Georg Gottwald and Ian Melbourne
Abstract
Dynamics arising persistently in smooth dynamical systems ranges from regular dynamics (periodic, quasiperiodic) to strongly chaotic dynamics (Anosov, uniformly hyperbolic, nonuniformly hyperbolic modelled by Young towers). The latter include many classical examples such as Lorenz and Hénon-like attractors and enjoy strong statistical properties.
It is natural to conjecture (or at least hope) that most dynamical systems fall into these two extreme situations. We describe a numerical test for such a conjecture/hope and apply this to the logistic map where the conjecture holds by a theorem of Lyubich, and to the Lorenz-96 system in 40 dimensions where there is no rigorous theory. The numerical outcome is almost identical for both (except for the amount of data required) and provides evidence for the validity of the conjecture.