Notation. We use the “big O” and ≪ notation interchangeably, writing
an = O(bn) or an ≪ bn if there are constants C > 0, n0 ≥ 1 such that
an ≤ Cbn for all n ≥ n0.

2. Setup and statement of the main result. In this section, we
state our result on Hölder norm decay of transfer operators for uniformly
and nonuniformly expanding semiflows.

Let (Y, d) be a bounded metric space with Borel probability measure
µ and an at most countable measurable partition {Yj}. Let F : Y → Y
be a measure-preserving transformation such that F restricts to a measure-
theoretic bijection from Yj onto Y for each j. Let g = dµ/(dµ ◦ F ) be the
inverse Jacobian of F .

Fix η ∈ (0, 1). Assume that there are constants λ > 1 and C > 0 such
that d(Fy, Fy′) ≥ λd(y, y′) and |log g(y)− log g(y′)| ≤ Cd(Fy, Fy′)η for all
y, y′ ∈ Yj , j ≥ 1. In particular, F is a Gibbs–Markov map as in [2] (see
also [1, 3]) with ergodic (and mixing) invariant measure µ.

Let φ : Y → [2,∞) be a piecewise continuous roof function. We assume
that there is a constant C > 0 such that
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(2.1) |φ(y)− φ(y′)| ≤ Cd(Fy, Fy′)η

for all y, y′ ∈ Yj , j ≥ 1. Also, we assume exponential tails, that is, there
exists δ0 > 0 such that

(2.2)
∑
j

µ(Yj)e
δ0|1Yjφ|∞ < ∞.

Define the suspension Y φ = {(y, u) ∈ Y × [0,∞) : u ∈ [0, φ(y)]}/∼
where (y, φ(y)) ∼ (Fy, 0). The suspension semiflow Ft : Y

φ → Y φ is given by
Ft(y, u) = (y, u+t) modulo identifications. We define the ergodic Ft-invariant
probability measure µφ = (µ× Lebesgue)/φ̄ where φ̄ =

	
Y φdµ (1).

Let Lt : L
1(Y φ) → L1(Y φ) denote the transfer operator corresponding

to Ft (so
	
Y φ Ltvw dµφ =

	
Y φ vw ◦ Ft dµ

φ for all v ∈ L1(Y φ), w ∈ L∞(Y φ),
t > 0) and let R0 : L1(Y ) → L1(Y ) denote the transfer operator for F .
Recall (see for example [2]) that (R0v)(y) =

∑
jg(yj)v(yj) where yj is the

unique preimage of y under F |Yj , and there is a constant C > 0 such that

(2.3) |g(y)| ≤ Cµ(Yj), |g(y)− g(y′)| ≤ Cµ(Yj)d(Fy, Fy′)η,

for all y, y′ ∈ Yj , j ≥ 1.

Function space on Y φ. Let Y φ
j = {(y, u) ∈ Y φ : y ∈ Yj}. Fix η ∈ (0, 1],

δ > 0. For v : Y φ → R, define |v|δ,∞ = sup(y,u)∈Y φ e−δu|v(y, u)| and

∥v∥δ,η = |v|δ,∞ + |v|δ,η,

|v|δ,η = sup
j≥1

sup
(y,u),(y′,u)∈Y φ

j , y ̸=y′
e−δu |v(y, u)− v(y′, u)|

d(y, y′)η
.

Then Fδ,η(Y
φ) consists of observables v : Y φ → R with ∥v∥δ,η < ∞.

Next, define ∂uv to be the partial derivative of v with respect to u at
points (y, u) ∈ Y φ with u ∈ (0, φ(y)) and to be the appropriate one-sided
partial derivative when u ∈ {0, φ(y)}. For m ≥ 0, define Fδ,η,m(Y φ) to con-
sist of observables v : Y φ → R such that ∂j

uv ∈ Fδ,η(Y
φ) for j = 0, 1, . . . ,m,

with norm ∥v∥δ,η,m = maxj=0,...,m ∥∂j
uv∥δ,η.

Definition 2.1. Given r > 0, we consider the subset {(y, u) ∈ Y × R :
u ∈ [r, φ(y)−r]} viewed as a subset of Y φ. We say that a function v : Y φ → R
has good support if there exists r > 0 such that supp v ⊂ {(y, u) ∈ Y × R :
u ∈ [r, φ(y)− r]}.

For functions with good support, ∂uv coincides with the derivative ∂tv =
limh→0 (v ◦ Fh − v)/h in the flow direction.

(1) We call such semiflows “nonuniformly expanding” since they are the continuous-
time analogue of maps that are nonuniformly expanding in the sense of Young [29]. “Uni-
formly expanding” semiflows are those with φ bounded; they have bounded distortion as
well as uniform expansion.
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Remark 2.2. It is standard to restrict to observables with good support
when considering decay of correlations for semiflows, see for instance [12, 27].

Let
F0
δ,η,m(Y φ) =

{
v ∈ Fδ,η,m(Y φ) :

�

Y φ

v dµφ = 0
}
.

We write Fδ,η(Y
φ) and F0

δ,η(Y
φ) when m = 0.

Function space on Y. For v : Y → R, define

∥v∥η = |v|∞ + |v|η, |v|η = sup
j≥1

sup
y,y′∈Yj , y ̸=y′

|v(y)− v(y′)|/d(y, y′)η.

Let Fη(Y ) consist of observables v : Y → R with ∥v∥η < ∞.

Dolgopyat estimate. Define the twisted transfer operators

R̂0(s) : L
1(Y ) → L1(Y ), R̂0(s)v = R0(e

−sφv).

We assume that there exist γ ∈ (0, 1), ϵ > 0, m0 ≥ 0, A,D > 0 such that

∥R̂0(s)
n∥Fη(Y )→Fη(Y ) ≤ |b|m0γn(2.4)

for all s = a + ib ∈ C with |a| < ϵ, |b| ≥ D and all n ≥ A log |b|. Such an
assumption holds in the settings of [5, 6, 7, 11].

Now we can state our main result on norm decay for Lt.

Theorem 2.3. Under these assumptions, there exist ϵ > 0, m ≥ 1, C > 0
such that

∥Ltv∥δ,η,1 ≤ Ce−ϵt∥v∥δ,η,m for all t > 0

for all v ∈ F0
δ,η,m(Y φ) with good support.

Remark 2.4. Since the norm applied to v is stronger than the norm ap-
plied to Ltv, Theorem 2.3 does not imply a spectral gap for Lt. We note that
the norm on Fδ,η,1(Y

φ) gives no Hölder control in the flow direction when
passing through points of the form (y, φ(y)). This lack of control is a barrier
to mollification arguments of the type usually used to pass from smooth ob-
servables to Hölder observables. In fact, such arguments are doomed to fail
at the operator level by [20, Theorem 1.1] when η > 1/2 and hence seem
unlikely for any η.

Remark 2.5. Usually, we can take m0 ∈ (0, 1) in (2.4), in which case
m = 3 suffices in Theorem 2.3.

There are numerous simplifications when {Yj} is a finite partition. In
particular, conditions (2.1) and (2.2) are redundant and we can take δ = 0.

Remark 2.6. At first glance, Theorem 2.3 has some similarities with [10,
Theorem 1]. In particular, we mention formula (2.4) therein which takes the
form ∥Ptµ∥A ≤ Cℓe

−ℓt∥Zµ∥B where Z = ∂t. However, ∥ ∥A corresponds to
a “weak” norm which would just be the L∞ norm in our setting. Moreover,
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the hypothesis in [10] that the operators Tt : B → B (Lt : Fδ,η,1(Y
φ) →

Fδ,η,1(Y
φ) in our notation) are bounded looks to be unverifiable in our setting

even for fixed t. On the other hand, the expansion in equation (2.3) of [10]
is beyond our methods.

Remark 2.7. Numerous (non)uniformly hyperbolic flows are modelled
(after inducing and quotienting along stable leaves) by “Gibbs–Markov semi-
flows” Ft : Y

φ → Y φ of the type considered here with the exponential tail
condition (2.2). These include basic sets for Axiom A flows, Lorentz gases
with finite horizon, and Lorenz attractors (see for instance [19, Section 1.1]).
Whenever the Dolgopyat estimate (2.4) is satisfied in such examples, as
in [5, 6, 7, 11], Theorem 2.3 guarantees exponential decay for the norm of
the transfer operator for the corresponding Gibbs–Markov semiflow.

3. Proof of Theorem 2.3. Our proof of norm decay is broken into
three parts. In Subsection 3.1, we recall a continuous-time operator renewal
equation [21] which enables estimates of Laplace transforms of transfer oper-
ators at the level of Y . In Subsection 3.2, we show how to pass to estimates of
Laplace transforms of Lt. In Subsection 3.3, we invert the Laplace transform
to obtain norm decay of Lt.

3.1. Operator renewal equation. Let Ỹ = Y × [0, 1] and define

F̃ : Ỹ → Ỹ , F̃ (y, u) = (Fy, u),

with transfer operator R̃ : L1(Ỹ ) → L1(Ỹ ). Also, define

φ̃ : Ỹ → [2,∞), φ̃(y, u) = φ(y).

Define the twisted transfer operators

R̂(s) : L1(Ỹ ) → L1(Ỹ ), R̂(s)v = R̃(e−sφ̃v).

Let Ỹj = Yj × [0, 1]. For v : Ỹ → R, define

∥v∥η = |v|∞+|v|η, |v|η = sup
j≥1

sup
(y,u),(y′,u)∈Ỹj , y ̸=y′

|v(y, u)−v(y′, u)|/d(y, y′)η.

Let Fη(Ỹ ) consist of observables v : Ỹ → R with ∥v∥η < ∞. Let

F0
η (Ỹ ) =

{
v ∈ Fη(Ỹ ) :

�

Ỹ

v dµ̃ = 0
}
,

where µ̃ = µ× Leb[0,1].

Lemma 3.1. Write s = a + ib ∈ C. There exist ϵ > 0, m1 ≥ 0, C > 0
such that

(a) s 7→ (I − R̂(s))−1 : F0
η (Ỹ ) → Fη(Ỹ ) is analytic on {|a| < ϵ};
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(b) s 7→ (I − R̂(s))−1 : Fη(Ỹ ) → Fη(Ỹ ) is analytic on {|a| < ϵ} except for a
simple pole at s = 0;

(c) ∥(I − R̂(s))−1∥Fη(Ỹ )7→Fη(Ỹ )
≤ C|b|m1 for |a| ≤ ϵ, |b| ≥ 1.

Proof. It suffices to verify these properties for Z(s) = (I−R̂0(s))
−1 on Y .

They immediately transfer to (I−R̂(s))−1 on Ỹ since (R̂v)(y, u) = (R̂0v
u)(y)

where vu(y) = v(y, u).
The arguments for passing from (2.4) to the desired properties for Z(s)

are standard. For completeness, we sketch these details now, recalling ar-
guments from [5]. Define Fη(Y ) with norm ∥ ∥η by restricting to u = 0
(this coincides with the usual Hölder space on Y ). Let A, D, ϵ and m0 be as
in (2.4). Increase A and D so that D > 1 and |b|m0γ[A log |b|] ≤ 1/2 for |b| ≥ D.
Suppose that |a| ≤ ϵ, |b| ≥ D. Then ∥R̂0(s)

[A log |b|]∥η ≤ |b|m0γ[A log |b|] ≤ 1/2

and ∥(I − R̂0(s)
[A log |b|])−1∥η ≤ 2.

As in [5, Proposition 2.5], we can shrink ϵ so that s → R̂0(s) is continuous
on Fη(Y ) for |a| ≤ ϵ. The simple eigenvalue 1 for R̂0(0) = R0 extends
to a continuous family of simple eigenvalues λ(s) for |s| ≤ ϵ. Hence we
can choose ϵ so that 1/2 < λ(a) < 2 for |a| ≤ ϵ. By [5, Corollary 2.8],
∥R̂0(s)

n∥η ≪ |b|λ(a)n ≤ |b|2n for all n ≥ 1, |a| ≤ ϵ, |b| ≥ D. Hence

∥Z(s)∥η≤
(
1+∥R̂0(s)∥η+ · · ·+∥R̂0(s)

[A log |b|]−1∥η
)
∥(I−R̂0(s)

[A log |b|])−1∥η
≪(log |b|) |b| 2A log |b|≤|b|m1

with m1 = 1+A log 2. This proves analyticity on the region {|a| < ϵ, |b| > D}
with the desired estimates for property (c) on this region.

For |a| ≤ ϵ, |b| ≤ D, we recall arguments from [5, proof of Lemma 2.22]
(where R̂0(s) is denoted Qs). For ϵ sufficiently small, the part of the spectrum
of R̂0(s) that is close to 1 consists only of isolated eigenvalues. Also, the
spectral radius of R̂0(s) is at most λ(a) and λ(a) < 1 for a ∈ [0, ϵ], so
s 7→ Z(s) is analytic on {0 < a < ϵ}.

Suppose that R̂0(ib)v = v for some v ∈ Fη(Y ), b ̸= 0. Choose q ≥ 1

such that q|b| > D. Since R̂0(s) is the L2 adjoint of v 7→ esφv ◦ F , we
have eibφv ◦ F = v. Hence eiqbφvq ◦ F = vq and so R̂0(iqb)v

q = vq. But
∥Z(iqb)vq∥η < ∞, so v = 0. Hence 1 ̸∈ spec R̂0(ib) for all b ̸= 0. It follows
that for all b ̸= 0 there exists an open set Ub ⊂ C containing ib such that
1 ̸∈ spec R̂0(s) for all s ∈ Ub, and so s 7→ Z(s) is analytic on Ub.

Next, we recall that for s near to zero, λ(s) = 1+cs+O(s2) where c < 0.
Hence s 7→ Z(s) has a simple pole at zero. It follows that there exists ϵ > 0
such that s 7→ Z(s) is analytic on {|a| < ϵ, |b| < 2D} except for a simple
pole at s = 0. Combining this with the estimates on {|a| < ϵ, |b| ≥ D} we
have proved properties (b) and (c) for Z(s).
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Finally, the spectral projection π corresponding to the eigenvalue λ(0)= 1

for R̂0(0) = R is given by πv =
	
Y v dµ. Hence the pole disappears on

restriction to observables of mean zero, proving property (a) for Z(s).

Next define

Ttv = 1
Ỹ
Lt(1Ỹ v), Utv = 1

Ỹ
Lt(1{φ̃>t}v)

and

T̂ (s) =

∞�

0

e−stTt dt, Û(s) =

∞�

0

e−stUt dt.

By [21, Theorem 3.3], we have the operator renewal equation

T̂ = Û(I − R̂)−1.

Proposition 3.2. There exist ϵ > 0, C > 0 such that s 7→ Û(s) :

Fη(Ỹ ) → Fη(Ỹ ) is analytic on {|a| < ϵ} and ∥Û(s)∥Fη(Ỹ )7→Fη(Ỹ )
≤ C|s| for

|a| ≤ ϵ.

Proof. By [21, Proposition 3.4],

(Utv)(y, u) =

{
v(y, u− t)1[t,1](u), 0 ≤ t ≤ 1,

(R̃vt)(y, u), t > 1,

where vt(y, u) = 1{t<φ(y)<t+1−u}v(y, u − t + φ(y)). Consequently, Û(s) =

Û1(s) + Û2(s), where

(Û1(s)v)(y, u) =

u�

0

e−stv(y, u− t) dt, Û2(s)v =

∞�

1

e−stR̃vt dt.

It is clear that ∥Û1(s)v∥η ≤ eϵ∥v∥η. We focus attention on the second term

(Û2(s)v)(y, u) =
∑

jg(yj)

∞�

1

e−stvt(yj , u) dt =
∑

jg(yj)V̂ (s)(yj , u),

where V̂ (s)(y, u)=
	1
u e

s(t−u−φ)v(y, t) dt. Clearly, |1Yj V̂ (s)|∞≤e
ϵ|1Yjφ|∞ |v|∞.

Also,
V̂ (s)(y, u)− V̂ (s)(y′, u) = I + J,

where

I =

1�

u

(es(t−u−φ(y)) − es(t−u−φ(y′)))v(y, t) dt,

J =

1�

u

es(t−u−φ(y′))(v(y, t)− v(y′, t)) dt.
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For y, y′ ∈ Yj ,

|I| ≤ |v|∞
1�

u

e
ϵ(|1Yjφ|∞+u−t)|s| |φ(y)−φ(y′)| dt ≪ |s| |v|∞ e

ϵ|1Yjφ|∞d(Fy, Fy′)η

by (2.1), and

|J | ≤
1�

u

e
ϵ(|1Yjφ|∞+u−t)|v(y, t)− v(y′, t)| dt ≤ e

ϵ|1Yjφ|∞ |v|η d(y, y′)η.

Hence |V̂ (s)(y, u)− V̂ (s)(y′, u)|η ≪ |s|eϵ|1Yjφ|∞∥v∥η d(Fy, Fy′)η.
It follows from the estimates for 1Yj V̂ (s) together with (2.3) that

∥Û2(s)v∥η ≪
∑
j

|s|µ(Yj)eϵ|1Yjφ|∞∥v∥η.

By (2.2), ∥Û2(s)v∥η ≪ |s| ∥v∥η for ϵ sufficiently small. We conclude that
∥Û(s)v∥η ≪ |s| ∥v∥η.

3.2. From T̂ on Ỹ to L̂ on Y φ. Lemma 3.1 and Proposition 3.2 yield
analyticity and estimates for T̂ = Û(I − R̂)−1 on Ỹ . In this subsection,
we show how these properties are inherited by L̂(s) =

	∞
0 e−stLt dt on Y φ.

Recall that Ỹ = Y × [0, 1], which we view as a subset of Y φ.

Remark 3.3. The approach in this subsection is similar to that in [9,
Section 5] but there are some important differences. The rationale behind
the two-step decomposition in Propositions 3.4 and 3.5 below is that the
discreteness of the decomposition in Proposition 3.4 simplifies many for-
mulas significantly. In particular, the previously problematic term Et in [9]
becomes elementary (and vanishes for large t when φ is bounded). The de-
composition in Proposition 3.5 remains continuous to simplify the estimates
in Proposition 3.8.

Since the setting in [9] is different (infinite ergodic theory, reinducing),
we keep the exposition here self-contained even where the estimates coincide
with those in [9].

Define

An : L1(Ỹ ) → L1(Y φ), (Anv)(y, u) = 1{n≤u<n+1}(Lnv)(y, u), n ≥ 0,

Et : L
1(Y φ) → L1(Y φ), (Etv)(y, u) = 1{[t]+1≤u≤φ(y)}(Ltv)(y, u), t > 0.

Proposition 3.4. Lt =
∑[t]

j=0Aj1Ỹ Lt−j + Et for t > 0.
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Proof. For y ∈ Y , u ∈ (0, φ(y)),

(Ltv)(y, u) =

[t]∑
j=0

1{j≤u<j+1}(Ltv)(y, u) + 1{[t]+1≤u≤φ(y)}(Ltv)(y, u)

=

[t]∑
j=0

(AjLt−jv)(y, u) + (Etv)(y, u).

Now use An = An1Ỹ .

Next, define

Bt : L
1(Y φ) → L1(Ỹ ), Btv = 1

Ỹ
Lt(1∆tv),

Gt : L
1(Y φ) → L1(Ỹ ), Gtv = Bt(ω(t)v),

Ht : L
1(Y φ) → L1(Ỹ ), Htv = 1

Ỹ
Lt(1∆′

t
v),

for t > 0, where

∆t = {(y, u) ∈ Y φ : φ(y)− t ≤ u < φ(y)− t+ 1},
∆′

t = {(y, u) ∈ Y φ : u < φ(y)− t},
ω(t)(y, u) = φ(y)− u− t+ 1.

Proposition 3.5. 1
Ỹ
Lt =

	t
0 Tt−τBτ dτ +Gt +Ht for t > 0.

Proof. Let y ∈ Y , u ∈ [0, φ(y)]. Then
t�

0

1∆τ (y, u) dτ =

t�

0

1{φ(y)−u≤τ≤φ(y)−u+1} dτ

= 1{t≥φ(y)−u+1} + 1{φ(y)−u≤t<φ(y)−u+1}(t− φ(y) + u)

= 1− 1{t<φ(y)−u+1} + 1{φ(y)−u≤t<φ(y)−u+1}(t− φ(y) + u)

= 1− 1∆′
t
(y, u) + 1∆t(y, u)(t− φ(y) + u− 1).

Hence
	t
0 1∆τ dτ = 1− 1∆tω(t)− 1∆′

t
. It follows that

t�

0

Tt−τBτv dτ = 1
Ỹ

t�

0

Lt−τ1Ỹ Bτv dτ = 1
Ỹ

t�

0

Lt−τBτv dτ

= 1
Ỹ

t�

0

Lt−τLτ (1∆τ v) dτ = 1
Ỹ
Lt

( t�

0

1∆τ v dτ
)

= 1
Ỹ
Ltv −Gtv −Htv,

as required.
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We have already defined the Laplace transforms L̂(s) and T̂ (s) for s =
a+ ib with a > 0. Similarly, define

B̂(s) =

∞�

0

e−stBt dt, Ê(s) =

∞�

0

e−stEt dt,

Ĝ(s) =

∞�

0

e−stGt dt, Ĥ(s) =

∞�

0

e−stHt dt.

Also, we define the discrete transform Â(s) =
∑∞

n=0 e
−snAn.

Corollary 3.6. L̂(s) = Â(s)T̂ (s)B̂(s) + Â(s)Ĝ(s) + Â(s)Ĥ(s) + Ê(s)
for a > 0.

Proof. By Proposition 3.4,

L̂(s)− Ê(s) =

∞�

0

e−st

[t]∑
j=0

Aj1Ỹ Lt−j dt =
∞∑
j=0

e−sjAj1Ỹ

∞�

j

e−s(t−j)Lt−j dt

= Â(s)1
Ỹ

∞�

0

e−stLt dt = Â(s)1
Ỹ
L̂(s).

Hence L̂ = Â1
Ỹ
L̂+Ê. In addition, by Proposition 3.5, 1

Ỹ
L̂ = T̂ B̂+Ĝ+Ĥ.

Proposition 3.7. Let δ > ϵ > 0. Then there is a constant C > 0 such
that

(a) ∥Â(s)∥Fη(Ỹ )→Fδ,η(Y φ)
≤ 1,

(b) ∥Ê(s)∥Fδ,η(Y φ)→Fδ,η(Y φ) ≤ C,

(c) ∥Ĥ(s)∥Fδ,η(Y φ)→Fη(Ỹ )
≤ eδ,

for |a| ≤ ϵ.

Proof. (a) Let v ∈Fη(Ỹ ). Let (y, u), (y′, u)∈Y φ
j , j≥ 1. Since (Anv)(y, u)

= 1{n≤u<n+1}v(y, u− n), we have

(Â(s)v)(y, u) =
∞∑
n=0

e−sn1{n≤u<n+1}v(y, u− n) = e−s[u]v(y, u− [u]).

Hence

|(Â(s)v)(y, u)| ≤ eϵu|v|∞,

|(Â(s)v)(y, u)− (Â(s)v)(y′, u)| ≤ eϵu|v|η d(y, y′)η.

That is, |Â(s)v|ϵ,∞≤|v|∞, |Â(s)v|ϵ,η≤|v|η. So ∥Â(s)v∥δ,η≤∥Â(s)v∥ϵ,η≤∥v∥η.
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(b) We take C = 1/(δ − ϵ). Let v ∈ Fδ,η(Y
φ). Let (y, u), (y′, u) ∈ Y φ

j ,
j ≥ 1. Note that (Etv)(y, u) = 1{[t]+1≤u}v(y, u− t), so

(Ê(s)v)(y, u) =

∞�

0

e−st1{[t]+1≤u}v(y, u− t) dt.

Hence
|(Ê(s)v)(y, u)| ≤

∞�

0

eϵt|v|δ,∞ eδ(u−t) dt = C|v|δ,∞ eδu

and

|(Ê(s)v)(y, u)− (Ê(s)v)(y′, u)| ≤
∞�

0

eϵt|v|δ,η d(y, y′)ηeδ(u−t) dt

= Ceδu|v|δ,η d(y, y′)η.

That is, |Ê(s)v|δ,∞ ≤ |v|δ,∞ and |Ê(s)v|δ,η ≤ |v|δ,η.
(c) Let v ∈ Fϵ,η(Y

φ). Let (y, u), (y′, u) ∈ Ỹj , j ≥ 1. Then (Htv)(y, u) =

1{t<u}v(y, u− t) and (Ĥ(s)v)(y, u) =
	u
0 e

−stv(y, u− t) dt. Hence

|Ĥ(s)v|∞ ≤ eδ|v|δ,∞, |(Ĥ(s)v)(y, u)− (Ĥ(s)v)(y′, u)| ≤ eδ|v|δ,η d(y, y′)η.
The result follows.

Proposition 3.8. There exist δ > ϵ > 0 and C > 0 such that

∥B̂(s)∥Fδ,η(Y φ)→Fη(Ỹ )
≤ C|s| and ∥Ĝ(s)∥Fδ,η(Y φ)→Fη(Ỹ )

≤ C|s|

for |a| ≤ ϵ.

Proof. Let v ∈ L1(Y φ), w ∈ L∞(Ỹ ). Using Ft(y, u) = (Fy, u+ t− φ(y))
for (y, u) ∈ ∆t, we have�

Ỹ

Btvw dµ̃ = φ̄
�

Y φ

Lt(1∆tv)w dµφ = φ̄
�

Y φ

1∆tvw ◦ Ft dµ
φ

=
�

Y

φ(y)�

0

1{0≤u+t−φ(y)<1}v(y, u)w(Fy, u+ t− φ) du dµ

=
�

Y

t�

t−φ(y)

1{0≤u<1}v(y, u+ φ(y)− t)w(Fy, u) du dµ

=
�

Ỹ

vtw ◦ F̃ dµ̃ =
�

Ỹ

R̃vtw dµ̃,

where vt(y, u) = 1{0<u+φ(y)−t<φ(y)}v(y, u+ φ(y)− t).
Hence Btv = R̃vt and it follows immediately that Gtv = R̃(ω(t)v)t. But

(ω(t)v)t(y, u) = 1{0<u+φ(y)−t<φ(y)}(ω(t)v)(y, u+ φ(y)− t) = (1− u)vt(y, u),

so (Gtv)(y, u) = (1− u)(Btv)(y, u).
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Next, B̂(s)v = R̃V̂ (s) where

V̂ (s)(y, u) =

∞�

0

e−stvt(y, u) dt =

u+φ(y)�

u

e−stv(y, u+ φ(y)− t) dt

=

φ(y)�

0

e−s(φ(y)+u−t)v(y, t) dt.

It is immediate that

(Ĝ(s)v)(y, u) = (1− u)(B̂(s)v)(y, u).(3.1)

Suppose that δ > ϵ > 0 are fixed. Let v ∈ Fδ,η(Y
φ). Let (y, u), (y′, u) ∈

Ỹj , j ≥ 1. Then

|V̂ (s)(y, u)| ≤
φ(y)�

0

e−a (φ(y)+u−t)|v|δ,∞ eδt dt ≪ eδφ(y)|v|δ,∞

and so |1Yj V̂ (s)|∞ ≪ e
δ|1Yjφ|∞ |v|δ,∞.

Next, suppose without loss of generality that φ(y′) ≤ φ(y). Then

V̂ (s)(y, u)− V̂ (s)(y′, u) = J1 + J2 + J3,

where

J1 =

φ(y)�

0

(e−s(φ(y)+u−t) − e−s(φ(y′)+u−t))v(y, t) dt,

J2 =

φ(y)�

0

e−s(φ(y′)+u−t)(v(y, t)− v(y′, t)) dt,

J3 =

φ(y)�

φ(y′)

e−s(φ(y′)+u−t)v(y′, t) dt.

For notational convenience we suppose that a ∈ (−ϵ, 0) since the range a ≥ 0
is simpler. Using (2.1),

|J1| ≤
φ(y)�

0

e
ϵ(|1Yjφ|∞+1−t)|s| |φ(y)− φ(y′)| |v|δ,∞ eδt dt

≪ |s|φ(y)eδ|1Yjφ|∞ d(Fy, Fy′)η|v|δ,∞ ≪ |s|e2δ|1Yjφ|∞ d(Fy, Fy′)η|v|δ,∞,

|J2| ≤
φ(y)�

0

e
ϵ(|1Yjφ|∞+1−t)|v|δ,η eδtd(y, y′)η dt ≪ e

δ|1Yjφ|∞ d(y, y′)η|v|δ,η,

|J3| ≤
φ(y)�

φ(y′)

e
ϵ(|1Yjφ|∞+1−t)|v|δ,∞ eδt dt ≪ e

2δ|1Yjφ|∞ |v|δ,∞ d(Fy, Fy′)η.
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Hence
|V̂ (s)(y, u)− V̂ (s)(y, u)| ≪ |s|e2δ|1Yjφ|∞∥v∥δ,η d(Fy, Fy′)η.

Now, for (y, u) ∈ Ỹ ,

(B̂(s)v)(y, u) = (R̃V̂ (s))(y, u) =
∑
j

g(yj)V̂ (s)(yj , u),

where yj is the unique preimage of y under F |Yj . It follows from the estimates
for V̂ (s) together with (2.3) that

∥B̂(s)v∥η ≪ |s|
∑
j

µ(Yj)e
2δ|1Yjφ|∞∥v∥δ,η.

Shrinking δ, we deduce the desired estimate for B̂ from (2.2). Finally, the
estimate for Ĝ follows from (3.1).

Proposition 3.9.
	
Ỹ
B̂(0)v dµ̃ = φ̄

	
Y φ v dµφ for v ∈ L1(Y φ).

Proof. By the definition of B̂,
�

Ỹ

B̂(0)v dµ̃ =
�

Ỹ

∞�

0

Lt(1∆tv) dt dµ̃ = φ̄

∞�

0

�

Y φ

Lt(1∆tv) dµ
φ dt

= φ̄

∞�

0

�

Y φ

1∆tv dµ
φ dt = φ̄

�

Y φ

∞�

0

1{φ−u<t<φ−u+1}v dt dµ
φ

= φ̄
�

Y φ

v dµφ,

as required.
Lemma 3.10. Write s = a + ib ∈ C. There exist ϵ > 0, δ > 0, m2 ≥ 0,

C > 0 such that

(a) s 7→ L̂(s) : F0
δ,η(Y

φ) → Fδ,η(Y
φ) is analytic on {|a| < ϵ};

(b) s 7→ L̂(s) : Fδ,η(Y
φ) → Fδ,η(Y

φ) is analytic on {|a| < ϵ} except for a
simple pole at s = 0;

(c) ∥L̂(s)v∥δ,η ≤ C|b|m2∥v∥δ,η for |a| ≤ ϵ, |b| ≥ 1, v ∈ Fδ,η(Y
φ).

Proof. Recall that
L̂ = ÂT̂ B̂ + ÂĜ+ ÂĤ + Ê, T̂ = Û(I − R̂)−1,

where Û , Â, B̂, Ĝ, Ĥ and Ê are analytic by Propositions 3.2, 3.7 and 3.8.
Hence part (b) follows immediately from Lemma 3.1(b). Also, part (c) is a
consequence of Lemma 3.1(c).

By Proposition 3.9, B̂(0)(F0
δ,η(Y

φ)) ⊂ F0
η (Ỹ ). Hence the simple pole at

s = 0 for (I−R̂)−1B̂ disappears on restriction to F0
δ,η(Y

φ) by Lemma 3.1(a).
This proves part (a).
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3.3. Moving the contour of integration

Proposition 3.11. Let m ≥ 1. Let v ∈ Fδ,η,m(Y φ) have good support.
Then L̂(s)v =

∑m−1
j=0 (−1)js−(j+1)∂j

t v + (−1)ms−mL̂(s)∂m
t v for a > 0.

Proof. Recall that supp v ⊂ {(y, u) ∈ Y φ : u ∈ [r, φ(y) − r]} for some
r > 0. For h ∈ [0, r], we can define (Ψhv)(y, u) = v(y, u − h) and then
(Ψhv) ◦ Fh = v.

Let w ∈ L∞(Y φ) and write ρv,w(t) =
	
Y φ v wt dµ

φ, where wt = w ◦ Ft.
Then for h ∈ [0, r],

ρv,w(t+ h) =
�

Y φ

vwt ◦ Fh dµ
φ =

�

Y φ

(Ψhv) ◦ Fhwt ◦ Fh dµ
φ =

�

Y φ

Ψhvwt dµ
φ.

Hence h−1(ρv,w(t+ h)− ρv,w(t)) =
	
Y φ h−1(Ψhv − v)wt dµ

φ, so

ρ′v,w(t) = −
�

Y φ

∂tvwt dµ
φ = −

�

Y φ

∂tvw ◦ Ft dµ
φ = −ρ∂tv,w(t).

Inductively, ρ(j)v,w(t) = (−1)jρ
∂j
t v,w

(t).

Now
	
Y φ L̂(s)vw dµφ =

	∞
0 e−st

	
Y φ Ltvw dµφ dt =

	∞
0 e−stρv,w(t) dt, so

repeatedly integrating by parts, we get

�

Y φ

L̂(s)vw dµφ =
m−1∑
j=0

s−(j+1)ρ(j)v,w(0) + s−m
∞�

0

e−stρ(m)
v,w (t) dt

=

m−1∑
j=0

(−1)js−(j+1)ρ
∂j
t v,w

(0) + (−1)ms−m
∞�

0

e−stρ∂m
t v,w(t) dt

=
�

Y φ

m−1∑
j=0

(−1)js−(j+1)∂j
t vw dµφ + (−1)ms−m

∞�

0

e−stρ∂m
t v,w(t) dt.

Finally,
	∞
0 e−stρ∂m

t v,w(t) dt =
	
Y φ L̂(s)∂m

t vw dµφ and the result follows since
w ∈ L∞(Y φ) is arbitrary.

We can now estimate ∥Ltv∥δ,η.
Corollary 3.12. Under the assumptions of Theorem 2.3, there exist

ϵ > 0, m3 ≥ 1, C > 0 such that

∥Ltv∥δ,η ≤ Ce−ϵt∥v∥δ,η,m3 for all t > 0,

for all v ∈ F0
δ,η,m3

(Y φ) with good support.

Proof. Let m3 = m2 + 2. By Lemma 3.10(a), L̂(s) : F0
δ,η,m3

(Y φ) →
Fδ,η(Y

φ) is analytic for |a| ≤ ϵ. The alternative expression in Proposi-
tion 3.11 is also analytic on this region (the apparent singularity at s = 0

is removable by the equality with the analytic function L̂). Hence we can
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move the contour of integration to s = −ϵ+ ib when computing the inverse
Laplace transform, to obtain

Ltv =

∞�

−∞
est

(m3−1∑
j=0

(−1)js−(j+1)∂j
t v + (−1)m3s−m3L̂(s)∂m3

t v
)
db

= e−ϵt
m3−1∑
j=0

(−1)j∂j
t v

∞�

−∞
eibts−(j+1) db

+ (−1)m3e−ϵt
∞�

−∞
eibts−m3L̂(s)∂m3

t v db.

The final term is estimated using Lemma 3.10(b, c):∥∥∥ ∞�

−∞
eibts−m3L̂(s)∂m3

t v db
∥∥∥
δ,η

≪
∞�

−∞
(1 + |b|)−(m2+2)(1 + |b|)m2∥∂m3

t v∥δ,η db ≪ ∥v∥δ,η,m3 .

Clearly, the integrals
	∞
−∞ eibts−(j+1) db converge absolutely for j ≥ 1, while

the integral for j = 0 converges as an improper Riemann integral. Hence
altogether we obtain ∥Ltv∥δ,η ≪ e−ϵt∥v∥δ,η,m3 .

For the proof of Theorem 2.3, it remains to estimate ∥∂uLtv∥δ,η. Recall
that the transfer operator R0 for F has weight function g. We have the
pointwise formula

(Rk
0v)(y) =

∑
Fky′=y

gk(y
′)v(y′) where gk = g . . . g ◦ F k−1.

Let

φk =
k−1∑
j=0

φ ◦ F j .

Proposition 3.13. Let v ∈ L1(Y φ). Then for all t > 0, (y, u) ∈ Y φ,

(Ltv)(y, u) =

[t/2]∑
k=0

∑
Fky′=y

gk(y
′)1{0≤u−t+φk(y′)<φ(y′)}v(y

′, u− t+ φk(y
′)).

Proof. Recall that the roof function φ is bounded below by 2. The lap
number Nt(y, u) ∈ [0, t/2] ∩ N is the unique integer k ≥ 0 such that u+ t−
φk(y) ∈ [0, φ(F ky)). In particular, Ft(y, u) = (FNt(y,u)y, u+ t−φNt(y,u)(y)).



16 I. Melbourne et al.

For w ∈ L∞(Y φ),
�

Y φ

Lt(1{Nt=k}v)w dµφ =
�

Y φ

1{Nt=k}v w ◦ Ft dµ
φ

= φ̄−1
�

Y

φ(y)�

0

1{0≤u+t−φk(y)<φ(Fky)}v(y, u)w(F
ky, u+ t− φk(y)) du dµ

= φ̄−1
�

Y

φ(Fky)�

0

1{0≤u−t+φk(y)<φ(y)}v(y, u− t+ φk(y))w(F
ky, u) du dµ.

Writing vut,k(y) = 1{0≤u−t+φk(y)<φ(y)}v(y, u−t+φk(y)) and wu(y) = w(y, u),
we get

�

Y φ

Lt(1{Nt=k}v)w dµφ = φ̄−1
∞�

0

�

Y

1{u<φ◦Fk}v
u
t,kw

u ◦ F k dµ du

= φ̄−1
∞�

0

�

Y

1{u<φ}R
k
0v

u
t,kw

u dµ du =
�

Y φ

(Rk
0v

u
t,k)(y)w(y, u) dµ

φ.

Hence

(Ltv)(y, u) =

[t/2]∑
k=0

(Lt(1{Nt=k}v)(y, u) =

[t/2]∑
k=0

(Rk
0v

u
t,k)(y).

The result follows from the pointwise formula for Rk
0 .

Proof of Theorem 2.3. Let m = m3 + 1. By Corollary 3.12, we have
∥Ltv∥δ,η ≪ e−ϵt∥v∥δ,η,m.

Recall that ∂u denotes the ordinary derivative with respect to u at 0 <
u < φ(y) and denotes the appropriate one-sided derivative at u = 0 and
u = φ(y). Since v has good support, the indicator functions in the right-
hand side of the formula in Proposition 3.13 are constant on the support
of v. It follows that ∂uLtv = Lt(∂uv). By Corollary 3.12,

∥∂uLtv∥δ,η = ∥Lt(∂uv)∥δ,η ≪ e−ϵt∥∂uv∥δ,η,m3 ≤ e−ϵt∥v∥δ,η,m.

Hence, ∥Ltv∥δ,η,1 ≪ e−ϵt∥v∥δ,η,m as required.

Acknowledgements. We are grateful to the referee for a number of
helpful suggestions.

References

[1] J. Aaronson, An Introduction to Infinite Ergodic Theory, Math. Surveys Monogr. 50,
Amer. Math. Soc., Providence, RI, 1997.

http://dx.doi.org/10.1090/surv/050


Decay in norm of transfer operators for semiflows 17

[2] J. Aaronson and M. Denker, Local limit theorems for partial sums of stationary se-
quences generated by Gibbs–Markov maps, Stoch. Dynam. 1 (2001), 193–237.

[3] J. Aaronson, M. Denker and M. Urbański, Ergodic theory for Markov fibred systems
and parabolic rational maps, Trans. Amer. Math. Soc. 337 (1993), 495–548.

[4] M. Antoniou and I. Melbourne, Rate of convergence in the weak invariance principle
for deterministic systems, Comm. Math. Phys. 369 (2019), 1147–1165.

[5] V. Araújo and I. Melbourne, Exponential decay of correlations for nonuniformly hy-
perbolic flows with a C1+α stable foliation, including the classical Lorenz attractor,
Ann. Henri Poincaré 17 (2016), 2975–3004.

[6] A. Avila, S. Gouëzel and J.-C. Yoccoz, Exponential mixing for the Teichmüller flow,
Publ. Math. Inst. Hautes Études Sci. 104 (2006), 143–211.

[7] V. Baladi and B. Vallée, Exponential decay of correlations for surface semi-flows
without finite Markov partitions, Proc. Amer. Math. Soc. 133 (2005), 865–874.

[8] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,
Lecture Notes in Math 470, Springer, Berlin, 1975.

[9] H. Bruin, I. Melbourne and D. Terhesiu, Rates of mixing for non-Markov infinite
measure semiflows, Trans. Amer. Math. Soc. 371 (2019), 7343–7386.

[10] O. Butterley, A note on operator semigroups associated to chaotic flows, Ergodic
Theory Dynam. Systems 36 (2016), 1396–1408.

[11] D. Dolgopyat, On the decay of correlations in Anosov flows, Ann. of Math. 147 (1998),
357–390.

[12] D. Dolgopyat, Prevalence of rapid mixing in hyperbolic flows, Ergodic Theory Dynam.
Systems 18 (1998), 1097–1114.

[13] P. Góra and A. Boyarsky, Absolutely continuous invariant measures for piecewise
expanding C2 transformations in RN , Israel J. Math. 67 (1989), 272–286.

[14] S. Gouëzel, Berry–Esseen theorem and local limit theorem for non uniformly expand-
ing maps, Ann. Inst. H. Poincaré Probab. Statist. 41 (2005), 997–1024.

[15] F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise
monotonic transformations, Math. Z. 180 (1982), 119–140.

[16] G. Keller, Generalized bounded variation and applications to piecewise monotonic
transformations, Z. Wahrsch. Verw. Gebiete 69 (1985), 461–478.

[17] C. Liverani, On contact Anosov flows, Ann. of Math. 159 (2004), 1275–1312.
[18] C. Liverani, Multidimensional expanding maps with singularities: a pedestrian ap-

proach, Ergodic Theory Dynam. Systems 33 (2013), 168–182.
[19] I. Melbourne, Superpolynomial and polynomial mixing for semiflows and flows, Non-

linearity 31 (2018), R268–R316.
[20] I. Melbourne, N. Paviato and D. Terhesiu, Nonexistence of spectral gaps in Hölder

spaces for continuous time dynamical systems, Israel J. Math. 247 (2022), 987–991.
[21] I. Melbourne and D. Terhesiu, Operator renewal theory for continuous time dynamical

systems with finite and infinite measure, Monatsh. Math. 182 (2017), 377–431.
[22] M. Pollicott, On the rate of mixing of Axiom A flows, Invent. Math. 81 (1985), 413–426.
[23] D. Ruelle, Thermodynamic Formalism, Encyclopedia Math. Appl. 5, Addison-Wesley,

Reading, MA, 1978.
[24] M. Rychlik, Bounded variation and invariant measures, Studia Math. 76 (1983), 69–80.
[25] B. Saussol, Absolutely continuous invariant measures for multidimensional expanding

maps, Israel J. Math. 116 (2000), 223–248.
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