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Abstract

We prove optimal local large deviations for the periodic infinite horizon
Lorentz gas viewed as a Zd-cover (d = 1, 2) of a dispersing billiard. In addition
to this specific example, we prove a general result for a class of nonuniformly
hyperbolic dynamical systems and observables associated with central limit
theorems with nonstandard normalisation.

1 Introduction

Local large deviations (LLD) for one dimensional i.i.d. random variables that do
not satisfy the classical central limit theorem (with the standard normalisation) but
are in the domain of a stable law were recently obtained by Caravenna & Doney [9,
Theorem 1.1] and refined by Berger [6, Theorem 2.3]. Such results have been extended
to multivariate i.i.d. random variables in the domain of the stable laws by Berger
in [7]. Roughly speaking, an LLD measures the probability that the sum of the
random variables assumes precise, but asymptotically large values. In the absence of
second and even first moments, the proofs are considerably harder.

For dynamical systems, the first LLD results in the absence of the classical central
limit theorem were obtained in [18]; they are as optimal as [6, Theorem 2.3]. The
main shift in that paper is an analytic proof which overcomes the restriction of having
independence. Although promising, the results in [18] are limited to the Gibbs Markov
maps. The aim of this paper is to prove an optimal LLD estimate for infinite horizon
periodic Lorentz maps, which were shown to satisfy a central limit theorem with
nonstandard normalisation by Szász & Varjú [22]. A crucial new ingredient of the
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proofs of the present LLD results consists of a new operator renewal technique on the
Young tower for the billiard map.

Periodic dispersing billiards and Lorentz gases were introduced into ergodic theory
and studied by [21]. For a general reference, see [11]. We recall that the classical
central limit theorem was proved in the finite horizon case by [8] and local, moderate
and large deviations were recently obtained in Dolgopyat & Nándori [13]. In the
same work [13] the authors designed a strategy to prove the local limit theorem and
mixing properties for group extensions (such as Zd) of probability preserving flows by
free flight functions with finite second moments. For a similar strategy but weaker
results we refer to [3]. The strategy in [13] consists of the systematic use of local large
and moderate deviations for the underlying probability preserving Poincaré map.
Their result applies to the finite horizon Lorentz flow. In that case, both the free
flight and the roof function are bounded. We believe that the LLD obtained in this
paper (Theorem 1.1 below) can be used to prove the local limit theorem and mixing
properties for the infinite horizon Lorentz flow.

A periodic Lorentz map (T̃ , M̃ , µ̃) is a Zd-cover of a periodic dispersing billiard
(T,M, µ). The notation for the dispersing billiard is recalled in Section 2. We consider
the cases d = 1 (tubular billiard) and d = 2 (planar billiard). We are interested in
the case of infinite horizon where the time between collisions for the billiard map is
unbounded, subject to certain nondegeneracy conditions described in Section 2.

Let κ : M → Zd denote the cell-change function (discrete free flight function)
between collisions, and define κn =

∑n−1
j=0 κ ◦ T j. For the Lorentz gas, geometrically

κn ∈ Zd denotes the cell in the infinite measure phase space M̃ where the n’th collision
takes place for initial conditions starting in the 0’th cell.

Set
an =

√
n log n.

The central limit theorem with nonstandard normalisation proved in [22] says that
a−1
n κn converges in distribution to a nondegenerate d-dimensional normal distribution.

In fact, [22] proves a stronger result, namely the corresponding local limit theorem.
Our main result is:1

Theorem 1.1 (LLD for the dispersing billiard) There exists C > 0 such that

µ(κn = N) ≤ C
n

adn

log |N |
1 + |N |2

for all n ≥ 1, N ∈ Zd.

Remark 1.2 Again, there is the geometric interpretation that µ(κn = N) represents

the probability that an initial condition in the 0’th cell of M̃ lies in the N ’th cell after
n collisions.

Although we focus on the discrete free flight function κ : M → Zd, our results
apply immediately to the flight function V : M → Rd given by the difference in Rd

1We set log x = 1 for x ∈ [0, 2).

2



between consecutive collision points. Indeed, defining Vn =
∑n−1

j=0 V ◦T j, it is evident

that |κn − Vn| is bounded by the diameter
√
d of the cells (since Vn is the distance

between successive collisions whereas κn is the distance between the centres of the
corresponding cells). Hence for any r > 0 there exists C > 0 such that

µ(Vn ∈ Br(x)) ≤ C
n

adn

log |x|
1 + |x|2

for all n ≥ 1, x ∈ Rd.

Remark 1.3 The LLD bound for the dispersing billiard follows from a uniform ver-
sion [19] of the local limit theorem [22] in the range N �

√
n log n. Hence, the

principal novelty of Theorem 1.1 lies in the range N �
√
n log n. We note that,

as in [18], the approach in this paper does not rely on the local limit theorem and
extends to situations where the local limit theorem fails, see Theorem 7.1.

The approach in this paper, following [18], is Fourier analytic and relies on smooth-
ness properties of the leading eigenvalues and their spectral projections for the ap-
propriate transfer operator. We show how to obtain Cr control for all r < 2, going
considerably beyond previous estimates of [4, 19]. The methods developed in Sec-
tion 5 to obtain this control in the context of exponential Young towers are the main
technical advance of this paper and should have other applications, not only to LLD.

In Section 2, we recall the setting for dispersing billiards. In Section 3, we prove
Theorem 1.1 in the range n � log |N |. Sections 4 to 6 treat the complementary
range log |N | ≤ ε1n where ε1 is chosen sufficiently small. Key technical estimates are
stated in Section 4 and proved in Section 5. In Section 6, we complete the proof of
Theorem 1.1. In Section 7, we state and prove an abstract version, Theorem 7.1, of
our main result, giving an LLD for a general class of nonuniformly hyperbolic systems
modelled by Young towers with exponential tails.

Notation We use “big O” and � notation interchangeably, writing bn = O(cn)
or bn � cn if there are constants C > 0, n0 ≥ 1 such that bn ≤ Ccn for all n ≥
n0. As usual, bn = o(cn) means that limn→∞ bn/cn = 0 and bn ∼ cn means that
limn→∞ bn/cn = 1.

We write Br(x) to denote the open ball in Rd and C of radius r centred at x.

2 Setup

Define the d-torus Td = Rd/Zd. The Zd-periodic Lorentz gas describes the evolution

of a point particle moving in the Zd-periodic domain Q̃ contained either in the plane
R2 (if d = 2) or in the tube R × T (if d = 1). The collisions are assumed to be
elastic (equality of pre-collision and post-collision angles). The Lorentz gas map

T̃ : M̃ → M̃ is the collision map on the two-dimensional phase space (position in ∂Q̃

and unit velocity) given by M̃ = ∂Q̃× (−π/2, π/2).
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We assume that Q̃ is the lifted domain2 of Q = T2 \ Ω, where Ω ⊂ T2 is a finite
union of convex obstacles (scatterers) with C3 boundaries and nonvanishing curvature,
and pairwise disjoint boundaries. The dispersing billiard T : M → M corresponding
to the associated collision map is obtained from T̃ : M̃ → M̃ by quotienting. We
denote by µ the unique ergodic T -invariant smooth probability measure on M .

The Lorentz gas map T̃ : M̃ → M̃ can be viewed as a Zd-cover of the dispersing
billiard (T,M, µ) by the cell-change function κ : M → Zd. We assume that κ is
unbounded, so that we are in the case of infinite horizon. To avoid nondegeneracies
in the case d = 2, we require that there exist at least two nonparallel collisionless
trajectories in the interior of Q̃. (For d = 1, we require that there exists a collisionless
trajectory not orthogonal to the direction of the Z-cover, which is equivalent to our
assumption that κ : M → Z is unbounded.) Under these conditions, [22] proved
that κ satisfies a central limit theorem and local limit theorem with positive-definite
covariance matrix Σ ∈ Rd×d and nonstandard normalisation an =

√
n log n.

An important part of the proof of the results in [22] and of Theorem 1.1 is that
(T,M, µ) is modelled by a two-sided Young tower (f,∆, µ∆) with exponential tails [10,
23]. We briefly recall the notion of Young tower.3

Let (Y, µY ) be a probability space with an at most countable measurable parti-
tion α, and let F : Y → Y be an ergodic measure-preserving transformation. Define
the separation time s(y, y′) to be the least integer n ≥ 0 such that F ny and F ny′

lie in distinct partition elements in α. It is assumed that the partition α separates
trajectories, so s(y, y′) = ∞ if and only if y = y′; then dθ(y, y

′) = θs(y,y
′) is a metric

for θ ∈ (0, 1). We say that F is a (full-branch) Gibbs-Markov map if

• F |a : a→ Y is a measurable bijection for each a ∈ α, and

• There are constants C > 0, θ ∈ (0, 1) such that | log ξ(y)−log ξ(y′)| ≤ Cdθ(y, y
′)

for all y, y′ ∈ a, a ∈ α, where ξ = dµY
dµY ◦F

: Y → R.

Let F : Y → Y be a Gibbs-Markov map and let σ : Y → Z+ be constant on
partition elements such that µY (σ > n) = O(e−an) for some a > 0, We define the
one-sided Young tower with exponential tails ∆̄ = Y σ and tower map f̄ : ∆̄ → ∆̄ as
follows:

∆̄ = {(y, `) ∈ Y × Z : 0 ≤ ` ≤ σ(y)− 1}, f̄(y, `) =

{
(y, `+ 1) ` ≤ σ(y)− 2

(Fy, 0) ` = σ(y)− 1
.

Let σ̄ =
∫
Y
σ dµY . Then µ̄∆ = (µY ×counting)/σ̄ is an ergodic f̄ -invariant probability

measure on ∆̄.

2by the canonical projection from R2 (if d = 2) or from R× T (if d = 1) onto T2

3We suppress many standard details about Young towers, mentioning only those aspects required
for this paper. For instance, we suppress the fact that the projection π̄ : ∆ → ∆̄ corresponds in
practice to collapsing stable leaves.
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We say that (T,M, µ) is modelled by a Young tower (f,∆, µ∆) with exponen-
tial tails if there exist a one-sided Young tower (f̄ , ∆̄, µ̄∆) and measure-preserving
semiconjugacies

π : ∆→M, π̄ : ∆→ ∆̄.

Next, we recall some properties proved in [22] of the cell-change function κ : M →
Zd. First, there is a constant C > 0 such that µ(|κ| = n) ∼ Cn−3. Second, κ lifts
to a function κ̂ = κ ◦ π : ∆ → Zd that is constant on π̄−1(a × {`}) for each a ∈ α,
` ∈ {0, . . . , σ(a)− 1}. Hence κ̂ projects to an observable κ̄ : ∆̄→ Zd constant on the
partition elements a× {`} of ∆̄. In particular, µ̄∆(|κ̄| = n) = µ(|κ| = n) ∼ Cn−3.

Define
ψ : Y → R, ψ(y) =

∑σ−1
`=0 |κ̂(y, `)|.

Proposition 2.1 There exists C > 0 such that

µY (ψ > n) ≤ Cn−2 for all n ≥ 1.

In particular, ψ ∈ Lr(Y ) for all r < 2.

Proof This is proved in [22]. The main step [22, Lemma 16] uses the bound µ(|κ| >
n) = O(n−2) together with the structure of infinite horizon dispersing billiards (see
also [12, Lemma 5.1]). The bound for µY (ψ > n) then follows (see for instance [12,
Section 2])).

We end this subsection by recalling some results about transfer operators and
perturbed transfer operators on the one-sided tower. Let P : L1(∆̄) → L1(∆̄) be
the transfer operator for (f̄ , ∆̄, µ̄∆), so

∫
∆̄
Pv w dµ̄∆ =

∫
∆̄
v w ◦ f̄ dµ̄∆ for all v ∈ L1,

w ∈ L∞. By [4, Section 3.3], there is a Banach space B′ containing 1 and dense in L1

(called H in [4]) such that P : B′ → B′ is quasicompact. (The definition of B′ is not
used in this paper.) In particular, the intersection of the spectrum of P : B′ → B′ with
the unit circle consists of finitely many eigenvalues λ0, . . . , λq−1 of finite multiplicity
and these are the q’th roots of unity λk = e2πik/q. By ergodicity, these eigenvalues are
simple.

We consider the perturbed family of transfer operators

Pt : L1(∆̄)→ L1(∆̄), Ptv = P (eit·κ̄v), t ∈ Rd,

where · denotes the standard scalar product on Rd. Applying results of [17], it is
shown in [4, Section 3.3.2] that there exists δ > 0 so that t 7→ Pt : B′ → L3 is
continuous for t ∈ Bδ(0). Moreover, there are continuous families of simple isolated
eigenvalues t 7→ λk,t for Pt : B′ → B′ with λk,0 = λk and |λk,t| ≤ 1. Let t 7→ Πk,t

denote the corresponding spectral projections on B′. Then

P n
t =

q−1∑
k=0

λnk,tΠk,t +Qn
t , (2.1)
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where Qt = Pt
(
I − Π0,t − · · · − Πq−1,t

)
. By [17, Corollary 2], there exist C > 0 and

γ ∈ (0, 1) such that
sup

t∈Bδ(0)

‖Qn
t ‖B′ ≤ Cγn. (2.2)

Finally, by [22],
1− λ0,t ∼ Σt · t log(1/|t|) as t→ 0. (2.3)

3 The range n� log |N |.
In this section, we prove Theorem 1.1 in the range n� log |N |. This estimate holds
at the level of T : M → M and κ : M → Zd (without requiring consideration of
Young towers). Recall that d ∈ {1, 2}.

Lemma 3.1 Let ω > 0, q ≥ 1. There exists C > 0 such that

µ(κn = N) ≤ C
1

|N |2 nq
for all n ≥ 1, N ∈ Zd with n ≤ ω log |N |.

Proof We use |x| = maxj=1,...,d |xj| so that |κ| is integer-valued. Let

Sn =
n−1∑
j=0

|κ| ◦ T j, Mn = max
j=0,...,n−1

|κ| ◦ T j.

For q ≥ 1, define Jn = #{0 ≤ j ≤ n − 1 : |κ| ◦ T j ≥ |N |/nq}. Since q ≥ 1, the
constraint κn = N implies that Jn ≥ 1. Let ε > 0. We show that

µ
(
Mn > |N |1+ε

)
� n

|N |2+2ε
, µ

(
κn = N, Jn = 1

)
� 1

|N |2 nq−2
,

µ
(
Sn ≥ |N |, Mn ≤ |N |1+ε, Jn ≥ 2

)
� n3q+1

|N |2+ 1
45

.

Then µ(κn = N) � 1
|N |2 nq−2 since n � log |N |. The result follows since q ≥ 1 is

arbitrary.
First,

µ
(
Mn > |N |1+ε

)
≤

n−1∑
j=0

µ(|κ| ◦ T j > |N |1+ε) = nµ(|κ| > |N |1+ε)� n/|N |2+2ε .

Second, if Jn = 1, then there exists j ∈ {0, . . . , n− 1} such that |κ| ◦ T j ≥ |N |/nq
and

∑
0≤i≤n−1, i 6=j |κ| ◦ T i ≤ (n − 1)|N |/nq ≤ |N |/nq−1. Since κn = N , this means
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that |κ| ◦ T j ∈ (|N | − |N |/nq−1, |N |+ |N |/nq−1). Hence

µ
(
κn = N, Jn = 1

)
≤

n−1∑
j=0

µ
(∣∣|κ| ◦ T j − |N |∣∣ ≤ |N |/nq−1

)
= nµ

(∣∣|κ| − |N |∣∣ ≤ |N |/nq−1
)

= n
∑

|p−|N ||≤|N |/nq−1

µ(|κ| = p)� n
∑

|p−|N ||≤|N |/nq−1

1

p3

≤ n ·
(2|N |
nq−1

+ 3
)
·
( 2

|N |

)3

� 1

|N |2 nq−2
.

Finally, we estimate K = µ
(
Sn ≥ |N |, Mn ≤ |N |1+ε, Jn ≥ 2

)
. Since Jn ≥ 2, there

exist 0 ≤ i < j ≤ n− 1 such that |κ| ◦ T i ≥ |N |/nq and |κ| ◦ T j ≥ |N |/nq. It follows
that

K ≤
∑

0≤i<j≤n−1

µ
(
|N |1+ε ≥ |κ| ◦ T i ≥ |N |

nq
, |κ| ◦ T j ≥ |N |

nq

)
=

∑
0≤i<j≤n−1

µ
(
|N |1+ε ≥ |κ| ≥ |N |

nq
, |κ| ◦ T j−i ≥ |N |

nq

)
≤ n

∑
1≤r≤n−1

µ
(
|N |1+ε ≥ |κ| ≥ |N |

nq
, |κ| ◦ T r ≥ |N |

nq

)
= n

∑
|N |1+ε≥p≥|N |/nq

∑
1≤r≤n−1

µ
(
|κ| = p, |κ| ◦ T r ≥ |N |

nq

)
.

Note that the constraints p ≤ |N |1+ε, n ≤ ω log |N | imply that

|N |
nq
� |N |

(log |N |)q
≥ p1/(1+ε)

(log p1/(1+ε))q
,

so there is a constant c > 0 such that |N |
nq
≥ cp1/(1+2ε). Also, the constraints p ≥

|N |/nq, n ≤ ω log |N | imply that

n ≤ ω log |N | ≤ ω log(nqp) = qω log n+ ω log p,

so there is a constant ω′ > 0 such that n ≤ ω′ log p. Hence, we can choose ε > 0 so
that

K ≤ n
∑

p≥|N |/nq

∑
1≤r<ω′ log p

µ
(
|κ| = p, |κ| ◦ T r ≥ cp4/5

)
.

By [22, Lemma 16] (see also [12, Lemma 5.1]), there is a constant C > 0 such that

µ
(
|κ| = p, |κ| ◦ T r ≥ cp4/5

)
≤ Cp−2/45µ(|κ| = p)� p−(3+2/45)
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for 1 ≤ r < ω′ log p. Hence taking η = 1/45,

K � n
∑

p≥|N |/nq
(log p) p−(3+2/45) � n

∑
p≥|N |/nq

p−(3+η) � n1+q(2+η)

|N |2+η
≤ n3q+1

|N |2+η

completing the proof.

4 Key estimates on the one-sided tower

To prove Theorem 1.1, it remains by Lemma 3.1 to consider the range log |N | ≤ ε1n
where ε1 is chosen sufficiently small. Since µ(κn = N) = µ̄∆(κ̄n = N), it suffices to
work on the one-sided tower ∆̄. To simplify the notation, we write (f,∆, µ∆) for the
one-sided tower map, and κ : ∆ → Zd for the free flight function on the one-sided
tower. Since the free flight function on M has mean zero (by time-reversibility of the
billiard map), it follows that

∫
∆
κ dµ∆ = 0.

To apply the method from [18], we require the following lemmas concerning
the leading eigenvalues λk,t for Pt and their corresponding spectral projections Πk,t

in (2.1). As clarified in [19, Lemma 5.1], the derivative of Pt at t = 0 is not a bounded
operator from B′ → L1. In Section 5, we work with the Banach space B ⊂ B′ ∩ L∞
consisting of dynamically Hölder observables and show that we have sufficient control
on Πt : B → L1. Let ∂j = ∂tj for j = 1, . . . , d. For t, h ∈ Rd, b > 0, set

Mb(t, h) = |h|L(h)
{

1 + L(h) |t|2L(t) + |h|−b|t|2L(t)L(h)2 |t|4L(t)2
}

where L(t) = log(1/|t|).

Lemma 4.1 Let j ∈ {1, . . . , d}, k ∈ {0, . . . , q − 1}. There exists δ > 0 such that
t 7→ λk,t and t 7→ Πk,t : B → L1 are C1 on Bδ(0). Moreover, ∂jλk,0 = 0.

Furthermore, there exist C > 0, δ > 0, b > 0 such that for all t, h ∈ Bδ(0),

|∂jλk,t+h − ∂jλk,t| ≤ CMb(t, h), ‖∂jΠk,t+h − ∂jΠk,t‖B7→L1 ≤ CMb(t, h).

Lemma 4.2 λk,t − λk ∼ −λk Σt · t L(t) as t→ 0 for each k = 0, . . . , q − 1.

Corollary 4.3 Let β ≥ 0, r ∈ R, k = 0, . . . , q − 1. There exist C > 0, δ > 0 such
that ∫

B3δ(0)

|t|βL(t)r|λk,t|n dt ≤ C
(log n)r

ad+β
n

for all n ≥ 1.

Proof By Lemma 4.2, |λk,t| − 1 ∼ −Σt · t L(t) and hence log |λk,t| = −Σt · t L(t)(1 +
o(1)). Since Σ is positive-definite, there exists c > 0 such that log |λk,t| ≤ −c|t|2L(t).
The result now follows from [18, Lemma 2.3]. (The argument in [18] uses that an
satisfies n log an ∼ a2

n, so an ∼ (1
2
n log n)1/2, which agrees with the definition of an

used here up to an inconsequential constant factor.)
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5 Proof of Lemmas 4.1 and 4.2

This section contains the proof of the key estimates Lemma 4.1 and 4.2 concerning
the leading eigenvalues λk,t and spectral projections Πk,t for the perturbed transfer
operator Pt. This represents the main technical advance of this paper. The methods
of [17] give log-Lipschitz control which is insufficient for our purposes. In [19], it was
shown how to get almost C2 control at t = 0; here we show how to get almost C2

control in a full neighbourhood of 0. Our method is to consider leading eigenvalues τk,t
and spectral projections πk,t at the level of the base Y of the tower ∆. The uniformity
of the dynamics on Y enables strong control on τk,t and πk,t and this control lifts via
the operator renewal theory of [14, 15, 20] to the Young tower ∆. Using [17], we
are able to identify the lifted quantities with λk,t and Πk,t thereby transferring the
required regularity properties.

In Subsection 5.1, we consider estimates for renewal operators on the base Y of
the tower. Significantly more refined estimates are obtained in Subsection 5.2. These
estimates enable us in 5.3 to obtain the required strong control on τk,t and πk,t. In
Subsection 5.4, we show how to transfer this control to λt and Πt.

We continue to work on the one-sided tower ∆. Fix θ ∈ (0, 1) and recall the
definition of the metric dθ on Y from Section 2. We define the Banach space B = B(∆)
of dynamically Hölder observables v : ∆→ R with ‖v‖B <∞, where

‖v‖B = sup
(y,`)∈∆

|v(y, `)|+ sup
(y,`)6=(y′,`)

|v(y, `)− v(y′, `)|
dθ(y, y′)

.

In this section, we often write B(∆) and L1(∆) for the function spaces on the
Young tower ∆, to distinguish them from related function spaces defined on the
base Y .

5.1 Renewal operators

Let R : L1(Y ) → L1(Y ) denote the transfer operator corresponding to the Gibbs-
Markov map F : Y → Y , so

∫
Y
Rv w dµY =

∫
Y
v w ◦ F dµY for all v ∈ L1, w ∈ L∞.

For y ∈ Y and a ∈ α, let ya denote the unique preimage ya ∈ a such that Fya = y.
Recall that (Rv)(y) =

∑
aξ(ya)v(ya) and that there is a constant C > 0 such that

0 < ξ(ya) ≤ CµY (a), |ξ(ya)− ξ(y′a)| ≤ CµY (a)dθ(y, y
′), (5.1)

for all y, y′ ∈ Y , a ∈ α. (Standard references for properties of the transfer operator
R for a Gibbs-Markov map include [1, 2].)

Define the Banach space B1(Y ) of observables v : Y → R with ‖v‖B1(Y ) < ∞
where ‖v‖B1(Y ) = ‖v‖∞ + supy 6=y′ |v(y)− v(y′)|/dθ(y, y′).

Proposition 5.1 There exists C > 0 such that ‖R(uv)‖B1(Y ) ≤ C‖u‖1‖v‖B1(Y ) for
all u ∈ L1(Y ) constant on partition elements and all v ∈ B1(Y ).
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Proof Since u is constant on partition elements, we write u(a) = u|a. By (5.1),

‖R(uv)‖∞ �
∑

aµY (a)|u(a)| dµY ‖v‖∞ = ‖u‖1‖v‖∞.

Next, let y, y′ ∈ Y . Then (R(uv))(y)− (R(uv))(y′) = I1 + I2 where

I1 =
∑

a(ξ(ya)− ξ(y
′
a))u(a)v(ya), I2 =

∑
aξ(y

′
a)u(a)(v(ya)− v(y′a)).

By (5.1),

|I1| �
∑

aµY (a)dθ(y, y
′)|u(a)|‖v‖∞ = ‖u‖1‖v‖∞ dθ(y, y′),

|I2| �
∑

aµY (a)|u(a)|‖v‖B1(Y ) dθ(ya, y
′
a) ≤ ‖u‖1‖v‖B1(Y ) dθ(y, y

′).

Hence |(R(uv))(y)− (R(uv))(y′)| � ‖u‖1‖v‖B1(Y ) dθ(y, y
′), and the result follows.

For z ∈ C with |z| ≤ 1 and t ∈ Rd, define

R̂(z, t) : L1(Y )→ L1(Y ), R̂(z, t)v = R(eit·κσzσv) =
∞∑
n=1

znRt,nv

where Rt,nv = R(1{σ=n}e
it·κσv) and κσ(y) =

∑σ(y)−1
`=0 κ(y, `).

We now show that z 7→ R̂(z, t) extends analytically to a neighbourhood of the
unit disk when restricted to B1(Y ), and we obtain properties of this extension. Recall

that ψ(y) =
∑σ(y)−1

`=0 |κ(y, `)|. By Proposition 2.1, κσ, ψ ∈ Lr(Y ) for all r < 2.

Proposition 5.2 There exists δ > 0 such that, regarded as operators on B1(Y ),

(a) z 7→ R̂(z, t) is analytic on B1+δ(0) for all t ∈ Rd;

(b) (z, t) 7→ (∂mz R̂)(z, t) is C1 on B1+δ(0)× Rd for all m ≥ 0;

(c) z 7→ (∂jR̂)(z, t) is C1 on B1+δ(0) uniformly in t ∈ Rd for j = 1, . . . , d.

Proof It suffices to show that there exist a > 0, C > 0 such that

‖Rt,n‖B1(Y ) ≤ Ce−an, ‖∂jRt,n‖B1(Y ) ≤ Ce−an,

for all t ∈ Rd, j = 1, . . . , d, n ≥ 1.
Since κσ ∈ Lr(Y ) for all r < 2 and σ has exponential tails, there exists a > 0 such

that ‖1{σ=n}κσ‖1 � e−an.
Note that σ and κσ are constant on partition elements. By Proposition 5.1,

‖Rt,n‖B1(Y ) � ‖1{σ=n}‖1. Also, ‖∂jRt,n‖B1(Y ) � ‖1{σ=n}κσ‖1 completing the proof.

For z ∈ C with |z| ≤ 1 and t ∈ Rd, define

Â(z, t) : L1(Y )→ L1(∆), Â(z, t)v =
∞∑
n=1

znAt,nv

where (At,nv)(y, `) = 1{`=n}(P
n
t v)(y, `) = 1{`=n}e

it·κn(y,0)v(y).
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Proposition 5.3 There exists δ > 0 such that regarded as operators from L∞(Y ) to
L1(∆),

(a) z 7→ Â(z, t) is analytic on B1+δ(0) for all t ∈ Rd;

(b) (z, t) 7→ (∂zÂ)(z, t) is C1 on B1+δ(0)× Rd.

Proof Let ‖ ‖ denote ‖ ‖L∞(Y )7→L1(∆). As in the proof of Proposition 5.2, it suffices
to obtain exponential estimates for ‖At,n‖ and ‖∂jAt,n‖.

There exists a > 0 such that ‖1{σ>n}ψ‖L1(Y ) = O(e−an). Now (At,nv)(y, `) =
1{`=n}e

it·κn(y)v(y) so

‖At,n‖ ≤
∫

∆

1{`=n} dµ∆ ≤ ‖1{σ>n}‖L1(Y ).

Similarly, ‖∂jAt,n‖ ≤
∫

∆
1{`=n}ψ dµ∆ ≤ ‖1{σ>n}ψ‖L1(Y ) completing the proof.

For z ∈ C with |z| ≤ 1 and t ∈ Rd, define

B̂(z, t) : L1(∆)→ L1(Y ), B̂(z, t)v =
∞∑
n=1

znBt,nv

where

Bt,nv = 1Y P
n
t (1Dnv), Dn = {(y, σ(y)− n) : y ∈ Y, σ(y) > n}.

Proposition 5.4 There exists δ > 0 such that regarded as operators from B(∆) to
B1(Y ),

(a) z 7→ B̂(z, t) is analytic on B1+δ(0) for all t ∈ Rd;

(b) (z, t) 7→ (∂zB̂)(z, t) is C1 on B1+δ(0)× Rd.

Proof Let ‖ ‖ denote ‖ ‖B(∆)7→B1(Y ). Again, it suffices to obtain exponential esti-
mates for ‖Bt,n‖ and ‖∂jBt,n‖.

We can write Bt,nv = R(ut,nvn) where

ut,n(y) = 1{σ(y)>n}e
it·κn(y,σ(y)−n), vn(y) = 1{σ(y)>n}v(y, σ(y)− n).

Note that ut,n is constant on partition elements and ‖vn‖B1(Y ) ≤ ‖v‖B. Also, there
exists a > 0 such that ‖1{σ>n}ψ‖L1(Y ) = O(e−an).

By Proposition 5.1,

‖Bt,n‖ � ‖ut,n‖L1(Y ) = ‖1{σ>n}‖L1(Y ).

Similarly, ‖∂jBt,n‖ � ‖1{σ>n}ψ‖L1(Y ) completing the proof.
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For z ∈ C with |z| ≤ 1 and t ∈ Rd, define

Ê(z, t) : B(∆)→ L1(∆), Ê(z, t)v =
∞∑
n=1

znEt,nv

where (Et,nv)(y, `) = 1{`>n}(P
n
t v)(y, `).

Proposition 5.5 There exists δ > 0 such that regarded as operators from B(∆) to
L1(∆),

(a) z 7→ Ê(z, t) is analytic on B1+δ(0) for all t ∈ Rd;

(b) (z, t) 7→ Ê(z, t) is C0 on B1+δ(0)× Rd.

Proof Let ‖ ‖ denote ‖ ‖B(∆)7→L1(Y ). It suffices to obtain an exponential estimate
for ‖Et,n‖. But (Et,nv)(y, `) = 1{`>n}e

it·κn(y,`−n)v(y, `− n), so

‖Et,n‖ ≤
∫

∆

1{`>n} dµ∆ ≤ ‖σ 1{σ>n}‖L1(Y ) � e−εn

as required.

5.2 Further estimates

In this subsection, we obtain more refined estimates on the renewal operators from
Subsection 5.1, exploiting the fact (Proposition 2.1) that µY (ψ > n) = O(n−2).

Proposition 5.6 There exist C > 0, δ > 0, b > 0 such that

‖∂j∂zR̂(z, t+ h)− ∂j∂zR̂(z, t)‖B1(Y ) ≤ C|h|L(h)2
{

1 + |h|−b log |z|L(h)(|z| − 1)
}
,

for all t, h ∈ Bδ(0), all z ∈ C with 1 ≤ |z| ≤ 1 + δ, and all j = 1, . . . , d.

Proof In this argument, we take |x| = maxj=1,...,d |xj| on Rd so that ψ is integer-

valued. Now, ∂j∂zR̂(z, t)v = iR((κσ)je
it·κσσzσ−1v). By Proposition 5.1,

‖∂j∂zR̂(z, t+ h)− ∂j∂zR̂(z, t)‖B1(Y ) �
∫
Y

|κσ||eih·κσ − 1|σ|z|σ dµY

≤ 2

∫
Y

ψmin{|h|ψ, 1}σ|z|σ dµY = 2
∞∑

m,n=1

rm,n

where
rm,n = µY

(
ψ = m,σ = n

)
mnmin{|h|m, 1}|z|n.
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Recall that µY (σ = n) = O(e−an) for some a > 0. Fix a1 ∈ (0, a) and δ > 0 so that
e−a(1 + δ) < e−a1 . Then

rm,n � |h|m2ne−an|z|n � |h|m2e−a1n.

Fixing b > 0 sufficiently large,∑
n>b logm

rm,n � |h|m2e−a1b logm(1− e−a1)−1 � |h|m2m−a1b ≤ |h|m−2.

Hence
∑∞

m=1

∑
n>b logm rm,n � |h|.

It remains to consider the terms with n ≤ b logm. Now

|z|n = 1 + (|z|n − 1) ≤ 1 + n|z|n−1(|z| − 1)� 1 + (logm)mb log |z|(|z| − 1).

Hence

rm,n � µY (ψ = m,σ = n)m(logm) min
{
|h|m, 1}{1 + (logm)mb log |z|(|z| − 1)

}
.

and so∑
n≤b logm

rm,n � µY (ψ = m)mmin
{
|h|m, 1}{logm+ (logm)2mb log |z|(|z| − 1)

}
.

Let K = [1/|h|] ≥ 1. Then for m ≤ K,∑
n≤b logm

rm,n � µY (ψ = m)|h|m2{logK + (logK)2Kb log |z|(|z| − 1)
}
,

and so by resummation,

K∑
m=1

∑
n≤b logm

rm,n � |h|
K∑
m=1

µY (ψ = m)m2{logK + (logK)2Kb log |z|(|z| − 1)
}

� |h|(logK)2 + |h|(logK)3Kb log |z|(|z| − 1)

� |h|L(h)2
{

1 + |h|−b log |z|L(h)(|z| − 1)
}
. (5.2)

Next,∑
m>K

∑
n≤b logm

rm,n �
∑
m>K

µY (ψ = m)m(logm)

+ (|z| − 1)
∑
m>K

µY (ψ = m)m1+b log |z|(logm)2.
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Now,∑
m>K

µY (ψ = m)m1+b log |z|(logm)2

=
∑
m>K

µY (ψ ≥ m)m1+b log |z|(logm)2 −
∑
m>K

µY (ψ > m)m1+b log |z|(logm)2

≤ µY (ψ > K)K1+b log |z|(logK)2

+
∑
m>K

µY (ψ ≥ m)(m1+b log |z|(logm)2 − (m− 1)1+b log |z|(log(m− 1))2

� Kb log |z|−1(logK)2 + (1 + b log |z|)
∑
m>K

µY (ψ ≥ m)mb log |z|(logm)2

� |h|1−b log |z|L(h)2 +
∑
m>K

mb log |z|−2(logm)2.

By Karamata,∑
m>K

mb log |z|−2(logm)2 � (1− b log |z|)−1Kb log |z|−1(logK)2 � |h|1−b log |z|L(h)2.

Hence ∑
m>K

∑
n≤b logm

rm,n � |h|L(h)
{

1 + |h|−b log |z|L(h)(|z| − 1)
}
.

This combined with (5.2) gives the desired estimate for
∑

m≥1

∑
n≤b logm rm,n, com-

pleting the proof.

Remark 5.7 Similarly,

‖∂jR̂(z, t+ h)− ∂jR̂(z, t)‖B1(Y ) ≤ C|h|L(h)
{

1 + |h|−b log |z|L(h)(|z| − 1)
}
.

Proposition 5.8 There exist C > 0, δ > 0, b > 0 such that

‖∂jÂ(z, t+ h)− ∂jÂ(z, t)‖B1(Y )7→L1(∆) ≤ C|h|L(h)
{

1 + |h|−b log |z|L(h)(|z| − 1)
}
,

for all t, h ∈ Bδ(0), all z ∈ C with 1 ≤ |z| ≤ 1 + δ, and all j = 1, . . . , d.

Proof We have

(Â(z, t)v)(y, `) =
∞∑
n=1

zn1{`=n}e
it·κn(y,0)v(y) = z`eit·κ`(y,0)v(y).

Hence

‖∂jÂ(z, t+ h)− ∂jÂ(z, t)‖B1(Y ) 7→L1(∆) �
∥∥|z|σψmin{|h|ψ, 1}

∥∥
L1(Y )

=
∞∑

m,n=1

µY
(
ψ = m,σ = n

)
m|z|n min{|h|m, 1}.
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We now proceed as in the proof of Proposition 5.6, except that there is one less factor
of n (hence one less factor of L(h)).

Proposition 5.9 There exist C > 0, δ > 0, b > 0 such that

‖∂jB̂(z, t+ h)− ∂jB̂(z, t)‖B(∆)7→B1(Y ) ≤ C|h|L(h)
{

1 + |h|−b log |z|L(h)(|z| − 1)
}
,

for all t, h ∈ Bδ(0), all z ∈ C with 1 ≤ |z| ≤ 1 + δ, and all j = 1, . . . , d,

Proof We have

‖∂jB̂(z, t+ h)− ∂jB̂(z, t)‖B(∆) 7→B1(Y ) �
∞∑
n=1

|z|n‖1{σ>n}ψmin{|h|ψ, 1}‖L1(Y ).

=
∞∑

m,n=1

µY
(
ψ = m,σ > n

)
m|z|n min{|h|m, 1}.

This is the same as in Proposition 5.8 except that σ = n is replaced by σ > n (which
makes no difference given the exponential tails).

5.3 Spectral properties for R̂(z, t)

In this subsection, we analyse the leading eigenvalues and spectral projections for
R̂(z, t). Throughout we make use of the fact that λσk = 1 (since σ is divisible by q and

λk is a q’th root of unity). In particular, R̂(λk, 0) = R̂(1, 0) = R for k = 0, . . . , q − 1.

Proposition 5.10 Let z ∈ C, |z| ≤ 1. Then 1 ∈ spec R̂(z, 0) : B1(Y ) → B1(Y ) if
and only if zq = 1 in which case 1 is a simple eigenvalue with eigenfunction 1.

Proof Similar arguments can be found for example in [14, Lemma 6.7] and [20,
Section 5.2]. Hence we just sketch the proof.

It is easily seen that the spectral radius of R̂(z, 0) is no larger than |z|, so we can
restrict to the case |z| = 1.

By [1, 2], the essential spectral radius of R̂(1, 0) is strictly less than 1. This
property extends to general |z| = 1 as follows: In the notation of the proof of Propo-
sition 5.1,

|R(zσv)(y)−R(zσv)(y′)| ≤ C
∑

aµY (a)dθ(y, y
′)‖v‖∞ +

∑
aξ(y

′
a)‖v‖B1(Y )dθ(ya, y

′
a)

= Cdθ(y, y
′)‖v‖∞ + ‖v‖B1(Y )θdθ(y, y

′).

Hence, we obtain a Lasota-Yorke (or Doeblin-Fortet) inequality ‖R̂(z, 0)v‖B1(Y ) ≤
(C + 1)‖v‖∞ + θ‖v‖B1(Y ) and it follows that the essential spectral radius of R̂(z, 0) is
at most θ.
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In particular, 1 ∈ spec R̂(z, 0) if and only if 1 is an eigenvalue. By ergodicity, 1 is

a simple eigenvalue for R̂(1, 0) with eigenfunction 1, hence this also holds for R̂(z, 0)
when zq = 1.

Finally, suppose that 1 is an eigenvalue for R̂(z, 0) for some |z| = 1, with eigen-
function v ∈ B1(Y ). Define ṽ : ∆ → C, ṽ(y, `) = z`v(y) (note that ṽ ∈ B). Then,

ṽ(·, 0) = v = R̂(z, 0)v = z(P ṽ)(·, 0) and, for ` ≥ 1, (P ṽ)(y, `) = ṽ(y, `−1) = ṽ(y, `)/z.
This implies that z−1 is an eigenvalue for the transfer operator P which, as noted in
Section 2, is the case only for zq = 1.

By Proposition 5.2(b), for k = 0, . . . , q − 1, the eigenvalue 1 for R̂(λk, 0) extends
to a C1 family of simple isolated eigenvalues (z, t) 7→ τk(z, t) on Bδ(λk) × Bδ(0), for
some δ > 0, with τk(λk, 0) = 1. Let σ̄ =

∫
Y
σ dµY . Recall that L(t) = log(1/|t|).

Proposition 5.11 Let 0 ≤ k, k′ ≤ q−1. There are constants C > 0, δ > 0 such that

(a) |τk(z, 0)− 1− λ−1
k σ̄(z − λk)| ≤ C|z − λk|2 for z ∈ Bδ(λk);

(b) |τk(λk, t)− 1| ≤ C|t|2L(t) for t ∈ Bδ(0);

(c) |τk(λk, t)− τk′(λk′ , t)| ≤ C|t|2 for all t ∈ Bδ(0).

Proof Let vk(z, t) denote the C1 families of eigenfunctions corresponding to the
eigenvalues τk(z, t), with vk(λk, 0) = 1. Normalise so that∫

Y

R̂(λk, 0)vk(z, t) dµY =

∫
Y

vk(z, t) dµY = 1

for (z, t) ∈ Bδ(λk)×Bδ(0). Then

τk(z, t) =

∫
Y

R̂(z, t)vk(z, t) dµY = Ik(z, t) + Jk(z, t)

where

Ik(z, t) =

∫
Y

R̂(z, t)1 dµY =

∫
Y

zσeit·κσ dµY ,

Jk(z, t) =

∫
Y

(R̂(z, t)− R̂(λk, 0))(vk(z, t)− vk(λk, 0)) dµY .

Since R̂ and vk are C1, it follows that Jk(z, 0) = O(|z − λk|2) and Jk(λk, t) =
O(|t|2). Hence it suffices to consider the first term Ik.

For t = 0, using that λσk = 1,

Ik(z, 0) =

∫
Y

(λk + (z − λk))σ dµY =

∫
Y

(1 + λ−1
k (z − λk))σ dµY

= 1 + λ−1
k σ̄(z − λk) +O(|z − λk|)2
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yielding part (a).
Recall (see the beginning of Section 4) that

∫
∆
κ dµ∆ = 0 and that

∫
Y
σ dµY =

σ̄ <∞. Hence ∫
Y

κσ dµY =

∫
Y

σ(y)−1∑
`=0

κ(y, `) dµY (y) = σ̄

∫
∆

κ dµ∆ = 0.

It follows that

Ik(λk, t) = 1 +

∫
Y

(eit·κσ − 1− it · κσ) dµY ,

so

|Ik(λk, t)− 1| ≤
∫
Y

|eit·κσ − 1− it · κσ| dµY ≤ 2

∫
Y

min{|t|2ψ2, |t|ψ} dµY

≤ 2|t|2
∑

0≤m≤1/|t|

m2µY (ψ = m) + 2|t|
∑

m>1/|t|

mµY (ψ = m).

Using the tail estimate µY (ψ > n) = O(n−2) and resummation we obtain |Ik(λk, t)−
1| � |t|2L(t) proving (b). Finally, Ik(λk, t) is independent of k yielding part (c).

It follows from Proposition 5.11(a) that (∂zτk)(λk, 0) = λ−1
k σ̄ 6= 0. By the implicit

function theorem, we can solve uniquely the equation τk(z, t) = 1 near (λk, 0) to
obtain a C1 solution z = gk(t), gk : Bδ(0)→ C, with gk(0) = λk.

Recall that Mb(t, h) = |h|L(h)
{

1 + L(h) |t|2L(t) + |h|−b|t|2L(t)L(h)2 |t|4L(t)2
}
.

Corollary 5.12 There exist C > 0, δ > 0, b > 0 such that for all t, h ∈ Bδ(0),
j = 1, . . . , d, k = 0, . . . , q − 1,

(a) |gk(t)− λk| ≤ C|t|2L(t);

(b) |∂jgk(t+ h)− ∂jgk(t)| ≤ CMb(t, h).

Proof Write
τk(z, t) = τk(λk, t) + (z − λk)ck(z, t). (5.3)

It follows from Proposition 5.2(b) that (z, t) 7→ ∂zτk(z, t) is C1. Introducing momen-
tarily the function ζ(s) = τk(λk + s(z − λk), t),

ck(z, t) = (z − λk)−1

∫ 1

0

ζ ′(s) ds =

∫ 1

0

(∂zτk)(λk + s(z − λk), t) ds. (5.4)

We deduce that (z, t) 7→ ck(z, t) is C1. By Proposition 5.11(a), ck(λk, 0) = λ−1
k σ̄ 6= 0

and we can shrink δ if necessary so that ck(λk, t) is bounded away from zero for
t ∈ Bδ(0).
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Solving τk(z, t) = 1,

gk(t)− λk = z − λk ∼ ck(λk, t)
−1(1− τk(λk, t)). (5.5)

The spectral radius of R̂(λk, t) is at most 1 for all t, so τk(λk, t) ∈ B1(0). Hence
|gk(t)| ≥ 1 for all t. By Proposition 5.11(b),

|gk(t)− λk| ∼ |ck(λk, t)|−1|1− τk(λk, t)| � |t|2L(t),

proving part (a).
Implicit differentiation of τk(gk(t), t) ≡ 1 yields

∂jgk(t) = −∂jτk(gk(t), t)/∂zτk(gk(t), t).

By smoothness of ∂zτk and g, the denominator t 7→ ∂zτk(gk(t), t) is C1. We claim
that

|∂jτk(gk(t+ h), t+ h)− ∂jτk(gk(t), t)| �Mb(t, h) (5.6)

from which part (b) follows.
It follows from Proposition 5.2(c) that z 7→ ∂jτk(z, t) is C1 uniformly in t. Also,

g is C1, so |∂jτk(gk(t+ h), t+ h)− ∂jτk(gk(t), t+ h)| � |h|. By (5.3),

|∂jτk(z, t+ h)−∂jτk(z, t)|
≤ |∂jτk(λk, t+ h)− ∂jτk(λk, t)|+ |z − λk| |∂jck(z, t+ h)− ∂jck(z, t)|.

By Remark 5.7, |∂jτk(λk, t+h)−∂jτk(λk, t)| � |h|L(h). By (5.4) and Proposition 5.6,

|∂jck(z, t+ h)− ∂jck(z, t)| � |h|L(h)2
{

1 + |h|−b log |z|L(h)|z − λk|
}
.

Hence

|∂jτk(z, t+ h)− ∂jτk(z, t)| � |h|L(h) + |h|L(h)2|z − λk|+ |h|1−b log |z|L(h)3|z − λk|2,

for |z| ≥ 1. But |gk(t)| ≥ 1, so by part (a),

|∂jτk(gk(t), t+ h)− ∂jτk(gk(t), t)| �Mb(t, h)

completing the proof of the claim.

Let πk(z, t) : B1(Y ) → B1(Y ) denote the spectral projection corresponding to
τk(z, t).

Lemma 5.13 There exists δ > 0 such that

(1− τk(z, t))−1πk(z, t) = (gk(t)− z)−1π̃k(t) +Hk(z, t) (5.7)

where π̃k(t), Hk(z, t) : B1(Y )→ B1(Y ) are families of bounded operators satisfying
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(a) π̃k is C1 on Bδ(0);

(b) Hk is C0 on Bδ(λk)×Bδ(0);

(c) z 7→ Hk(z, t) is analytic on Bδ(λk) for t ∈ Bδ(0).

Moreover, there are constants C > 0, b > 0 such that |∂jπ̃k(t + h) − ∂jπ̃k(t)| ≤
CMb(t, h) for t, h ∈ Bδ(0), j = 1 . . . , d.

Proof Fix j and k. Throughout this proof, we use the following abbreviations (for
r ≥ 0):

(a) “Cr uniformly in z” means Cr on Bδ(0) uniformly in z ∈ Bδ(λk);

(b) “jointly Cr” means Cr on Bδ(λk)×Bδ(0);

(c) “analytic” means analytic on Bδ(λk) for all t ∈ Bδ(0).

Step 1 Write
πk(z, t) = πk(gk(t), t) + (gk(t)− z)H̃(z, t).

It follows from Proposition 5.2(a) that πk is analytic and hence that H̃ is analytic.
Next, ∂j(πk(gk(t), t)) = G1(t) +G2(t) where

G1(t) = (∂zπk)(gk(t), t) · ∂jgk(t), G2(t) = (∂jπk)(gk(t), t).

It follows from Proposition 5.2(b) that ∂zπk is jointly C1. Also, gk is C1. Hence, by
Corollary 5.12(b),

|G1(t+ h)−G1(t)| � |h|+ |∂jgk(t+ h)− ∂jgk(t)| �Mb(t, h).

Next, we note that G2, with πk changed to τk, was estimated in (5.6), and the identical
argument shows that |G2(t+ h)−G2(t)| �Mb(t, h). Hence

|∂j(πk(gk(t+ h), t+ h))− ∂j(πk(gk(t), t))| �Mb(t, h).

Writing H̃(z, t) =
∫ 1

0
(∂zπk)((1− s)z+ sgk(t), t) ds, we obtain that H̃ is jointly C0.

Step 2 Write

1− τk(z, t) = τk(gk(t), t)− τk(z, t) = (gk(t)− z)β(z, t).

Again, it follows from Proposition 5.2(a) that τk is analytic and hence that β is
analytic. Also, it follows from Proposition 5.2(b) that ∂2

zτk is jointly C1. Writing

β(z, t) =
∫ 1

0
∂zτk((1− s)z + sgk(t), t) ds, we obtain that ∂zβ is jointly C1. By Propo-

sition 5.6,
|∂jβ(gk(t+ h), t+ h)− ∂jβ(gk(t), t)| �Mb(t, h).
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By Proposition 5.11(a), |β(λk, 0)| = σ̄ > 0 and we can shrink δ if necessary so
that β is bounded away from zero on Bδ(λk)× Bδ(0). Let β̃(z, t) = β(z, t)−1. Then,
we can write

(1− τk(z, t))−1 = (gk(t)− z)−1
{
β̃(gk(t), t) + (gk(t)− z)q(z, t)

}
,

where q is analytic and jointly C0 and

|∂jβ̃(gk(t+ h), t+ h)− ∂jβ̃(gk(t), t)| �Mb(t, h).

Step 3 Combining Steps 1 and 2, we obtain (5.7) with

π̃k(t) = β̃(gk(t), t)πk(gk(t), t),

Hk(z, t) = q(z, t)πk(gk(t), t) + β̃(gk(t), t)H̃(z, t) + (gk(t)− z)q(z, t)H̃(z, t).

The desired regularity properties of π̃k and Hk follow immediately from the regularity
properties established in Steps 1 and 2.

Corollary 5.14 There exists δ > 0 such that

(I − R̂(z, t))−1 =

q−1∑
k=0

(gk(t)− z)−1π̃k(t) + Ĥ(z, t), (z, t) ∈ B1+δ(0)×Bδ(0),

where π̃k is as in Lemma 5.13 and Ĥ(z, t) : B1(Y ) → B1(Y ) is a family of bounded
operators satisfying

(a) Ĥ is C0 on B1+δ(0)×Bδ(0);

(b) z 7→ Ĥ(z, t) is analytic on B1+δ(0) for t ∈ Bδ(0).

Proof Let t ∈ Bδ(0). For z ∈ Bδ(λk), the spectrum of R̂(z, t) is bounded uniformly
away from 1 except for the simple eigenvalue τk(z, t) near 1. Hence

(I − R̂)−1 = (1− τk)−1πk + Ĥk,0 on Bδ(λk)×Bδ(0),

where z 7→ Ĥk,0(z, t) is analytic on Bδ(λk) for t ∈ Bδ(0) and Ĥk,0 is C0 on Bδ(λk)×
Bδ(0). Applying Lemma 5.13 and relabelling,

(I − R̂(z, t))−1 = (gk(t)− z)−1π̃k(t) + Ĥk(z, t).

In addition, z 7→ (I − R̂(z, t))−1 is analytic on B1+δ(0) \
⋃
k Bδ(λk) and (z, t) 7→

(I − R̂(z, t))−1 is C0 on (B1+δ(0) \
⋃
k Bδ(λk))×Bδ(0). Hence, we obtain the desired

result on B1+δ(0)×Bδ(0).
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5.4 Completion of the proof of Lemmas 4.1 and 4.2

Define for t ∈ Rd, n ≥ 1,

Tt,n : L1(Y )→ L1(Y ), Tt,nv = 1Y P
n
t (1Y v).

For z ∈ C, t ∈ Rd, define P̂ (z, t) =
∑∞

n=0 z
nP n

t , T̂ (z, t) =
∑∞

n=0 z
nT nt . By [20], we

have the renewal equation T̂ = (I − R̂)−1. Also, by [15], P̂ = ÂT̂ B̂ + Ê.
Throughout, we work on the domain B1+δ(0) × Bδ(0) ⊂ C × Rd. Applying the

renewal equation, Corollary 5.14 becomes

T̂ (z, t) =

q−1∑
k=0

(gk(t)− z)−1π̃k(t) + Ĥ(z, t), (5.8)

where π̃k, Ĥ : B1(Y )→ B1(Y ) are families of bounded operators satisfying: π̃k is C1;

Ĥ is C0; z 7→ Ĥ(z, t) is analytic for all t. Moreover, |∂jπ̃k(t+h)−∂jπ̃k(t)| �Mb(t, h).
The same argument as in Step 1 of Lemma 5.13 (using Propositions 5.4 and 5.3

instead of Proposition 5.2) shows that

Â(z, t) = Ãk(t) + (gk(t)− z)Ĥk,1(z, t), Ãk(t) = Â(gk(t), t), (5.9)

B̂(z, t) = B̃k(t) + (gk(t)− z)Ĥk,2(z, t), B̃k(t) = B̂(gk(t), t), (5.10)

where Ãk, Ĥk,1 : B1(Y ) → L1(∆) and B̃k, Ĥk,2 : B(∆) → B1(Y ) are families of

bounded operators satisfying: Ãk, B̃k are C1; Ĥk,r is C0; z 7→ Ĥk,r(z, t) is analytic
for all t; for r = 1, 2. Moreover, by Propositions 5.8 and 5.9,

‖∂jÃk(t+ h)− ∂jÃk(t)‖B(Y1)7→L1(∆) �Mb(t, h),

‖∂jB̃k(t+ h)− ∂jB̃k(t)‖B(∆) 7→B1(Y ) �Mb(t, h).

Combining (5.8), (5.9) and (5.10) together with Proposition 5.5,

P̂ (z, t) = Â(z, t)T̂ (z, t)B̂(z, t) + Ê(z, t) =

q−1∑
k=0

(
(gk(t)− z)−1π̃k,1(t) + Ĥk,3(z, t)

)
,

where π̃k,1, Ĥk,3 : B(∆)→ L1(∆) are families of bounded operators satisfying: π̃k,1 is

C1; Ĥk,3 is C0; z 7→ Ĥk,3(z, t) is analytic for all t; and |∂jπ̃k,1(t + h) − ∂jπ̃k,1(t)| �
Mb(t, h).

Let ‖ ‖ denote ‖ ‖B(∆) 7→L1(∆). An immediate consequence of the regularity prop-

erties of Ĥk,3 is that there exists γ ∈ (0, 1) such that the Taylor coefficients of Ĥk,3

satisfy ‖(Hk,3)t,n‖ � γn. Hence,∥∥∥P n
t −

q−1∑
k=0

gk(t)
−(n+1)π̃k,1(t)

∥∥∥� γn.
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By (2.1) and (2.2), ‖P n
t −

∑q−1
k=0 λ

n
k,tΠk,t‖ � γn for some γ ∈ (0, 1). Altogether, we

have shown that there exist γ ∈ (0, 1), C > 0 such that∥∥∥ q−1∑
k=0

(
λnk,tΠk,t − gk(t)−(n+1)π̃k,1(t)

)∥∥∥ ≤ Cγn for all t ∈ Bδ(0), n ≥ 1.

Since |λk,0| = |gk(0)| = 1, we can shrink δ > 0 so that |λk,t| > γ and |gk(t)−1|> γ.
It follows that {λk,t}k = {gk(t)−1}k and {Πk,t}k = {gk(t)−1π̃k,1(t)}k. The desired
regularity properties of λk,t and Πk,t : B(∆) 7→ L1(∆) now follow from those for gk
and π̃k,1, completing the proof of Lemma 4.1.

Proof of Lemma 4.2 After relabelling (by a permutation in k), we can suppose
that λk,t = gk(t)

−1 with gk(0) = λ−1
k as before and λk,0 = λ−1

k . (In particular, λ0,t is
unchanged, but λk becomes λ−1

k .) By (2.3),

g0(t)− 1 = λ−1
0,t (1− λ0,t) ∼ Σt · t L(t).

By (5.5) with k = 0,

1− τ0(1, t) ∼ c0(1, t)(g0(t)− 1) ∼ σ̄Σt · t L(t).

Hence by Proposition 5.11(c),

1− τk(λ−1
k , t) ∼ σ̄Σt · t L(t)

for all k = 0, . . . , q − 1. Applying (5.5) once more,

gk(t)− λ−1
k ∼ ck(λ

−1
k , t)−1(1− τk(λ−1

k , t)) ∼ λ−1
k Σt · t L(t).

Finally,

λk − λk,t = λk − gk(t)−1 = λkgk(t)
−1(gk(t)− λ−1

k ) ∼ λk Σt · t L(t)

completing the proof.

6 Proof of the main result

In this section, we complete the proof of Theorem 1.1. We continue to work on the
one-sided tower ∆.

Fix δ as in Section 4. Let r : Rd → C be C2 with supp r ⊂ Bδ(0) and define
An,N =

∫
Rd e

−it·Nr(t)P n
t dt. By (2.1),

An,N =

q−1∑
k=0

∫
Bδ(0)

e−it·Nr(t)λnk,tΠk,t dt+

∫
Bδ(0)

e−it·Nr(t)Qn
t dt.

Following [18], the main step in the proof of Theorem 1.1 is to estimate ‖An,N‖.
Throughout this section, ‖ ‖ denotes ‖ ‖B7→L1 .

The next result suffices in the range |N | ≤ an.
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Corollary 6.1 There exists C > 0 such that ‖An,N‖ ≤ Ca−dn for all n ≥ 1, N ∈ Zd.

Proof By (2.2) and Corollary 4.3, ‖An,N‖ �
∑q−1

k=0

∫
Bδ(0)
|λk,t|n dt+ γn � a−dn .

Recall from the proof of Corollary 4.3 that there is a constant c > 0 such that
log |λk,t| ≤ −c|t|2L(t). Let b > 0 be as in Lemma 4.1 and define ε1 = c/(2b). We now
focus on the range

an ≤ |N | ≤ eε1n.

Choose j so that |Nj| = max{|N1|, . . . , |Nd|} and set h = πN−1
j ej (where ej ∈ Rd

is the j’th canonical unit vector).

Proposition 6.2 There exist C > 0, δ > 0 such that∫
B2δ(0)

∣∣∂j(λn)k,t − ∂j(λn)k,t−h
∣∣ dt ≤ C

n

adn

log |N |
|N |

for all n ≥ 1, |N | > π/δ with an ≤ |N | ≤ eε1n, k = 0 . . . , q − 1.

Proof In this proof we abbreviate Ba(0) to Ba and suppress dt. Set s = t − h
and relabel so that

∫
B2δ

Mb(t, h)|λk,s|n ≤
∫
B2δ

Mb(t, h)|λk,t|n. Then
∫
B2δ
|∂j(λn)k,t −

∂j(λ
n)k,s| ≤ J +K where

J = n

∫
B2δ

|λn−1
k,t − λ

n−1
k,s ||∂jλk,t|, K = n

∫
B2δ

|λk,s|n−1|∂jλk,t − ∂jλk,s|.

By Lemma 4.1,

K � n

∫
B2δ

Mb(t, h)|λk,t|n �
n log |N |
|N |

∫
B2δ

|λk,t|n +
n(log |N |)2

|N |

∫
B2δ

|λk,t|n|t|2L(t)

+
n(log |N |)3

|N |

∫
B2δ

|λk,t|n|N |b|t|
2L(t)|t|4L(t)2. (6.1)

Since
|N |b|t|2L(t) = eb(log |N |)|t|2L(t) ≤ ebε1n|t|

2L(t) = e
1
2
cn|t|2L(t) ≤ |λk,t|−n/2,

it follows from Corollary 4.3 that∫
B2δ

|λk,t|n|N |b|t|
2L(t)|t|4L(t)2 ≤

∫
B2δ

|λk,t|n/2|t|4L(t)2 � (log n)2

ad+4
n

.

The other integrals in (6.1) are also estimated using Corollary 4.3 and we obtain

K � n

adn

log |N |
|N |

{
1 +

log |N | log n

a2
n

+
(log |N |)2(log n)2

a4
n

}
� n

adn

log |N |
|N |

.

(Here, we used that log |N | � n = a2
n/ log n.)
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Next, |λn−1
k,t −λ

n−1
k,s | ≤ (n−1)(|λk,t|n−2 + |λk,s|n−2)|λk,t−λk,s| so by the mean value

theorem,

|λn−1
k,t − λ

n−1
k,s | �

n

|N |
(|λk,t|n + |λk,s|n)|∂jλk,u|

for some u between t and s. Accordingly,

J � n2

|N |

∫
B2δ

(|λk,t|n + |λk,s|n)|∂jλk,u||∂jλk,t|.

By Lemma 4.1,

|∂jλk,t| = |∂jλk,t − ∂jλk,0| �Mb(0, t) = |t|L(t), |∂jλk,u| � |u| log(1/|u|). (6.2)

Now |u| ≤ |t|+ |h|, so

|u| log(1/|u|) ≤ (|t|+ |h|) log(1/(|t|+ |h|))
= |t| log(1/(|t|+ |h|)) + |h| log(1/(|t|+ |h|))
≤ |t| log(1/|t|) + |h| log(1/|h|)� |t| log(1/|t|) + log |N |

|N | = |t|L(t) + log |N |
|N | .

In this way, it follows from (6.2) that |∂jλk,t| � |t|L(t), |∂jλk,u| � |t|L(t) + log |N |
|N | .

Similarly, |∂jλk,t| � |s|L(s) + log |N |
|N | , |∂jλk,u| � |s|L(s) + log |N |

|N | . By Corollary 4.3,∫
B2δ

|λk,s|n|∂jλk,t||∂jλk,u| �
∫
B2δ

|λk,s|n|s|2L(s)2 +
log |N |
|N |

∫
B2δ

|λk,s|n|s|L(s)

+
(log |N |)2

|N |2

∫
B2δ

|λk,s|n

�
∫
B3δ

|λk,t|n|t|2L(t)2 +
log |N |
|N |

∫
B3δ

|λk,t|n|t|L(t) +
(log |N |)2

|N |2

∫
B3δ

|λk,t|n

� 1

adn

( log2 n

a2
n

+
log |N |
|N |

log n

an
+

(logN)2

|N |2
)

=
log |N |
nadn

( n log2 n

a2
n log |N |

+
n log n

an|N |
+
n logN

|N |2
)

� log |N |
nadn

( log n

log |N |
+

an
|N |

+
a2
n

log an

logN

|N |2
)
� log |N |

nadn
.

A simpler calculation shows that
∫
B2δ
|λk,t|n|∂jλk,t||∂jλk,u| �

log |N |
nadn

. Hence J �

n

adn

log |N |
|N |

. This completes the proof.
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Lemma 6.3 There exists C > 0 such that∥∥∥∫
Bδ(0)

e−it·Nr(t)λnk,tΠk,t dt
∥∥∥ ≤ C

n

adn

log |N |
|N |2

for all n ≥ 1, |N | > π/δ with an ≤ |N | ≤ eε1n, k = 0, . . . , q − 1.

Proof Again, we abbreviate Bδ(0) to Bδ and suppress dt. Let I =∫
Bδ
e−it·Nr(t)λnk,tΠk,t. Integrating by parts,

I =
1

iNj

∫
Bδ

e−it·N∂jr(t)λ
n
k,tΠk,t +

1

iNj

∫
Bδ

e−it·Nr(t)∂j(λ
nΠ)k,t = I1 + I2 + I3

where

I1 = − 1

N2
j

∫
Bδ

e−it·N∂2
j r(t)λ

n
k,tΠk,t, I2 = − 1

N2
j

∫
Bδ

e−it·N∂jr(t)∂j(λ
nΠ)k,t,

I3 =
1

iNj

∫
Bδ

e−it·Nr(t)∂j(λ
nΠ)k,t.

Recall that r is C2 and that t 7→ λk,t, t 7→ Πk,t are C1 by Lemma 4.1. Hence by
Corollary 4.3,

‖I1‖ �
1

|N |2

∫
Bδ

|λk,t|n �
1

adn

1

|N |2
, ‖I2‖ �

n

|N |2

∫
Bδ

|λk,t|n �
n

adn

1

|N |2
.

To estimate I3, we use a modulus of continuity argument (see for instance [16,
Chapter 1]). Set s = t − h where h = πN−1

j ej and notice that I3 =

− 1
iNj

∫
B2δ

e−it·Nr(s)∂j(λ
nΠ)k,s. Hence

I3 =
1

2iNj

∫
B2δ

e−it·N(r(t)∂j(λ
nΠ)k,t − r(s)∂j(λnΠ)k,s).

Setting I4 = 1
|N |

∫
B2δ
|r(s)|‖∂j(λnΠ)k,t − ∂j(λnΠ)k,s‖, we obtain

‖I3‖ �
1

|N |

∫
B2δ

|r(t)− r(s)|‖∂j(λnΠ)k,t‖+ I4

� n

|N |2

∫
B2δ

|λk,t|n + I4 �
n

adn

1

|N |2
+ I4.
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Now,

I4 �
1

|N |

∫
B2δ

‖∂j(λn)k,tΠk,t − ∂j(λn)k,sΠk,s‖+
1

|N |

∫
B2δ

‖λnk,t∂jΠk,t − λnk,s∂jΠk,s‖

� 1

|N |

∫
B2δ

|∂j(λn)k,t − ∂j(λn)k,s|‖Πk,t‖+
1

|N |

∫
B2δ

|∂j(λn)k,s|‖Πk,t − Πk,s‖

+
1

|N |

∫
B2δ

|λnk,t − λnk,s|‖∂jΠk,t‖+
1

|N |

∫
B2δ

|λk,s|n‖∂jΠk,t − ∂jΠk,s‖

� 1

|N |

∫
B2δ

|∂j(λn)k,t − ∂j(λn)k,s|+
n

|N |2

∫
B2δ

|λk,s|n

+
n

|N |2

∫
B2δ

|λk,t|n +
1

|N |

∫
B2δ

|λk,s|n‖∂jΠk,t − ∂jΠk,s‖.

To complete the proof, we show that I4 � n
adn

log |N |
|N |2 . The first integral on the right-hand

side was estimated in Proposition 6.2 while the second and third are dominated by
n
adn

1
|N |2 . The same calculation that was used for the integral K in Proposition 6.2 shows

that
∫
B2δ
|λk,s|n‖∂jΠk,t − ∂jΠk,s‖ � 1

adn

log |N |
|N | . The desired estimate for I4 follows.

Corollary 6.4 There exist ε1 > 0, C > 0 such that

‖An,N‖ ≤ C
n

adn

log |N |
1 + |N |2

for all n ≥ 1, N ∈ Zd with |N | ≤ eε1n.

Proof By Corollary 6.1, ‖An,N‖ � a−dn . Hence for n� (1 + |N |2)/ log |N |,

‖An,N‖ � a−dn �
n

adn

log |N |
1 + |N |2

.

Hence we can reduce to the case n ≤ 1
2
(1 + |N |2)/ log |N |. Then we can suppose

without loss that |N | > π/δ. In this way, we reduce to proving ‖An,N‖ � n
adn

log |N |
|N |2

under the constraints

|N | > π/δ, |N | ≤ eε1n, n ≤ 1
4
|N |2/ log |N |.

Since a2
n/ log an ∼ 2n, the last constraint can be weakened to a2

n/ log an ≤
|N |2/ log |N |, equivalently an ≤ |N |.

By (2.2), there exists γ ∈ (0, 1) such that ‖
∫
Bδ(0)

e−it·Nr(t)Qn
t dt‖ � γn. Together

with Lemma 6.3, this implies that

‖An,N‖ �
n

adn

log |N |
|N |2

+
1

|N |2
γn|N |2.

Shrinking ε1 if necessary, γn|N |2 ≤ γne2ε1n ≤ γn/2 � n
adn

, and so ‖An,N‖ � n
adn

log |N |
|N |2 .
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Proof of Theorem 1.1 By Lemma 3.1, it remains to consider the range log |N | ≤
ε1n. By [18, Lemma 3.9], there exists an even C2 function r : Rd → R supported in
Bδ(0) such that

1{κn=N} ≤
∫
Rd
e−it·Nr(t)eit·κn dt

for n ≥ 1, N ∈ Zd. Hence

P n1{κn=N} ≤
∫
Rd
e−it·Nr(t)P neit·κn dt = An,N 1∆.

It follows that µ∆(κn = N) =
∫

∆
P n1{κn=N} dµ∆ � ‖An,N‖. By Corollary 6.4, we

obtain the desired estimate for log |N | ≤ ε1n.

7 LLD for nonuniformly hyperbolic systems mod-

elled by Young towers

In this section, we state and prove an abstract version of Theorem 1.1 for systems
modelled by a Young tower with exponential towers for a general class of observ-
ables κ. The observables take values in Zd where there is no restriction on the value
of d ≥ 1.

Let (T,M, µ) be a general nonuniformly hyperbolic map modelled by a two-sided
Young tower ∆ with exponential tails (as in Section 2). Let κ : M → Zd be an inte-
grable observable with

∫
M
κ dµ = 0 and

∫
M
|κ|2 dµ =∞. Define the lifted observable

κ̂ = κ ◦ π : ∆ → Zd. We require that κ̂ is constant on π̄−1(a × {`}) for each a ∈ α,
` ∈ {0, . . . , σ(a)− 1}. Then κ̂ projects to an observable κ̄ : ∆̄→ Zd constant on the
partition elements a× {`} of the one-sided tower ∆̄.

Define Pt, λk,t and so on as in Section 2. Properties (2.1) and (2.2) remain valid.
Our further assumptions in the abstract setting are that there exist continuous slowly
varying4 functions `1, `2 : [0,∞) → (0,∞) and a positive-definite matrix Σ ∈ Rd×d

such that

µ(|κ| > x) ≤ x−2`1(x) for all x > 1. (7.1)

1− λ0,t ∼ Σt · t `2(1/|t|) as t→ 0. (7.2)

Define the slowly varying function ˜̀
1(x) =

∫ 1+x

1
u−1`1(u/ log u) du.5 We require that

there is a constant C > 0 such that

(log x)2 ˜̀
1(x) ≤ C`2(x) for all x > 1. (7.3)

4So limt→∞ `1(λt)/`1(t) = 1 for all λ > 0, and similarly for `2.
5To optimise the results, we should take ˜̀

1(x) =
∫ 1+x

1
u−1(log u)2`1(u/ log u) du. Then L̃(t) =

˜̀
1(1/|t|) below but the formula for M̃b is much more complicated.
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Choose an so that
na−2

n `2(an) ∼ 1.

Theorem 7.1 (LLD in abstract setting) Let d ≥ 1. There exist C > 0 and a
slowly varying function `3 (depending on `1, `2 and d) such that

µ(κn = N) ≤ C
n

adn

`3(|N |)
1 + |N |2

for all n ≥ 1, N ∈ Zd.

Remark 7.2 The slowly varying function `3 can be determined by modifying the
proof of Theorem 1.1. Some of the steps are indicated below.

In the case of billiards, assumptions (7.1) and (7.2) hold with `1 ≡ 1 and `2(x) =
log x. We note that even with these `1, `2 and d ≤ 2, obtaining `3(x) = log x
in Theorem 1.1 requires extra structure for billiards beyond the abstract setting of
Theorem 7.1. This extra structure was used in Proposition 2.1 and Lemma 3.1.
Similarly, assumption (7.3) is not required in the billiard setting due to the extra
structure.

Remark 7.3 (a) In the simpler situation of Gibbs-Markov maps studied in [18], the
underlying assumption is that µ(|κ| > x) ∼ x−2`1(x) and that κ lies in the nonstan-
dard domain of a nondegenerate multivariate normal distribution. A consequence is
that 1− λ0,t ∼ Σt · t `2(1/|t|) with `2(x) = 1 +

∫ 1+x

1
`1(u)/u du. Moreover, `3 = `2.

(b) As in [18], the proof of Theorem 7.1 does not rely on aperiodicity assumptions
and hence the result applies in situations where the local limit theorem fails.

(c) More generally, one could consider situations where the underlying limit laws are
α-stable laws, α ∈ (0, 2) (rather than normal distributions with nonstandard normal-
isation). We already mentioned that the study of such stable LLD started with [9]
and [6] in the i.i.d. case for d = 1, extended to d ≥ 2 [7]. The Gibbs-Markov case was
studied in [18] for α ∈ (0, 1)∪ (1, 2] and general d ≥ 1. We expect that Theorem 7.1,
in the abstract setting where M is modelled by a Young tower with exponential
tails, extends to the cases α ∈ (0, 1) ∪ (1, 2) with minor (and obvious) modifications.
However, for purposes of readability we do not pursue this extension here.

In the remainder of this section, we sketch the proof of Theorem 7.1. Again, the
range n� log |N | is handled at the level of T : M →M and κ : M → Zd. Lemma 3.1
is replaced by

Lemma 7.4 Let d ≥ 1, ω > 0, ε > 0. There exists C > 0 such that

µ(κn = N) ≤ C
n

adn

`1(|N |)(log |N |) d2+1+ε

|N |2

for all n ≥ 1, N ∈ Zd with n ≤ ω log |N |.
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Proof Define κ̃ = κ̃(N) = min{|κ|, |N |} and Mn = max0≤j≤n−1 |κ| ◦ T j. We use
|x| = maxj=1,...,d |xj| so that |κ̃| is integer-valued.

Now,
µ(|κn| ≥ |N |) ≤ µ(|κn| ≥ |N |, Mn ≤ |N |) + µ(Mn > |N |).

Note that

µ(Mn > |N |) ≤
n−1∑
j=0

µ(|κ| ◦ T j > |N |) = nµ(|κ| > |N |)� n|N |−2`1(|N |).

Next, for any r > 2,

µ(|κn| ≥ |N |, Mn ≤ |N |) ≤ µ(κ̃n ≥ |N |) ≤ ‖κ̃n‖rr/|N |r ≤ nr‖κ̃‖rr/|N |r.

By resummation and (7.1),

‖κ̃‖rr =
∞∑
j=1

jrµ(|κ̃| = j) ≤
|N |∑
j=1

jrµ(|κ| = j)�
|N |∑
j=1

jr−1µ(|κ| > j)�
|N |∑
j=1

jr−3`1(j),

so by Karamata, ‖κ̃‖rr � |N |r−2`1(|N |). Hence

µ(κn = N) ≤ µ(|κn| ≥ |N |) ≤ nr|N |−2`1(|N |) = na−dn |N |−2`1(|N |)nr−1adn.

Since an is regularly varying of index 1
2
, and r > 2 is arbitrary, it follows that nr−1adn �

n
d
2

+1+ε � (log |N |) d2+1+ε.

The remainder of the proof of Theorem 7.1 is carried out on the one-sided tower.
As in Section 2, we define ψ(y) =

∑σ(y)−1
`=0 |κ(y, `)|. The analogue of Proposition 2.1

is:

Proposition 7.5 There exist C, n0 > 1 such that

µY (ψ > n) ≤ Cn−2(log n)2`1(n/ log n) for all n ≥ n0.

In particular, ψ ∈ Lr(Y ) for all r < 2.

Proof A standard argument (see for example [5, Proposition A.1]) shows that

µY (ψ > n) ≤ µY (σ > k) + σ̄µ(|κ| > n/k),

for k, n > 1. In particular, there exists a > 0 such that

µY (ψ > n)� e−ak + n−2k2`1(n/k).

Taking k = q log n for any q > 2/a and using that `1 is slowly varying,

µY (ψ > n)� n−2(log n)2`1(n/ log n).
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Let ε ∈ (0, 2 − r). Since `1 is slowly varying, `1(n/ log n) � (n/ log n)ε/2 � nε/2.
Hence µY (ψ > n)� n−(2−ε) and it follows that ψ ∈ Lr.

Define

M̃b(t, h) = |h|L̃(h)
{

1 + L(h)|t|2L̃(t) + |h|−b|t|2L̃(t)L(h)2|t|4L̃(t)2
}
,

where L(t) = log(1/|t|) and L̃(t) = L(t)2 ˜̀
1(1/|t|).

Lemma 7.6 The conclusions of Lemma 4.1 and 4.2 hold with Mb and L(t) replaced

by M̃b and `2(1/|t|) respectively.

Proof The modifications are elementary, but heavy on notation, so we only sketch
the details.

Since ψ ∈ Lr for all r < 2, the arguments in Section 5.1 are unchanged. The
changes in the proof of Proposition 5.6 are as follows. By resummation, Proposi-
tion 7.5 and the definition of ˜̀

1,

K∑
m=1

µY (ψ = m)m2 �
K∑
m=1

µY (ψ ≥ m)m�
K∑
m=1

m−1(logm)2`1(m/ logm)

� (logK)2

K∑
m=1

m−1`1(m/ logm)� (logK)2 ˜̀
1(K).

Using this in (5.2), we obtain

K∑
m=1

∑
n≤b logm

rm,n � |h|L(h)3 ˜̀
1(1/|h|)

{
1 + (|z| − 1)|h|−b log |z|L(h)

}
.

Similarly,∑
m>K

∑
n≤b logm

rm,n � |h|L(h)3`1(|h|−1L(h)−1)
{

1 + (|z| − 1)|h|−b log |z|L(h)
}
.

Hence the estimate corresponding to Proposition 5.6 is

‖∂j∂zR̂(z, t+ h)− ∂j∂zR̂(z, t)‖B1(Y ) � |h|L(h)3 ˜̀
1(1/|h|)

{
1 + (|z| − 1)|h|−b log |z|L(h)

}
.

The corresponding estimates for ∂jR̂, ∂jÂ and ∂jB̂ are the same but with one less
factor of L(h).

Parts (a) and (c) of Proposition 5.11 are unchanged. Part (b) goes through with

L replaced by L̃. Hence, Corollary 5.12 becomes that

|gk(t)− λ̄k| � |t|2L̃(t), |∂jgk(t+ h)− ∂jgk(t)| � M̃b(t, h).

The result follows.
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Corollary 7.7 Let β ≥ 0, r ∈ R, k = 0, . . . , q − 1. There exist C > 0, δ > 0 such
that ∫

B2δ(0)

|t|βL̃(t)r|λk,t|n dt ≤ C
(L̃(1/an))r

ad+β
n

for all n ≥ 1.

Proof Following the proof of Corollary 4.3, we obtain |λk,t| ≤ exp{−b|t|2`2(t)}. Now
use that an is defined using `2 instead of L.

Proof of Theorem 7.1 The arguments are identical to those in Section 6 up to
slowly varying factors. Various simplifications no longer hold as the slowly varying
functions `1, `2, ˜̀

1 and log are less well related, so the exact formulas are rather
complicated and hence are omitted.
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[8] L. A. Bunimovich, Y. G. Sinăı and N. I. Chernov. Statistical properties of two-
dimensional hyperbolic billiards. Uspekhi Mat. Nauk 46 (1991) 43–92.

[9] F. Caravenna and R. A. Doney. Local large deviations and the strong renewal
theorem. Electron. J. Probab. 24 (2019) 1–48.

[10] N. Chernov. Decay of correlations and dispersing billiards. J. Statist. Phys. 94
(1999) 513–556.

[11] N. Chernov and R. Markarian. Chaotic billiards. Mathematical Surveys and
Monographs 127, American Mathematical Society, Providence, RI, 2006.

[12] N. I. Chernov and H.-K. Zhang. Improved estimates for correlations in billiards.
Comm. Math. Phys. 77 (2008) 305–321.

[13] D. Dolgopyat and P. Nándori. On mixing and the local central limit theorem for
hyperbolic flows. Ergodic Theory Dynam. System 40 (2020) 142–174.
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