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Abstract. We consider deterministic homogenization (convergence to a stochastic differential equation) for multiscale systems of the
form

xk+1 = xk + n−1an(xk, yk) + n−1/2bn(xk, yk), yk+1 = Tnyk,

where the fast dynamics is given by a family Tn of nonuniformly expanding maps. Part 1 builds on our recent work on martingale
approximations for families of nonuniformly expanding maps. We prove an iterated weak invariance principle and establish optimal
iterated moment bounds for such maps. (The iterated moment bounds are new even for a fixed nonuniformly expanding map T .) The
homogenization results are a consequence of this together with parallel developments on rough path theory in Part 2 by Chevyrev, Friz,
Korepanov, Melbourne and Zhang.

Résumé. Nous étudions un problème d’homogénéisation déterministe (avec convergence vers une équation différentielle stochastique)
pour un système multi-échelle de la forme suivante :

xk+1 = xk + n−1an(xk, yk) + n−1/2bn(xk, yk), yk+1 = Tnyk,

où la dynamique rapide est donnée par une famille Tn de transformations non uniformément dilatantes. La partie 1 prolonge nos travaux
récents sur l’approximation par des martingales pour des familles de transformations non uniformément dilatantes. Nous montrons un
principe d’invariance faible itéré, et établissons des bornes optimales sur les moments dans ce cadre (ces bornes sont nouvelles même
pour une transformation non uniformément dilatante T fixée). En combinant ceci et des développements parallèles sur la théorie des
chemins rugueux par Chevyrev, Friz, Korepanov, Melbourne et Zhang, nous obtenons les résultats d’homogénéisation dans la partie 2.
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1. Introduction

Recently, there has been a great deal of interest in deterministic homogenization [5–9,12,16,17,20,24] whereby deter-
ministic multiscale systems converge to a stochastic differential equation as the time-scale separation goes to infinity.
A byproduct of this is a deeper understanding [16] of the correct interpretation of limiting stochastic integrals [28].

Using rough path theory [11,23], it was shown in [16,17] that homogenization reduces to proving certain statistical
properties for the fast dynamics. These statistical properties take the form of an “iterated invariance principle” (iter-
ated WIP) which gives the correct interpretation of the limiting stochastic integrals, and control of “iterated moments”
which provides tightness in the rough path topology used for proving convergence. In particular, the homogenization
question was settled in [16,17] for uniformly expanding/hyperbolic fast (Axiom A) dynamics and for nonuniformly ex-
panding/hyperbolic fast dynamics modelled by Young towers with exponential tails [29]. The results in [16,17] also
covered fast dynamics modelled by Young towers with polynomial tails [30] but the results were far from optimal. It turns
out that advances on two separate fronts are required to obtain optimal results:
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(i) Martingale methods for nonuniformly expanding maps modelled by Young towers, yielding optimal control of iter-
ated moments;

(ii) Discrete-time rough path theory in p-variation topologies, relaxing the required control for ordinary and iterated
moments.

These two directions rely on techniques in smooth ergodic theory and in stochastic analysis respectively, so the homoge-
nization question divides naturally into two parts. This paper Part 1 covers the ergodic-theoretical aspects required for (i),
while the rough path aspects required for (ii) are dealt with in Part 2 by Chevyrev et al. [4]. As we explain below, together
these provide an optimal solution to the homogenization question when the fast dynamics is given by a nonuniformly
expanding map or a family of such maps.

The homogenization question that we are interested in takes the following form. Let Tn : � → �, n ≥ 1, be a family
of dynamical systems with ergodic invariant probability measures μn. Consider the fast-slow system

xk+1 = xk + n−1an(xk, yk) + n−1/2bn(xk, yk), yk+1 = Tnyk,(1.1)

where xk = x
(n)
k takes values in Rd with x0 ≡ ξ ∈ Rd , and yk takes values in �. Our main assumption is that Tn is a

uniform family of nonuniformly expanding maps of order p > 2 as in [20] (see Section 3 below for precise definitions).
We impose mild regularity conditions on an, bn : Rd × � → Rd and require that

∫
�

bn(x, y) dμn(y) = 0 for all x ∈ Rd ,
n ≥ 1.

Define x̂n(t) = x
(n)
[nt] and let λn be a family of probability measures on �. We regard x̂n as a sequence of random

variables on the probability spaces (�,λn) with values in the Skorohod space D([0,1],Rd). The aim is to prove weak
convergence, x̂n →λn X as n → ∞, where X is the solution to a stochastic differential equation.

Example 1.1. To fix ideas, we focus first on the case where Tn ≡ T is a single nonuniformly expanding map. Pomeau-
Manneville intermittent maps [27] provide the prototypical examples of such maps. We consider in particular the class of
intermittent maps studied in [22], namely

T : [0,1] → [0,1], T x =

⎧⎪⎨⎪⎩
x
(
1 + 2γ xγ

)
x <

1

2
,

2x − 1 x >
1

2
.

(1.2)

Here γ > 0 is a parameter and there is a unique absolutely continuous invariant probability measure μ provided γ < 1.
Moreover, the central limit theorem (CLT) holds for all Hölder observables v : [0,1] → R, provided γ < 1

2 . By [13], the
CLT fails for typical Hölder observables once γ > 1

2 . Even for γ = 1
2 , the CLT requires a nonstandard normalization.

Hence it is natural to restrict here to the range γ ∈ (0, 1
2 ). (The range γ ∈ ( 1

2 ,1) leads to superdiffusive phenomena [13,
26] and we refer to [3,12] for the homogenization theory for the corresponding fast-slow systems.)

The homogenization problem for fast-slow systems driven by such intermittent maps T (with λn ≡ μ) was previously
considered in [16] and then [5]. The techniques therein sufficed in the restricted range γ ∈ (0, 2

5 ) and even then only in the
special case b(x, y) = h(x)v(y) where h : Rd → Rd×m, v : � → Rd . There are two additional steps, covered in Parts 1
and 2 respectively, that lead to homogenization in the full range γ ∈ (0, 1

2 ) and for general b:

(i) As mentioned above, to obtain homogenization results it suffices to prove the iterated WIP and control of iterated
moments. These statistical properties are formulated at the level of the map T for Hölder observables v : [0,1] → Rd

with
∫

v dμ = 0. The iterated WIP was already proved in [16] in the full range γ ∈ (0, 1
2 ). Define

Snv =
∑

0≤j<n

v ◦ T j , Snv =
∑

0≤i<j<n

(
v ◦ T i

) ⊗ (
v ◦ T j

)
.

There are numerous methods for estimating ordinary moments |Snv|L2(p−1) for p < 1/γ . Estimates for iterated mo-
ments |Snv|L2(p−1)/3 were given in [16]. In Theorem 2.4 of the current paper, we estimate |Snv|Lp−1 ; this is the first
result giving optimal estimates for iterated moments. Using [5], we can then cover the full range γ ∈ (0, 1

2 ) in the
product case b(x, y) = h(x)v(y).

(ii) The papers [16,17] use rough path theory in Hölder spaces. However, Hölder rough path theory requires control of
the ordinary moments |Snv|L2q and the iterated moments |Snv|Lq for some q > 3. As shown in [25, Section 3], such
control even for the ordinary moments requires γ < 1

4 . The papers by Chevyrev et al. [4,5] employ rough path theory
in p-variation spaces and require iterated moment estimates only for q > 1. Whereas [5] is restricted to the product
case b(x, y) = h(x)v(y), Part 2 [4] covers general b following [17]. This method combined with the previous iterated
WIP and iterated moment estimates in [16] covers the range γ ∈ (0, 2

5 ) for general b.
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Combining (i) and (ii), we cover the optimal range γ ∈ (0, 1
2 ) for general b.

In addition, we obtain the homogenization result x̂n →λn X for a larger class of measures including the natural choice
λn ≡ Leb.

Returning to families of nonuniformly expanding maps, in [20] we considered intermittent maps Tn : [0,1] → [0,1],
n ∈ N ∪ {∞}, as in (1.2) with parameters γn such that limn→∞ γn = γ∞. Homogenization results with λn = μn and
λn ≡ μ∞ were obtained in [20] for a restricted class of fast-slow systems with bn(x, y) = hn(x)vn(y), hn exact, for
γ∞ ∈ (0, 1

2 ). (For such systems, rough path theory was not needed.) By the results in this paper, combined with those in
Part 2, we treat general bn, again in the full range γ∞ ∈ (0, 1

2 ). Moreover, we cover a larger class of measures including
λn ≡ Leb.

The remainder of Part 1 is organized as follows. In Sections 2 and 3, we consider nonuniformly expanding maps (fixed,
and in uniform families [20], respectively). In particular, we obtain optimal estimates for iterated moments in Theorem 2.4
and the iterated WIP for families in Theorem 3.4. In Section 4, we consider examples including the intermittent maps in
Example 1.1. The theory is extended to families of nonuniformly expanding semiflows in Section 5.

We refer to Part 2 for the parallel developments in rough path theory and a precise statement and proof of homoge-
nization for the fast-slow systems (1.1).

Notation. For a, b ∈ Rd , we define the outer product a ⊗ b = abT ∈ Rd×d . For J ∈ Rm×n, we use the norm |J | =
(
∑m

i=1
∑n

j=1 J 2
ij )

1/2. Then |a ⊗ b| ≤ |a||b| for a, b ∈ Rd .
For real-valued functions f , g, the integral

∫
f dg denotes the Itô integral (where defined). Similarly, for vector-valued

functions,
∫

f ⊗ dg denotes matrices of Itô integrals.
We use “big O” and � notation interchangeably, writing an = O(bn) or an � bn if there are constants C > 0, n0 ≥ 1

such that an ≤ Cbn for all n ≥ n0. As usual, an = o(bn) means that limn→∞ an/bn = 0.
Let v : � → R be an observable on a metric space (�,d�) and let η ∈ (0,1]. Recall that v : � → R is η-

Hölder observable, v ∈ Cη(�), if ‖v‖η = |v|∞ + supx =y |v(x) − v(y)|/d�(x, y)η < ∞. where |v|∞ = sup� |v|. For

v = (v1, . . . , vd) : � →Rd , d ≥ 1, we write v ∈ Cη(�,Rd) if vj ∈ Cη(�) for j = 1, . . . , d , and set ‖v‖η = ∑d
j=1 ‖vj‖η.

2. Nonuniformly expanding maps

In this section, we recall and extend the results in [20] for nonuniformly expanding maps.
Let (�,d�) be a bounded metric space with finite Borel measure ρ and let T : � → � be a nonsingular transformation.

Let Y ⊂ � be a subset of positive measure, and let α be an at most countable measurable partition of Y . We suppose that
there is an integrable return time function τ : Y → Z+, constant on each a with value τ(a) ≥ 1, and constants β > 1,
η ∈ (0,1], C1 ≥ 1 such that for each a ∈ α,

(1) F = T τ restricts to a (measure-theoretic) bijection from a onto Y .
(2) d�(Fx,Fy) ≥ βd�(x, y) for all x, y ∈ a.
(3) d�(T �x,T �y) ≤ C1d�(Fx,Fy) for all x, y ∈ a, 0 ≤ � < τ(a).
(4) ζ0 = dρ|Y

dρ|Y ◦F satisfies | log ζ0(x) − log ζ0(y)| ≤ C1d�(Fx,Fy)η for all x, y ∈ a.

Such a dynamical system T : � → � is called nonuniformly expanding. (It is not required that τ is the first return
time to Y .) We refer to the induced map F = T τ : Y → Y as a uniformly expanding map. There is a unique absolutely
continuous F -invariant probability measure μY on Y and dμY /dρ ∈ L∞.

Define the (one-sided) Young tower map [30], f :  → ,

 = {
(y, �) ∈ Y ×Z : 0 ≤ � ≤ τ(y) − 1

}
, f(y, �) =

{
(y, � + 1), � ≤ τ(y) − 2,

(Fy,0), � = τ(y) − 1.
.

The projection π :  → �, π(y, �) = T �y, defines a semiconjugacy from f to T . Define the ergodic f-invariant
probability measure μ = μY × {counting}/ ∫

Y
τ dμY on . Then μ = (π)∗μ is an absolutely continuous ergodic

T -invariant probability measure on �.
In this section, we work with a fixed nonuniformly expanding map T : � → � with induced map F = T τ : Y → Y

where τ ∈ Lp(Y ) for some p ≥ 2,1 and Young tower map f :  → . The corresponding ergodic invariant proba-

1In [20], we considered this set up with p ≥ 1. Since we have no new results for p < 2 beyond those already in [20], we restrict in this paper to the case
p ≥ 2.
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bility measures are denoted μ, μY and μ. Throughout, | |p denotes the Lp-norm on (�,μ), (Y,μY ) and (,μ) as
appropriate. Also, ‖ ‖η denotes the Hölder norm on � and Y .

Although the map T is fixed, the dependence of various constants on T is important in later sections. To simplify the
statement of results in this section, we denote by C various constants depending continuously on diam�, C1, β , η, p and
|τ |p .

Let L : L1() → L1() and P : L1(Y ) → L1(Y ) denote the transfer operators corresponding to f :  →  and
F : Y → Y . (So

∫


Lv w dμ = ∫


v w ◦ f dμ for v ∈ L1(), w ∈ L∞(), and
∫
Y

Pv w dμY = ∫
Y

v w ◦ F dμY for
v ∈ L1(Y ), w ∈ L∞(Y ).)

Let ζ = dμY /dμY ◦ F . Given y ∈ Y and a ∈ α, let ya denote the unique ya ∈ a with Fya = y. Then we have the
pointwise expression for L,

(2.1) (Lv)(y, �) =
⎧⎨⎩

∑
a∈α

ζ(ya)v
(
ya, τ (ya) − 1

)
, � = 0,

v(y, � − 1), 1 ≤ � ≤ τ(y) − 1.

2.1. Martingale-coboundary decomposition

Let T : � → � be a nonuniformly expanding map as above with return time τ ∈ Lp(Y ), p ≥ 2. Fix d ≥ 1 and let
v ∈ Cη(�,Rd) with

∫
�

v dμ = 0. Define the lifted observable φ = v ◦ π :  → Rd .
We recall the martingale-coboundary decomposition

(2.2) φ = m + χ ◦ f − χ, m ∈ kerL

from [20, Section 2.2], which is obtained as follows. First, define the induced observable φ′ : Y → Rd by φ′(y) =∑τ(y)−1
�=0 φ(y, �). Next, define χ ′,m′ : Y → Rd by χ ′ = ∑∞

k=1 P kφ′ and φ′ = m′ + χ ′ ◦ F − χ ′. Let

(2.3) χ(y, �) = χ ′(y) +
�−1∑
k=0

φ(y, k) and m(y, �) =
{

0, � ≤ τ(y) − 2,

m′(y), � = τ(y) − 1.

By [20, Section 2.2], ‖χ ′‖η ≤ C‖v‖η. Furthermore,

Proposition 2.1. |m|p ≤ C‖v‖η, |χ |p−1 ≤ C‖v‖η and for all n ≥ 1, q ≥ p,∣∣∣max
k≤n

∣∣χ ◦ f k
 − χ

∣∣∣∣∣
p

≤ C‖v‖η

(
n1/q + n1/p|1{τ≥n1/q }τ |p

)
.

(In particular, |maxk≤n |χ ◦ f k
 − χ ||p ≤ C′‖v‖ηn

1/p .)

Proof. See [20, Propositions 2.4 and 2.7]. �

Proposition 2.2. |Ln|m|p|∞ ≤ C‖v‖p
η for all n ≥ 1.

Proof. Using (2.1) and the definition of m, we have

(
L|m|p)

(y, �) =
⎧⎨⎩

∑
a∈α

ζ(ya)
∣∣m′(ya)

∣∣p, � = 0,

0, 1 ≤ � ≤ τ(y) − 1.

Note that |m′| ≤ 2|χ ′|∞ + |φ′| ≤ 2|χ ′|∞ + τ |v|∞ � τ‖v‖η. Also |1aζ |∞ � μY (a) (see for example [20, Proposi-
tion 2.2]). Hence

L|m|p �
∑
a∈α

μY (a)τ (a)p‖v‖p
η = |τ |pp‖v‖p

η � ‖v‖p
η .

Hence, |Ln|m|p|∞ ≤ |L|m|p|∞ � ‖v‖p
η for all n ≥ 1. �

Let φ̆ = UL(m ⊗ m) − ∫


m ⊗ mdμ :  → Rd×d where U is the Koopman operator Uφ = φ ◦ f.
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Proposition 2.3. |maxk≤n |∑k−1
j=0 φ̆ ◦ f

j
||p ≤ Cn1/2‖v‖2

η.

Proof. See [20, Corollary 3.2]. �

2.2. Moment estimates

Given v ∈ Cη(�,Rd) with
∫
�

v dμ = 0, we define

Snv =
∑

0≤j<n

v ◦ T j , Snv =
∑

0≤i<j<n

(
v ◦ T i

) ⊗ (
v ◦ T j

)
.(2.4)

The main result in this section is the estimate for iterated moments |maxk≤n |Skv||p−1 in the next theorem.

Theorem 2.4 (Iterated moments). For all n ≥ 1,∣∣∣max
k≤n

|Skv|
∣∣∣
2(p−1)

≤ Cn1/2‖v‖η,

∣∣∣max
k≤n

|Skv|
∣∣∣
p−1

≤ Cn‖v‖2
η.

Proof. Since p ≥ 2, the estimate for Snv is given in [20, Corollary 2.10]. It remains to prove the bound for Snv, equiva-
lently Snφ = ∑

0≤i<j<n(φ ◦ f i
) ⊗ (φ ◦ f

j
). Using (2.2),

Snφ =
∑

0≤j<n

(
χ ◦ f

j
 − χ

) ⊗ (
φ ◦ f

j


) +
∑

0≤i<j<n

(
m ◦ f i



) ⊗ (
φ ◦ f

j


) = In + Jn.

By Proposition 2.1, ∣∣∣max
k≤n

|Ik|
∣∣∣
p−1

≤ |φ|∞
∑

0≤j<n

∣∣χ ◦ f
j
 − χ

∣∣
p−1 ≤ 2n|v|∞|χ |p−1 � n‖v‖2

η.

Next, Jn = ∑n−2
i=0 (m ◦ f i

) ⊗ ((
∑n−i−1

j=1 φ ◦ f
j
) ◦ f i

) = ∑n
�=2 Xn,�, where

Xn,� =
(

m ⊗
�−1∑
j=1

φ ◦ f
j


)
◦ f n−�

 = (
m ⊗ {

(S�−1φ) ◦ f

}) ◦ f n−�
 .

Now, |Snφ|p ≤ |Snφ|2(p−1) � n1/2‖v‖η since p ≥ 2. Hence by Proposition 2.2,

|Xn,�|pp ≤
∫



|m|p∣∣(S�−1φ) ◦ f

∣∣p dμ =
∫



L|m|p|S�−1φ|p dμ

≤ |L|m|p|∞|S�−1φ|pp � �p/2‖v‖2p
η � np/2‖v‖2p

η ,

so |Xn,�|2p � n‖v‖4
η.

Let M denote the underlying σ -algebra on (,μ) and define Gn,� = f
−(n−�)
 M, 2 ≤ � ≤ n. Since Lm = 0,

Ln+1−�Xn,� = L
(
m ⊗ {

(S�−1φ) ◦ f

}) = Lm ⊗ (S�−1φ) = 0

for all �. It follows (cf. [20, Proposition 2.9]) that {Xn,�,G�; 2 ≤ � ≤ n} is a sequence of martingale differences. Working
coordinatewise, by Burkholder’s inequality [2],

∣∣∣max
k≤n

|Jk|
∣∣∣2

p
�

∣∣∣∣∣
(

n∑
�=2

X2
n,�

)1/2∣∣∣∣∣
2

p

=
∣∣∣∣∣

n∑
�=2

X2
n,�

∣∣∣∣∣
p/2

≤
n∑

�=2

∣∣X2
n,�

∣∣
p/2 =

n∑
�=2

|Xn,�|2p � n2‖v‖4
η,

and so |maxk≤n |Jk||p � n‖v‖2
η. This completes the proof. �
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Moments on . It is standard that the moment estimates for v : � → Rd follow from corresponding estimates for lifted
observables φ = v ◦ π :  → Rd . In Proposition 2.8, we need such an estimate for an observable on  that need not be
the lift of an observable on �. Hence, we recall now how to derive moment estimates on .

We define a metric on  based on the metric d� on Y :

(2.5) d

(
(y, �),

(
y′, �′)) =

{
d�

(
Fy,Fy′) � = �′ and y, y′ are in the same a ∈ α,

diam� else.

Remark 2.5. In (2.5), if we use a symbolic metric on Y in place of d�, then d is the usual symbolic metric on .

As usual, ‖ ‖η denotes the Hölder norm on . From the definition of nonuniformly expanding map, d�(T �y,T �′
y′) ≤

C1d((y, �), (y′, �′)); hence if v : � → Rd is Hölder then so is its lift φ = v ◦ π :  → Rd . Moreover, f is itself a
nonuniformly expanding map on (,d) with the same constants as T , so Theorem 2.4 yields:

Lemma 2.6. Let φ :  → Rd with ‖φ‖η < ∞, such that
∫


φ dμ = 0. Define Snφ = ∑
0≤j<n φ ◦ f

j
 and Snφ =∑

0≤i<j<n(φ ◦ f i
) ⊗ (φ ◦ f

j
). Then∣∣∣max

k≤n
|Skφ|

∣∣∣
2(p−1)

≤ Cn1/2‖φ‖η and
∣∣∣max
k≤n

|Skφ|
∣∣∣
p−1

≤ Cn‖φ‖2
η.

2.3. Drift and diffusion coefficients

Let Snv, Snv be as in (2.4) and define �, E ∈Rd×d ,

� = lim
n→∞

1

n

∫
�

Snv ⊗ Snv dμ, E = lim
n→∞

1

n

∫
�

Snv dμ.(2.6)

Proposition 2.7. The limits in (2.6) exist and are given by

� =
∫



m ⊗ mdμ, E =
∫



χ ⊗ φ dμ.

Moreover, for all n ≥ 1,∣∣∣∣1

n

∫
�

Snv ⊗ Snv dμ − �

∣∣∣∣ ≤ C‖v‖2
ηn

1/p−1/2,

∣∣∣∣1

n

∫
�

Snv dμ − E

∣∣∣∣ ≤ C‖v‖2
η

(
n−1/2 + n−(p−2)

)
.

Proof. The limit for � is obtained in [20, Corollary 2.12]. The proof of [20, Corollary 2.12] contains the estimate∣∣∣∣1

n

∫
�

Snv ⊗ Snv dμ − �

∣∣∣∣ � n−1/2‖v‖η

∣∣χ ◦ f n
 − χ

∣∣
p
,

so the convergence rate for � follows from Proposition 2.1.
Next, we note that |χ ⊗ (n−1Snφ)|1 ≤ |χ |1|v|∞ < ∞ since χ ∈ Lp−1 ⊂ L1. Also n−1Snφ → 0 almost surely by the

pointwise ergodic theorem. Hence it follows from the dominated convergence theorem that

lim
n→∞

1

n

∫


χ ⊗ Snφ dμ = 0.

Since Lm = 0, we have
∫

(m ◦ f i

) ⊗ (φ ◦ f
j
)dμ = 0 for all i < j . Hence by (2.2),

∫


Snφ dμ =
∫



n−1∑
j=1

(
χ ◦ f

j
 − χ

) ⊗ (
φ ◦ f

j


)
dμ = n

∫


χ ⊗ φ dμ −
∫



χ ⊗ Snφ dμ.

It follows that E = limn→∞ 1
n

∫

Snφ dμ = ∫


χ ⊗ φ dμ.
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To obtain the convergence rate for E, we may suppose without loss that p ∈ (2, 5
2 ]. Write (p − 1)−1 + q−1 = 1 where

q ∈ [3,∞). It follows from Hölder’s inequality and Proposition 2.1 that |χ ⊗ Snφ|1 ≤ |χ |p−1|Snφ|q � ‖v‖η|Snφ|q . By
Theorem 2.4,∫



|Snφ|q dμ ≤ |Snφ|q−2(p−1)∞
∫



|Snφ|2(p−1) dμ � ‖v‖q
η nq−2(p−1)np−1 = ‖v‖q

η nq−(p−1).

Hence |χ ⊗ Snφ|1 � ‖v‖2
η n1−(p−1)/q = ‖v‖2

η n3−p and the result follows. �

For later use, we record the following result:

Proposition 2.8. For n ≥ 1,∣∣∣∣∣max
k≤n

∣∣∣∣∣
k−1∑
j=0

(
(χ ⊗ φ) ◦ f

j
 − E

)∣∣∣∣∣
∣∣∣∣∣
1

≤ C‖v‖2
η

(
n3/4 + n

∫
Y

τ 21{τ≥n1/4} dμY

)
.

Proof. Fix q > 0, and define

ψ :  →Rd×d, ψ(y, �) = (χ ⊗ φ)(y, �)1{τ(y)≥q}.

By (2.3), |χ ⊗ φ|(y, �) ≤ (|χ ′|∞ + �|v|∞)|v|∞ � ‖v‖2
ητ (y). Hence

(2.7) |ψ |1 � ‖v‖2
η

∫


τ(y)1{τ(y)≥q} dμ(y, �) ≤ ‖v‖2
η

∫
Y

τ 21{τ≥q} dμY .

Write χ ⊗ φ − E = U + V where

U = ψ −
∫



ψ dμ, V = χ ⊗ φ − ψ −
∫



(χ ⊗ φ − ψ)dμ.

By (2.7), ∣∣∣max
k≤n

|SkU |
∣∣∣
1
≤

∣∣∣∣∑
j<n

∣∣U ◦ f
j


∣∣∣∣∣∣
1
≤ n|U |1 ≤ 2n|ψ |1 � n‖v‖2

η

∫
Y

τ 21{τ≥q} dμY .

Next, V (y, �) = (χ ⊗ φ)(y, �)1{τ<q} − ∫

(χ ⊗ φ)1{τ<q} dμ. By (2.3),

∣∣χ(y, �) − χ
(
y′, �

)∣∣ ≤ ∣∣χ ′(y) − χ ′(y′)∣∣ +
�−1∑
k=0

∣∣φ(y, k) − φ
(
y′, k

)∣∣
� ‖v‖ηd�

(
y, y′)η + ‖φ‖η

�−1∑
k=0

d

(
(y, k),

(
y′, k

))η

� ‖v‖ητ (y)d

(
(y, �),

(
y′, �

))η
.

Here we used that ‖φ‖η � ‖v‖η and d�(y, y′) ≤ d((y, �), (y′, �)).
A simpler calculation shows that |χ(y, �)| � τ(y)‖v‖η. It follows that ‖V ‖η � q‖v‖2

η. By Lemma 2.6,∣∣∣max
k≤n

|SkV |
∣∣∣
1
� ‖V ‖η n1/2 � q‖v‖2

η n1/2.

The result follows by taking q = n1/4. �

Remark 2.9. Nonuniformly expanding maps are mixing up to a finite cycle. When they are mixing (in particular, if
gcd{τ(a) : a ∈ α} = 1), then we have formulas of Green-Kubo type for � and E in (2.6), namely

� =
∫

�

v ⊗ v dμ +
∞∑

n=1

∫
�

(
v ⊗ (

v ◦ T n
) + (

v ◦ T n
) ⊗ v

)
dμ, E =

∞∑
n=1

∫
�

v ⊗ (
v ◦ T n

)
dμ.
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3. Families of nonuniformly expanding maps

In this section, we prove the iterated WIP and iterated moment estimates for uniform families of nonuniformly expanding
maps.

3.1. Iterated WIP and iterated moments

Throughout, Tn : �n → �n, n ≥ 1, is a family of nonuniformly expanding maps as in Section 2 with absolutely continuous
ergodic Tn-invariant probability measures μn. To each Tn there is associated an induced uniformly expanding map Fn :
Yn → Yn with ergodic invariant probability measure μYn and a return time τn ∈ Lp(Yn) where p ≥ 2.

We assume that Tn is a uniform family of order p ≥ 2 in the sense of [20]. This means that the expansion and distortion
constants C1 ≥ 1, β > 1, η ∈ (0,1] for the induced maps Fn can be chosen independent of n and that the family {τp

n } is
uniformly integrable on (Yn,μYn), i.e. supn

∫
Yn

τ
p
n 1{τn≥q} dμYn → 0 as q → ∞. Let vn : �n → Rd , n ≥ 1, be a family of

observables with supn≥1 ‖vn‖η < ∞ and
∫
�n

vn dμn = 0.
Let fn : n → n be the corresponding family of Young tower maps, with invariant probability measures μ,n and

semiconjugacies πn : n → �n. In particular, μn = πn∗μn .
Define the lifted observables φn = vn ◦ πn : n → Rd . By Section 2, we have the martingale-coboundary decompo-

sitions

φn = mn + χn ◦ fn − χn.

Proposition 3.1. The family {|mn|2; n ≥ 1} is uniformly integrable on (�n,μn).

Proof. See [20, Proposition 4.3]. �

Abusing notation from Section 2 slightly, we define

Skvn =
∑

0≤j<k

vn ◦ T
j
n , Skvn =

∑
0≤i<j<k

(
vn ◦ T i

n

) ⊗ (
vn ◦ T

j
n

)
.

By uniformity, the constants C in Section 2 can be chosen independently of n. Hence the next result is an immediate
consequence of Theorem 2.4:

Corollary 3.2 (Iterated moments). For all n ≥ 1,∣∣∣max
k≤n

|Skvn|
∣∣∣
L2(p−1)(μn)

≤ Cn1/2‖vn‖η,

∣∣∣max
k≤n

|Snvn|
∣∣∣
Lp−1(μn)

≤ Cn‖vn‖2
η.

Write

�n = lim
k→∞

1

k

∫
n

Skvn ⊗ Skvn dμn, En = lim
k→∞

1

k

∫
n

Skvn dμn.(3.1)

Corollary 3.3. The limits in (3.1) exist for each n and are given by

�n =
∫

n

mn ⊗ mn dμn, En =
∫

n

χn ⊗ φn dμn.

For p > 2, the convergence is uniform in n.

Proof. This follows from Proposition 2.7. �

Define Wn ∈ D([0,1],Rd), Wn ∈ D([0,1],Rd×d) by

Wn(t) = 1√
n

∑
0≤j<nt

vn ◦ T
j
n , Wn(t) = 1

n

∑
0≤i<j<nt

(
vn ◦ T i

n

) ⊗ (
vn ◦ T

j
n

)
.

We can now state the main result of this section.
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Theorem 3.4 (Iterated WIP). Suppose that limn→∞ �n = � and limn→∞ En = E. Then

(Wn,Wn) →μn (W,W) as n → ∞ in D
([0,1],Rd ×Rd×d

)
,

where W is d-dimensional Brownian motion with covariance matrix � and W(t) = ∫ t

0 W ⊗ dW + Et . (As always in this

paper,
∫ t

0 W ⊗ dW denotes the Itô integral.)

To prove Theorem 3.4, it is equivalent to show that (Qn,Qn) →μn
(W,W) where

Qn(t) = 1√
n

∑
0≤j<nt

φn ◦ f
j
n

, Qn(t) = 1

n

∑
0≤i<j<nt

(
φn ◦ f i

n

) ⊗ (
φn ◦ f

j
n

)
.

Define also Mn(t) = 1
n

∑
0≤i<j<nt (mn ◦ f i

n
) ⊗ (φn ◦ f

j
n

).

Lemma 3.5. Suppose that limn→∞ �n = �. Then (Qn,Mn) →μn
(W,M) in D([0,1],Rd × Rd×d), where M(t) =∫ t

0 W ⊗ dW .

Proof. We verify the hypotheses of Theorem A.1. Hypothesis (a) holds by Proposition 3.1. Next, by Proposition 2.1,
writing | |2 as shorthand for | |L2(μn) and | |L2(μYn ),∣∣∣∣max

k≤n

∣∣∣∣ ∑
0≤j<k

(φn − mn) ◦ f
j
n

∣∣∣∣∣∣∣∣
2
=

∣∣∣max
k≤n

∣∣χn ◦ f k
n

− χn

∣∣∣∣∣
2
≤ C‖vn‖η

(
n1/4 + n1/2|1{τn≥n1/4}τn|2

)
.

Since the family {τ 2
n } is uniformly integrable, n−1/2|maxk≤n |∑0≤j<k(φn − mn) ◦ f

j
n

||2 → 0, verifying hypothesis (b).
Finally, by Proposition 2.3, for t ∈ [0,1],∣∣∣∣ ∑

0≤j<nt

UnLn(mn ⊗ mn) ◦ f
j
n

− [nt]�n

∣∣∣∣
2
≤ Cn1/2‖vn‖2

η.

Hypothesis (c) follows. �

Proof of Theorem 3.4. Write Qn(t) −Mn(t) = An(t) − Bn(t), where

An(t) = 1

n

∑
0≤j<nt

(χn ⊗ φn) ◦ f
j
n

, Bn(t) = 1

n
χn ⊗

∑
0≤j<nt

φn ◦ f
j
n

.

By Lemma 3.5, it suffices to show that supt∈[0,1] |An(t) − Bn(t) − tEn| →μn
0.

Write | |q = | |Lq(μn). Since the family {τ 2
n } is uniformly integrable, it follows from Proposition 2.8 that∣∣∣ sup

t∈[0,1]

∣∣An(t) − tEn

∣∣∣∣∣
1
� ‖vn‖2

η

(
n−1/4 +

∫
Yn

τ 2
n 1{τn≥n1/4} dμYn

)
→ 0.

Next, supt∈[0,1] |Bn(t)| ≤ |χn|B ′
n where B ′

n = n−1 maxk≤n |∑k−1
j=0 φn ◦ f

j
n

|. By Theorem 2.4,∣∣B ′
n

∣∣
2 � n−1/2‖vn‖η � n−1/2,

so B ′
n →μn

0. Also, by Proposition 2.1, |χn|1 � ‖vn‖η = O(1). It follows that supt∈[0,1] |Bn(t)| →μn
0. �

Corollary 3.6. Suppose that limn→∞ �n = � and limn→∞ En = E. Let λn be a family of probability measures on �n

absolutely continuous with respect to μn. Suppose that the densities ρn = dλn/dμn satisfy supn

∫
ρ1+δ

n dμn < ∞ for

some δ > 0 and that infN≥1 lim supn→∞
∫ | 1

N

∑N−1
j=0 ρn ◦ T

j
n − 1|dμn = 0.

Then (Wn,Wn) →λn (W,W) as n → ∞ in D([0,1],Rd × Rd×d) where W is d-dimensional Brownian motion with
covariance matrix � and W(t) = ∫ t

0 W ⊗ dW + Et .
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Proof. We verify the conditions of Remark B.2 with B = D([0,1],Rd ×Rd×d) and dB(u, v) = supt∈[0,1] |u(t) − v(t)|.
The result then follows from Theorem 3.4.

Conditions (S1) and (S5) of Remark B.2 hold by assumption so it remains to verify (S4). Define the sequence of
random variables

Rn : � → D
([0,1],Rd ×Rd×d

)
, Rn = (Wn,Wn).

We have supt∈[0,1] |(Wn ◦ Tn)(t) − Wn(t)| ≤ 2n−1/2|vn|∞. Also,

(Wn ◦ Tn)(t) −Wn(t) = n−1
∑

1≤i<nt

(
vn ◦ T i

n

) ⊗ (
vn ◦ T n

n

) − n−1
∑

1≤j<nt

vn ⊗ (
vn ◦ T

j
n

)
.

Write | |1 = | |L1(μn). By Corollary 3.2,∣∣∣sup
[0,1]

|Wn ◦ Tn −Wn|
∣∣∣
1
≤ 4n−1|vn|∞

∣∣∣max
k≤n

|Skvn|
∣∣∣
1
� n−1/2‖vn‖2

η.

Hence ∣∣dB(Rn ◦ Tn,Rn)
∣∣
1 � n−1/2(|vn|∞ + ‖vn‖2

η

)
,

verifying condition (S4). �

Remark 3.7. By Corollary 3.2, |N−1 ∑k−1
j=0 ρn◦T

j
n −1| � N−1/2‖ρn‖η. Hence a sufficient condition for the assumptions

on ρn in Corollary 3.6 is that supn ‖ρn‖η < ∞.

3.2. Existence of limits for �n and En

Theorem 3.4 and Corollary 3.6 establish the iterated WIP subject to the existence of limn→∞ �n and limn→∞ En. In this
subsection, we describe mild conditions under which these limits exist.

Let (�,d�) be a bounded metric space with finite Borel measure ρ. We assume that Tn, n ∈ N ∪ {∞}, is a uniform
family as in Section 3.1 but now of order p > 2 and defined on the common space �. In particular, each Tn is a nonuni-
formly expanding map as in Section 2, with absolutely continuous ergodic Tn-invariant Borel probability measures μn.
We suppose that μn is statistically stable: μn →w μ∞ as n → ∞. Moreover, we require that∫

�

(
v ◦ T

j∞
)(

w ◦ T k∞
)
(dμn − dμ∞) → 0 and T

j
n →μn T

j∞ as n → ∞(3.2)

for all j, k ≥ 0 and all v,w ∈ Cη(�). (The second part of condition (3.2) means that μn{y ∈ � : d�(T
j
n y,T

j∞y) > a} → 0
for all a > 0.)

Let vn ∈ Cη(�,Rd), n ∈N∪ {∞}, with
∫
�

vn dμn = 0. We assume that limn→∞ ‖vn − v∞‖η = 0.

Lemma 3.8. Define Snvn = ∑
0≤j<n vn ◦ T

j
n and Snvn = ∑

0≤i<j<n(vn ◦ T i
n) ⊗ (vn ◦ T

j
n ). Then the limits

�n = lim
n→∞

1

n

∫
�

Snvn ⊗ Snvn dμn, En = lim
n→∞

1

n

∫
�

Snvn dμn,

exist for all n ∈ N∪ {∞}, and limn→∞ �n = �∞, limn→∞ En = E∞.

Proof. The limits �n and En exist for n fixed by Corollary 3.3. We refer to [20, Proposition 7.6] for the proof that
limn→∞ �n = �∞. Here we show that limn→∞ En = E∞.

Write Jn,n = ∫
�
Snvn dμn. Let δ > 0. By Corollary 3.3, there exists N ≥ 1 such that |N−1Jn,N −En| < δ for all n ≥ 1.

Hence,

(3.3) |En − E∞| < 2δ + N−1|Jn,N − J0,N |.
Next

Jn,N − J0,N =
∫

�

(SNvn − SNv∞) dμn +
∫

�

SNv∞ (dμn − dμ∞).
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By condition (3.2), limn→∞
∫
�
SNv∞ (dμn − dμ∞) = 0. Also,

|SNvn − SNv∞| ≤
∑

0≤i<j<N

∣∣(vn ◦ T i
n

) ⊗ (
vn ◦ T

j
n

) − (
v∞ ◦ T i∞

) ⊗ (
v∞ ◦ T

j∞
)∣∣ ≤ A1 + A2,

where

A1 =
∑

0≤i<j<N

∣∣(vn ◦ T i
n

) ⊗ (
vn ◦ T

j
n

) − (
v∞ ◦ T i

n

) ⊗ (
v∞ ◦ T

j
n

)∣∣,
A2 =

∑
0≤i<j<N

∣∣(v∞ ◦ T i
n

) ⊗ (
v∞ ◦ T

j
n

) − (
v∞ ◦ T i∞

) ⊗ (
v∞ ◦ T

j∞
)∣∣.

Now,

A1 ≤
∑

0≤i<j<N

(|vn| ◦ T i
n |vn − v∞| ◦ T

j
n + |vn − v∞| ◦ T i

n |v∞| ◦ T
j
n

) ≤ N2(|vn|∞ + |v∞|∞
)|vn − v∞|∞.

Also,

A2 ≤ N |v∞|∞
∑

0≤j<N

∣∣v∞ ◦ T
j
n − v∞ ◦ T

j∞
∣∣ ≤ N |v∞|∞|v∞|ηgn,N ,

where gn,N (y) = ∑N−1
j=0 d�(T

j
n y,T

j∞y)η . By the assumption on vn and condition (3.2), we obtain that limn→∞ |SNvn −
SNv∞|L1(μn) = 0. Hence limn→∞ Jn,N = J0,N and so lim supn→∞ |En − E∞| ≤ 2δ by (3.3). Since δ is arbitrary, the
result follows. �

3.3. Auxiliary properties

Our results so far in this section on the iterated WIP and control of iterated moments verify the main hypotheses required
to apply rough path theory in Part 2. However, there remain two relatively minor hypotheses, Assumption 2.11 and
Assumption 2.12(ii)(a) in [4] which we address now. We continue to assume the set up of Section 3.2 though we require
weaker regularity assumptions on vn: it suffices that vn ∈ L∞(�,Rd), n ≥ 1, and v∞ ∈ Cη(�,Rd) with limn→∞ |vn −
v∞|∞ = 0. Fix t ∈ [0,1], and define Vn = n−1 ∑[nt]−1

j=0 vn ◦ T
j
n .

Proposition 3.9.

(a) limn→∞ |Vn − t
∫
�

v∞ dμ∞|Lp(μn) = 0.
(b) limn→∞

∫
�

vn ⊗ vn dμn = ∫
�

v∞ ⊗ v∞ dμ∞.

Proof. (a) Define Un = n−1 ∑[nt]−1
j=0 v∞ ◦T

j
n . Then |Vn −Un|∞ ≤ t |vn −v∞|∞ → 0. Since v∞ is Hölder, it follows from

Corollary 3.2 that |Un − t
∫
�

v∞ dμn|Lp(μn) � ‖v∞‖η n−1/2. By (3.2),
∫
�

v∞ dμn → ∫
�

v∞ dμ∞ and the result follows.
(b) We have

∫
�

|vn ⊗ vn − v∞ ⊗ v∞|dμn ≤ (|vn|∞ + |v∞|∞)|vn − v∞|∞ → 0. Also,
∫
�

v∞ ⊗ v∞(dμn − dμ∞) → 0
by (3.2). �

4. Examples

In this section, we consider examples of nonuniformly expanding dynamics, including families of intermittent maps (1.2)
discussed in the introduction, covered by the results in this paper.

4.1. Application to intermittent maps

Fix a family of intermittent maps Tn : [0,1] → [0,1], n ∈ N ∪ {∞}, as in (1.2) with parameters γn ∈ (0, 1
2 ) such that

limn→∞ γn = γ∞. By [19, Example 5.1], Tn is a uniform family of nonuniformly expanding maps of order p for all
p ∈ (2, γ −1∞ ). By [1,18], μn is strongly statistically stable. That is, the densities hn = dμn/dLeb satisfy limn→∞

∫
�

|hn −
h∞|dLeb = 0. Using this property, conditions (3.2) are easily verified.

Hence our main results on control of iterated moments (Corollary 3.2) and the iterated WIP (Theorem 3.4 and
Lemma 3.8) hold for families of intermittent maps Tn and Hölder observables vn : [0,1] → Rd with

∫
vn dμn = 0 and
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limn→∞ ‖vn − v∞‖η = 0. Also the auxiliary properties in Proposition 3.9 are satisfied. This leads via Part 2 to homog-
enization results x̂n →μn X for fast-slow systems (1.1). Since μn(x̂n ∈ B) − μ∞(x̂n ∈ B) = ∫

�
1{x̂n∈B}(hn − h∞) dLeb

for suitable subsets B ⊂ D([0,1],Rd), it follows from strong statistical stability that x̂n →μ∞ X.
In the remainder of this subsection, we show that all our results remain valid when μn is replaced by Lebesgue measure.

(We continue to assume that the observables vn are centered with respect to μn, so
∫

vn dμn = 0.)
The densities hn = dμn/dLeb are uniformly bounded below (see [22, Lemma 2.4] for explicit lower bounds). Hence

it is immediate that the moment estimates in Corollary 3.2 hold with μn changed to Leb. Since Leb is not invariant, the
following nonstationary version of the moment estimates is required in Part 2:

Proposition 4.1. |∑�≤j<k vn ◦ T
j
n |L2(p−1)(Leb) ≤ C(k − �)1/2‖vn‖η and |∑�≤i<j<k(vn ◦ T i

n) ⊗ (vn ◦ T
j
n )|Lp−1(Leb) ≤

C(k − �)‖vn‖2
η for all 0 ≤ � < k < n.

Proof. Since μn is Tn-invariant, it follows from Corollary 3.2 that∣∣∣∣ ∑
�≤j<k

vn ◦ T
j
n

∣∣∣∣
L2(p−1)(μn)

=
∣∣∣∣ ∑
0≤j<k−�

vn ◦ T
j
n

∣∣∣∣
L2(p−1)(μn)

� (k − �)1/2‖vn‖η,

∣∣∣∣ ∑
�≤i<j<k

(
vn ◦ T i

n

) ⊗ (
vn ◦ T

j
n

)∣∣∣∣
Lp−1(μn)

=
∣∣∣∣ ∑
0≤i<j<k−�

(
vn ◦ T i

n

) ⊗ (
vn ◦ T

j
n

)∣∣∣∣
Lp−1(μn)

� (k − �)‖vn‖2
η.

Now use that the densities hn are uniformly bounded below. �

Next we turn to the iterated WIP. Defining �n and En as in (3.1) for n ∈ N∪ {∞}, we already have that limn→∞ �n =
�∞ and limn→∞ En = E∞ by Lemma 3.8.

Proposition 4.2. (Wn,Wn) →Leb (W,W) as n → ∞ in D([0,1],Rd × Rd×d), where W is d-dimensional Brownian
motion with covariance matrix �∞ and W(t) = ∫ t

0 W ⊗ dW + E∞t .

Proof. By Theorem 3.4, (Wn,Wn) →μn (W,W) as n → ∞ in D([0,1],Rd ×Rd×d). To pass from μn to Leb, we apply
Corollary 3.6. Let ρn = h−1

n = dLeb/dμn. Then supn |ρn|∞ < ∞. To deal with the remaining assumption in Corol-
lary 3.6, write ∫

�

∣∣∣∣∣ 1

N

N−1∑
j=0

ρn ◦ T
j
n − 1

∣∣∣∣∣dμn ≤ I1(N,n) + I2(N,n) + I3(N,n) + I4(N)

where

I1 =
∫

�

1

N

∣∣∣∣∣
N−1∑
j=0

(
ρn ◦ T

j
n − ρ∞ ◦ T

j
n

)∣∣∣∣∣dμn, I2 =
∫

�

1

N

N−1∑
j=0

ρ∞ ◦ T
j
n |hn − h∞|dLeb,

I3 =
∫

�

1

N

∣∣∣∣∣
N−1∑
j=0

(
ρ∞ ◦ T

j
n − ρ∞ ◦ T

j∞
)∣∣∣∣∣dμ∞, I4 =

∫
�

∣∣∣∣∣ 1

N

N−1∑
j=0

ρ∞ ◦ T
j∞ − 1

∣∣∣∣∣dμ∞.

Fix N ≥ 1. By Tn-invariance of μn,

I1(N,n) ≤
∫

�

|ρn − ρ∞|dμn =
∫

�

|hn − h∞|ρ∞ dLeb ≤ |ρ∞|∞
∫

�

|hn − h∞|dLeb,

and also

I2(N,n) ≤ |ρ∞|∞
∫

�

|hn − h∞|dLeb.

By boundedness of ρ∞ and strong statistical stability, limn→∞ I1(N,n) = limn→∞ I2(N,n) = 0. By continuity of ρ∞
and the dominated convergence theorem, limn→∞ I3(N,n) = 0. Hence for each fixed N ≥ 1,

lim sup
n→∞

∫
�

∣∣∣∣∣ 1

N

N−1∑
j=0

ρn ◦ T
j
n − 1

∣∣∣∣∣dμn ≤ I4(N).
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By the mean ergodic theorem, limN→∞ I4(N) = 0. Hence lim supn→∞
∫
�

| 1
N

∑N−1
j=0 ρn ◦ T

j
n − 1|dμn → 0 as N → ∞.

This verifies the final assumption in Corollary 3.6 completing the proof. �

Finally, we consider the analogue of Proposition 3.9 with μn replaced by Leb where appropriate. Again we can relax
the assumptions on vn; it suffices that vn ∈ L∞(�,Rd), n ≥ 1, and v∞ ∈ Cη(�,Rd) with limn→∞ |vn − v∞|∞ = 0.

Recall that Vn = n−1 ∑
j<[nt] vn ◦ T

j
n where t ∈ [0,1] is fixed.

Proposition 4.3.

(a) limn→∞ |Vn − t
∫
�

v∞ dμ∞|Lp(Leb) = 0.

(b) limn→∞ n−1 ∑
j<n

∫
�
(vn ⊗ vn) ◦ T

j
n dLeb = ∫

�
v∞ ⊗ v∞ dμ∞.

Proof. (a) Using again that the densities hn = dμn/dLeb are uniformly bounded below,∫
�

∣∣∣∣Vn − t

∫
�

v∞ dμ∞
∣∣∣∣dLeb �

∫
�

∣∣∣∣Vn − t

∫
�

v∞ dμ∞
∣∣∣∣dμn → 0

by Proposition 3.9(a).
(b) Set wn = vn ⊗ vn − ∫

�
vn ⊗ vn dμn. Then wn ∈ Cη(�,Rd×d) with

∫
�

wn dμn = 0 and∣∣∣∣n−1
∑
j<n

∫
�

(vn ⊗ vn) ◦ T
j
n dLeb −

∫
�

vn ⊗ vn dμn

∣∣∣∣ ≤ n−1
∫

�

∣∣∣∣∑
j<n

wn ◦ T
j
n

∣∣∣∣dLeb

� n−1
∫

�

∣∣∣∣∑
j<n

wn ◦ T
j
n

∣∣∣∣dμn � n−1/2‖wn‖η → 0

by Corollary 3.2. �

4.2. Further examples

In [20], the WIP and estimates of ordinary moments were obtained for many examples of nonuniformly expanding
dynamics. We now obtain the corresponding iterated results.

Revisiting [19, Example 5.2] and [20, Example 4.10, Example 7.3], we consider families of quadratic maps Tn :
[−1,1] → [−1,1], n ∈ N ∪ {∞}, given by Tn(x) = 1 − anx

2, an ∈ [0,2] with limn→∞ an = a∞. Fixing b, c > 0 we
assume that the Collet-Eckmann condition |(T k

n )′(1)| ≥ cebk holds for all k ≥ 0, n ≥ 1.2 The set of parameters such that
this Collet-Eckmann condition holds has positive Lebesgue measure for b, c sufficiently small. Moreover Tn is a uniform
family of nonuniformly expanding maps of order p (for any p) and satisfies strong statistical stability. Hence we obtain
control of iterated moments (Corollary 3.2) and the iterated WIP (Theorem 3.4 and Lemma 3.8) for Hölder observables
vn : [−1,1] →Rd with

∫
�

vn dμn = 0 and limn→∞ |vn − v∞|∞ = 0.
Revisiting [19, Example 5.4] and [20, Example 4.11, Example 7.3], we consider families of Viana maps Tn : S1 ×R→

S1 ×R, n ∈N∪ {∞}. Again, we obtain control of iterated moments and the iterated WIP.
In both sets of examples, we obtain homogenization results x̂n →μn X by Part 2 and x̂n →μ∞ X by strong statistical

stability as explained at the beginning of Section 4.1.

5. Families of nonuniformly expanding semiflows

In this section, we consider uniform families of nonuniformly expanding semiflows. These are modelled as suspensions
over uniform families of nonuniformly expanding maps. In keeping with the program of [24], no mixing assumptions are
imposed on the semiflows.

Specifically, let Tn : �n → �n, n ≥ 1, be a uniform family of nonuniformly expanding maps of order p ≥ 2 as in
Section 3 with ergodic invariant probability measures μ�n . Let hn : �n → R+ be a family of roof functions satisfying
supn ‖hn‖η < ∞ and infn infhn > 0. For each n ≥ 1, define the suspension

�n = �hn
n = {

(x,u) ∈ �n ×R : 0 ≤ u ≤ hn(x)
}
/ ∼ ,

(
x,hn(x)

) ∼ (Tnx,0).

2There is a typo in [20, Example 4.10] where cebn should be cebk .
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The suspension flow gn,t : �n → �n is given by gn,t (x, u) = (x,u + t) computed modulo identifications. Let h̄n =∫
�n

hn dμ�n . Then μn = μ
hn

�n
= (μ�n × Lebesgue)/h̄n is an ergodic gn,t -invariant probability measure on �n. We call

gn,t : �n → �n a uniform family of nonuniformly expanding semiflows of order p.
To simplify the statement of results in this section, we denote by C various constants depending continuously on the

data associated with Tn : �n → �n as well as supn ‖hn‖η.
For v : �n →Rd , define

‖v‖η = |v|∞ + sup
(x,u)=(x′,u)∈�n

|v(x,u) − v(x′, u)|
d�n(x, x′)η

.

5.1. Moment estimates

As in Sections 2 and 3, for uniform moment estimates it suffices to consider a fixed uniformly expanding semiflow
gt : � → �. The main result in this section, Theorem 5.3, establishes the desired moment estimates. We also collect
together some other results that fit best into the fixed semiflow setting.

Given v : � → Rd , define the induced observable

ṽ : � → R, ṽ(x) =
∫ h(x)

0
v(x,u)du.

Proposition 5.1. |ṽ|∞ ≤ |h|∞|v|∞ and ‖ṽ‖η ≤ ‖h‖η‖v‖η.

Proof. The estimate for |ṽ|∞ is immediate. Also, for x, x′ ∈ � with h(x) ≤ h(x′),

∣∣ṽ(x) − ṽ
(
x′)∣∣ ≤ ∣∣h(x) − h

(
x′)∣∣|v|∞ +

∫ h(x)

0

∣∣v(x,u) − v
(
x′, u

)∣∣du

≤ ‖h‖η|v|∞d�

(
x, x′) +

∫ h(x)

0
‖v‖η d�

(
x, x′)du ≤ ‖h‖η‖v‖ηd�

(
x, x′),

completing the proof. �

Define

St =
∫ t

0
v ◦ gs ds, St =

∫ t

0

∫ s

0
(v ◦ gr) ⊗ (v ◦ gs) dr ds

on �. Also, for the induced observable ṽ : � →Rd , define

S̃n(x,u) =
∑

0≤j<n

ṽ
(
T jx

)
, S̃n(x,u) =

∑
0≤i<j<n

ṽ
(
T ix

) ⊗ ṽ
(
T jx

)
, (x,u) ∈ �.

We introduce the lap number N(t) : � →N, t ≥ 0,

N(t)(x,u) = max

{
n ≥ 0 :

n−1∑
j=0

h
(
T jx

) ≤ u + t

}
.

Also, define

H : � →Rd , H(x,u) =
∫ u

0
v(x, s) ds.

Proposition 5.2. For all t ≥ 0,

|St − S̃N(t)|∞ ≤ 2|h|∞|v|∞,∣∣∣∣St − S̃N(t) −
∫ t

0
(H ⊗ v) ◦ gs ds

∣∣∣∣ ≤ 2|h|∞|v|∞|S̃N(t)| + 2|h|2∞|v|2∞.
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Proof. We use formal calculations from the proof of [16, Proposition 7.5], focusing on the precise estimates.
First, St = S̃N(t) + H ◦ gt − H . Hence |St − S̃N(t)|∞ ≤ 2|H |∞ ≤ 2|h|∞|v|∞.
Second, writing Tn = inf{t ′ ≥ 0 : N(t ′) = n}, we observe that

S̃N(t) =
∫ TN(t)

0
S̃N(s) ⊗ (v ◦ gs) ds =

∫ t

0
S̃N(s) ⊗ (v ◦ gs) ds − S̃N(t) ⊗ (H ◦ gt ).

Hence

St =
∫ t

0
S̃N(s) ⊗ (v ◦ gs) ds +

∫ t

0
(H ⊗ v) ◦ gs ds − H ⊗

∫ t

0
v ◦ gs ds = S̃N(t) +

∫ t

0
(H ⊗ v) ◦ gs ds + K(t),

where K(t) = S̃N(t) ⊗ (H ◦ gt ) − H ⊗ St . We have∣∣K(t)
∣∣ ≤ |S̃N(t)||H |∞ + |H |∞|St | ≤ |S̃N(t)||h|∞|v|∞ + |h|∞|v|∞

(|S̃N(t)| + 2|h|∞|v|∞
)
.

The result follows. �

Theorem 5.3 (Iterated moments). For all t1 ≥ 0,∣∣∣ sup
t∈[0,t1]

|St |
∣∣∣
L2(p−1)(�)

≤ Ct
1/2
1 ‖v‖η,

∣∣∣ sup
t∈[0,t1]

|St |
∣∣∣
Lp−1(�)

≤ Ct1‖v‖2
η.

Proof. The estimates are trivial for t ∈ [0,1] (since t ≤ t1/2) so we restrict to t1 ≥ 1, t ∈ [1, t1].
Since infh > 0, it is immediate ([16, Proposition 7.4]) that∣∣N(t)

∣∣∞ ≤ C0 t for all t ≥ 1,(5.1)

where C0 = (infh)−1 + 1.
By (5.1),∫

�

sup
1≤t≤t1

|S̃N(t)|2(p−1) dμ ≤
∫

�

max
k≤C0t1

|S̃k|2(p−1) dμ ≤ h̄−1|h|∞
∫

�

max
k≤C0t1

∣∣∣∣ ∑
0≤j<k

ṽ ◦ T j

∣∣∣∣2(p−1)

dμ�.

Hence by Theorem 2.4,∣∣∣ sup
1≤t≤t1

|S̃N(t)|
∣∣∣
L2(p−1)(�)

�
∣∣∣∣ max
k≤C0t1

∣∣∣∣ ∑
0≤j<k

ṽ ◦ T j

∣∣∣∣∣∣∣∣
L2(p−1)(�)

� t
1/2
1 ‖ṽ‖η � t

1/2
1 ‖v‖η.

Similarly, | sup1≤t≤t1
|̃SN(t)||Lp−1(�) � t1‖v‖2

η. Also,
∫ t1

0 |(H ⊗v)◦gs |ds ≤ t1|h|∞|v|2∞ so the result follows from Propo-
sition 5.2. �

Corollary 5.4. For all t1 ≥ 0,∣∣∣∣ sup
t∈[0,t1]

∣∣∣∣∫ t

0
(H ⊗ v) ◦ gs ds − t

∫
�

H ⊗ v dμ

∣∣∣∣∣∣∣∣
L2(p−1)(�)

≤ Ct
1/2
1 ‖v‖2

η.

Proof. Using the St estimate in Theorem 5.3 with v replaced by H ⊗ v − ∫
�

H ⊗ v dμ, we obtain | supt∈[0,t1] |
∫ t

0 (H ⊗
v) ◦ gs ds − t

∫
�

H ⊗ v dμ||2(p−1) � t
1/2
1 ‖H ⊗ v‖η. In addition, ‖H ⊗ v‖η ≤ ‖H‖η‖v‖η ≤ |h|∞‖v‖2

η. �

Lemma 5.5. For all s ∈ [0, infh], n ≥ 1,∣∣∣ sup
t∈[0,1]

|S̃[nt] ◦ gs − S̃[nt]|
∣∣∣∞ ≤ 2|h|∞|v|∞,

∣∣∣ sup
t∈[0,1]

|̃S[nt] ◦ gs − S̃[nt]|
∣∣∣
L2(p−1)(�)

≤ Cn1/2‖v‖2
η.
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Proof. The random variable N(s)(x,u) lies in {0,1} due to the restriction on s. If N(s)(x,u) = 0, then gs(x,u) =
(x,u + s). Now, S̃n and S̃n are independent of u, and so S̃[nt] ◦ gs ≡ S̃[nt] and S̃[nt] ◦ gs ≡ S̃[nt] for all n, t and all s, x, u

with N(s)(x,u) = 0.
Hence we may suppose for the remainder of the proof that N(s) ≡ 1 in which case gs(x,u) = (f x,u + s − h(x)).

Then, ∣∣S̃[nt] ◦ gs(x,u) − S̃[nt](x,u)
∣∣ =

∣∣∣∣ ∑
0≤j<[nt]

(
ṽ
(
T j+1x

) − ṽ
(
T jx

))∣∣∣∣ ≤ 2|ṽ|∞ ≤ 2|h|∞|v|∞.

Next, ∣∣̃S[nt] ◦ gs(x,u) − S̃[nt](x,u)
∣∣ =

∣∣∣∣ ∑
0≤i<j<[nt]

(
ṽ
(
T i+1x

) ⊗ ṽ
(
T j+1x

) − ṽ
(
T ix

) ⊗ ṽ
(
T jx

))∣∣∣∣
=

∣∣∣∣ ∑
1≤i<[nt]

ṽ
(
T ix

) ⊗ ṽ
(
T [nt]x

) −
∑

1≤j<[nt]
ṽ ⊗ ṽ

(
T jx

)∣∣∣∣
≤ 2|ṽ|∞

∣∣∣∣( ∑
0≤j<[nt]−1

ṽ ◦ T j

)
(f x)

∣∣∣∣.
Hence | supt∈[0,1] |̃S[nt] ◦ gs − S̃[nt]||2(p−1) � n1/2‖ṽ‖2

η � n1/2‖v‖2
η by Theorem 2.4. �

Proposition 5.6. | supt≤t1
|N(t) − t/h̄||L2(p−1)(�) ≤ Ct

1/2
1 for t1 ≥ 1.

Proof. Let Skh = ∑k−1
j=0 h ◦ T j . By definition of N(t),

SN(t)(x,u)h(x) ≤ u + t < SN(t)(x,u)+1h(x).

Hence −SN(t)(x,u)h(x) − |h|∞ < −t ≤ −SN(t)(x,u)h(x) + |h|∞, so∣∣N(t)(x,u) − t/h̄
∣∣ ≤ {∣∣SN(t)(x,u)h(x) − N(t)(x,u)h̄

∣∣ + 2|h|∞
}
/h̄.

By (5.1), for all (x,u) ∈ �,

sup
t≤t1

∣∣N(t)(x,u) − t/h̄
∣∣ � max

k≤C0t1

∣∣Skh(x) − kh̄
∣∣ + 1.

Hence by Theorem 2.4, ∣∣∣sup
t≤t1

∣∣N(t) − t/h̄
∣∣∣∣∣

L2(p−1)(�)
�

∣∣∣ max
k≤C0t1

|Skh − kh̄|
∣∣∣
L2(p−1)(�)

� t
1/2
1 ,

as required. �

5.2. Iterated weak invariance principle

Let gn,t : �n → �n be a uniform family of nonuniformly expanding semiflows of order p ≥ 2. Let vn : �n →Rd , n ≥ 1,
be a family of observables with supn≥1 ‖vn‖η < ∞ and

∫
�n

vn dμn = 0. The corresponding family of induced observables

ṽn : �n → Rd satisfies supn≥1 ‖ṽn‖η < ∞ and
∫
�n

vn dμ�n = 0. Define �n and En in terms of ṽn as in (3.1). Also define

Hn(x,u) = ∫ u

0 vn(x, s) ds.
In this section, we prove an iterated WIP for the processes Wn ∈ C([0,1],Rd) and Wn ∈ C([0,1],Rd×d) on �n given

by

Wn(t) = 1√
n

∫ nt

0
vn ◦ gn,s ds, Wn(t) =

∫ t

0
Wn(s) ⊗ dWn(s).

First, we consider the processes W̃n ∈ D([0,1],Rd), W̃n ∈ D([0,1],Rd×d)

W̃n(t)(x,u) = 1√
n

[nt]−1∑
j=0

ṽn

(
T

j
n x

)
, W̃n(t)(x,u) = 1

n

∑
0≤i<j<[nt]

ṽn

(
T i

nx
) ⊗ ṽn

(
T

j
n x

)
,
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defined on �n. Let Nn(t) denote the lap numbers corresponding to the semiflows gn,t on �n. Also define

γn ∈ D
([0,1],R)

, γn(t) = n−1Nn(nt).

Proposition 5.7. Suppose that En → E, �n → �, h̄n → h̄. Then

(W̃n,W̃n) ◦ γn →μn

(
h̄−1/2W̃ , h̄−1W̃

)
in D

([0,1],Rd ×Rd×d
)
,

where W̃ is a d-dimensional Brownian motion with covariance matrix � and W̃(t) = ∫ t

0 W̃ ⊗ dW̃ + Et .

Proof. Choose c0 > 0 such that hn ≥ c0 for all n. Let λn be the sequence of probability measures on �n supported on
�n × [0, c0] with density ρn = dλn/dμn = 1�n×[0,c0]/c0.

The process (W̃n,W̃n) on (�n,λn) has the same distribution as the process (W̃n,W̃n)|�n on (�n,μ�n), so by Theo-
rem 3.4, (W̃n,W̃n) →λn (W̃ ,W̃).

By Lemma 5.5, for each s ∈ [0, c0],∣∣∣ sup
t∈[0,1]

|W̃[nt] ◦ gn,s − W̃[nt]|
∣∣∣∞ � n−1/2,

∣∣∣ sup
t∈[0,1]

|W̃[nt] ◦ gn,s − W̃[nt]|
∣∣∣
L1(μn)

� n−1/2.

Also, ‖ρn‖η = |ρn|∞ ≤ 1/c0 so by Theorem 5.3 with v = ρn − 1,∣∣∣∣∫ t1

0
ρn ◦ gn,t dt − t1

∣∣∣∣
L2(μn)

� t
1/2
1 .

We have verified the assumptions of Lemma B.1, and it follows that (W̃n,W̃n) →μn (W̃ ,W̃).
Let γ (t) = t h̄−1. By Proposition 5.6,∣∣∣sup

t≤1

∣∣γn(t) − γ (t)
∣∣∣∣∣

L1(μn)
= n−1

∣∣∣sup
t≤1

∣∣Nn(nt) − nth̄−1
∣∣∣∣∣

L1(μn)
= O

(
n−1/2).

Since γ is not random it follows that (W̃n,W̃n, γn) →μn (W̃ ,W̃, γ ). By the continuous mapping theorem,

(W̃n,W̃n) ◦ γn →μn (W̃ ,W̃) ◦ γ = (
h̄−1/2W̃ , h̄−1W̃

)
,

as required. �

Theorem 5.8 (Iterated WIP). Suppose that limn→∞ �n = �, limn→∞ En = E, limn→∞ h̄n = h̄ and limn→∞
∫
�n

Hn ⊗
vn dμn = E′. Then

(Wn,Wn) →μn (W,W) in D
([0,1],Rd ×Rd×d

)
,

where W is a d-dimensional Brownian motion with covariance matrix h̄−1� and W(t) = ∫ t

0 W ⊗ dW + (h̄−1E + E′)t .

Proof. By Proposition 5.7, it suffices to show that supt≤1 |Wn(t)− W̃n(γn(t))| →μn 0 and supt≤1 |Wn(t)− W̃n(t) ◦ γn −
tE′| →μn 0.

First, note by Proposition 5.2 that

∣∣Wn(t) − W̃n

(
γn(t)

)∣∣(x,u) = n−1/2
∣∣∣∣∫ nt

0
vn

(
gn,s(x,u)

)
ds −

∑
0≤j<Nn(nt)

ṽn

(
T

j
n x

)∣∣∣∣ ≤ 2n−1/2|hn|∞|vn|∞,

so | supt∈[0,1] |Wn(t) − W̃n(γn(t))||∞ → 0.
Similarly, by Proposition 5.2,

n

{∣∣∣∣Wn(t) − W̃n

(
γn(t)

) − n−1
∫ nt

0
(Hn ⊗ vn) ◦ gn,s ds

∣∣∣∣}(x,u)

≤ 2|hn|∞|vn|∞
∣∣∣∣ ∑
0≤j<Nn(t)

ṽn

(
T

j
n x

)∣∣∣∣ + 3|hn|2∞|vn|2∞ �
∣∣∣∣ ∑
0≤j<Nn(t)

ṽn

(
T

j
n x

)∣∣∣∣ + 1.
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By (5.1) and Theorem 2.4,∣∣∣∣ sup
t∈[0,1]

∣∣∣∣ ∑
0≤j<Nn(t)

ṽn ◦ T
j
n

∣∣∣∣∣∣∣∣
L2(�n)

�
∣∣∣∣ max
k≤C0n

∣∣∣∣ ∑
0≤j<k

ṽn ◦ f
j
n

∣∣∣∣∣∣∣∣
L2(�n)

� n1/2‖ṽn‖η � n1/2,

and so ∣∣∣∣ sup
t∈[0,1]

∣∣∣∣Wn(t) − W̃n

(
γn(t)

) − n−1
∫ nt

0
(Hn ⊗ vn) ◦ gn,s ds

∣∣∣∣∣∣∣∣
L2(�n)

→ 0.

Also, by Corollary 5.4,

n−1
∣∣∣∣ sup
t∈[0,1]

∣∣∣∣∫ nt

0
(Hn ⊗ vn) ◦ gn,s ds − nt

∫
�n

Hn ⊗ vn dμn

∣∣∣∣∣∣∣∣
L2(�n)

→ 0.

Hence | supt∈[0,1] |Wn(t) − W̃n(γn(t)) − tE′||L2(�n) → 0 and the proof is complete. �

5.3. Application to intermittent semiflows

Let � = [0,1]. Fix a family of intermittent maps Tn : � → �, n ∈ N ∪ {∞}, as in (1.2) with parameters γn ∈ (0, 1
2 ) and

absolutely continuous invariant probability measures denoted μ̃n. Suppose that limn→∞ γn = γ∞. Again, Tn is a uniform
family of order p for all p ∈ (2, γ −1∞ ) and the absolutely continuous invariant probability measures, denoted here by μ̃n,
are strongly statistically stable.

Fix η > 0 and let hn : � → R+ be a family of roof functions satisfying supn ‖hn‖η < ∞ and infn infhn > 0. Define the
corresponding uniform family of nonuniformly expanding semiflows gn,t : �n → �n with ergodic invariant probability
measures μn = (μ̃n × Lebesgue)/h̄n where h̄n = ∫

�
hn dμ̃n.

Theorem 5.9. Let vn : �n → Rd , n ≥ 1, with supn ‖vn‖η < ∞ and
∫
�n

vn dμn = 0. Then there is a constant C > 0 such
that ∣∣∣∣ sup

t∈[0,t1]

∣∣∣∣∫ t

0
vn ◦ gn,s ds

∣∣∣∣∣∣∣∣
L2(p−1)(�n)

≤ Ct
1/2
1 ,

∣∣∣∣ sup
t∈[0,t1]

∣∣∣∣∫ t

0

∫ s

0
(vn ◦ gn,r ) ⊗ (vn ◦ gn,s) dr ds

∣∣∣∣∣∣∣∣
Lp−1(�n)

≤ Ct1,

for all t1 ≥ 0, n ≥ 1.

Proof. This is immediate from Theorem 5.3. �

Theorem 5.10. Let vn : �n → Rd , n ∈ N ∪ {∞}, with supn ‖vn‖η < ∞ and
∫
�n

vn dμn = 0. Suppose that
limn→∞ supx∈�,u∈[0,h∞(x)]∩[0,hn(x)] |vn(x,u) − v∞(x,u)| = 0 and limn→∞ |hn − h∞|∞ = 0.

(a) Define

Sn =
∑

0≤j<n

ṽ ◦ T
j∞, Sn =

∑
0≤i<j<n

(
ṽ ◦ T i∞

) ⊗ (
ṽ ◦ T

j∞
)
.

where ṽ(x) = ∫ h∞(x)

0 v∞(x,u) du. Then the limits

�∞ = lim
n→∞

1

n

∫
�

Sn ⊗ Sn dμ̃∞, E∞ = lim
n→∞

1

n

∫
�

Sn dμ̃∞.

exist.
(b) Set E′ = ∫

�∞ H∞ ⊗ v∞ dμ∞ where H∞(x,u) = ∫ u

0 v∞(x,u) du. Define

Wn(t) = n1/2
∫ n−1t

0
vn ◦ gn,s ds, Wn(t) =

∫ t

0
Wn(s) ⊗ dWn(s).
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Then

(Wn,Wn) →μn (W,W) in D
([0,1],Rd ×Rd×d

)
,

where W is a d-dimensional Brownian motion with covariance matrix h̄−1∞ �∞ and W(t) = ∫ t

0 W ⊗ dW + (h̄−1∞ E∞ +
E′)t .

Proof. Part (a) follows from Lemma 3.8.
To prove part (b), we verify the hypotheses of Theorem 5.8. Since |hn −h∞|∞ → 0 it follows from statistical stability

that h̄n → h̄∞.
Let Hn(x,u) = ∫ u

0 vn(x, s) ds. It is easy to see that
∫ hn(x)

0 (Hn ⊗vn)(x,u)du → ∫ h∞(x)

0 (H∞ ⊗v∞)(x,u) du uniformly
in x, so again by statistical stability

∫
�n

Hn ⊗ vn dμn → E′.
Finally, defining �n and En using Tn, vn and hn in place of T∞, v∞ and h∞, we have that �n → �∞ and En → E∞

by Lemma 3.8. �

Appendix A: Iterated WIP for martingale difference arrays

In this appendix, we recast a classical iterated WIP of [15,21] into a form that is convenient for ergodic stationary
martingale difference arrays of the type commonly encountered in the deterministic setting.

Let {(n,Mn,μn)} be a sequence of probability spaces. Suppose that Tn : n → n is a sequence of measure-
preserving transformations with transfer operators Ln and Koopman operators Un. Suppose that φn, mn : n → Rd lie
in L2(n) and that

∫
n

φn dμn = ∫
n

mn dμn = 0 and mn ∈ kerLn.
Define the sequence of processes

�n : n → D
([0,∞)

,Rd), Mn : n → D
([0,∞)

,Rd×d),

by

�n(t) = 1√
n

∑
0≤j<nt

φn ◦ f
j
n

, Mn(t) = 1

n

∑
0≤i<j<nt

(
mn ◦ f i

n

) ⊗ (
φn ◦ f

j
n

)
, t ≥ 0.

Theorem A.1. Suppose that:

(a) the family {|mn|2, n ≥ 1} is uniformly integrable;
(b) 1√

n
maxk≤nt1 |∑k

j=0(φn − mn) ◦ f
j
n

| →μn 0 as n → ∞ for all t1 > 0;

(c) there exists a constant matrix � ∈Rd×d such that for each t > 0,

1

n

[nt]−1∑
j=0

{
UnLn(mn ⊗ mn)

} ◦ f
j
n

→μn t� as n → ∞.

Then (�n,Mn) →μn (W,M) in D([0,∞),Rd ×Rd×d) where W is a d-dimensional Brownian motion with covariance
� and M(t) = ∫ t

0 W ⊗ dW .

Proof. It suffices to prove that (�n,Mn) →μn (W,M) in D([0, t1],Rd ×Rd×d) for each fixed integer t1 ≥ 1.

Define Xn,j = n−1/2φn ◦ f
nt1−j
n

, Yn,j = n−1/2mn ◦ f
nt1−j
n

, and

Xn(t) =
∑

1≤j≤nt

Xn,j , Yn(t) =
∑

1≤j≤nt

Yn,j , Yn(t) =
∑

1≤i<j≤nt

Xn,i ⊗ Yn,j ,

for t ∈ [0, t1].
By the arguments in the proof of [20, Theorem A.1], {Yn,j ; 1 ≤ j ≤ nt1} is a martingale difference array with respect

to the filtration Gn,j = T
−(nt1−j)
n Mn and Yn →μn W in D([0, t1],Rd). Moreover, Xn is adapted (i.e. Xn,j is Gn,j -

measurable for all j , n) and Xn = Yn + Zn where

∣∣Zn(t)
∣∣ = 1√

n

∣∣∣∣∣
[nt]∑
j=1

(φn − mn) ◦ f
nt1−j
n

∣∣∣∣∣ ≤ 2√
n

max
k≤nt1

∣∣∣∣∣
k∑

j=0

(φn − mn) ◦ f
j
n

∣∣∣∣∣,
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so supt≤t1
|Zn(t)| →μn 0 by assumption (b). It follows easily that (Xn,Yn) →μn (W,W) in D([0, t1],Rd ×Rd).

Also
∫
n

|Yn(t)|2 dμn = n−1[nt] ∫
n

|mn|2 dμn ≤ t1|mn|22 which is bounded by assumption (a), so condition C2.2(i)
in [21, Theorem 2.2] is trivially satisfied. Applying [21, Theorem 2.2] (or alternatively [15]) we deduce that
(Xn,Yn,Yn) →μn (W,W,M) in D([0, t1],Rd ×Rd ×Rd×d).

Next, let D̃ denote càglàd functions. Adapting [16], we define g : D([0, t1],Rd × Rd × Rd×d) → D̃([0, t1],Rd ×
Rd×d),

g(r,u, v)(t) = (
r(t1) − r(t1 − t) ,

{
v(t1) − v(t1 − t) − r(t1 − t) ⊗ (

u(t1) − u(t1 − t)
)}∗)

,

where ∗ denotes matrix transpose.
We claim that

(�n,Mn) = g(Xn,Yn,Yn) + Fn where sup
t∈[0,t1]

∣∣Fn(t)
∣∣ →μn 0.

Suppose that the claim is true. By the continuous mapping theorem, g(Xn,Yn,Yn) →μn g(W,W,M) in D̃([0, t1],Rd ×
Rd×d). Using the fact that the limiting process has continuous sample paths, it follows (see [16, Proposition 4.9]) that
(�n,Mn) →μn g(W,W,M) in D([0, t1],Rd ×Rd×d). By [16, Lemma 4.11], the processes g(W,W,M) and (W,M) are
equal in distribution so (�n,Mn) →μn (W,M) in D([0, t1],Rd ×Rd×d).

It remains to prove the claim. Write g = (g1, g2) where g1 : D([0, t1],Rd × Rd × Rd×d) → D̃([0, t1],Rd) and g2 :
D([0, t1],Rd ×Rd ×Rd×d) → D̃([0, t1],Rd×d).

First,

�n(t) = 1√
n

[nt]−1∑
j=0

φn ◦ f
j
n

=
[nt]−1∑
j=0

Xn,nt1−j =
nt1∑

j=nt1−[nt]+1

Xn,j =
nt1∑

j=[n(t1−t)]+1

Xn,j + F 1
n (t)

= Xn(t1) − Xn(t1 − t) + F 1
n (t) = g1(Xn,Yn,Yn)(t) + F 1

n (t),

where F 1
n (t) is either 0 or −Xn,[n(t1−t)]+1. In particular,∣∣F 1

n (t)
∣∣ ≤ n−1/2 max

i≤nt1

∣∣φn ◦ f i
n

∣∣.(A.1)

Second,

Mn(t) = 1

n

∑
0≤i<j<nt

(
mn ◦ f i

n

) ⊗ (
φn ◦ f

j
n

) =
∑

0≤i<j<nt

Yn,nt1−i ⊗ Xn,nt1−j

=
∑

nt1−[nt]<j<i≤nt1

Yn,i ⊗ Xn,j =
∑

nt1−[nt]<i<j≤nt1

(Xn,i ⊗ Yn,j )
∗

=
∑

[n(t1−t)]<i<j≤nt1

(Xn,i ⊗ Yn,j )
∗ + F 2

n (t)∗

= {
Yn(t1) −Yn(t1 − t) − Xn(t1 − t) ⊗ (

Yn(t1) − Yn(t1 − t)
)}∗ + F 2

n (t)∗

= g2(Xn,Yn,Yn)(t) + F 2
n (t)∗,

where F 2
n (t) is either 0 or −∑

[n(t1−t)]+1<j≤nt1
Xn,[n(t1−t)]+1 ⊗ Yn,j . In particular, by Burkholder’s inequality and as-

sumption (a), ∣∣F 2
n (t)

∣∣ ≤ n−1 max
i≤nt1

∣∣φn ◦ f i
n

∣∣ max
q≤nt1

∣∣∣∣ ∑
0≤j≤q

mn ◦ f
j
n

∣∣∣∣ � n−1 max
i≤nt1

∣∣φn ◦ f i
n

∣∣ t1|mn|2

� n−1 max
i≤nt1

∣∣φn ◦ f i
n

∣∣.(A.2)

By (A.1) and (A.2), it remains to show that n−1 maxi≤nt1 |φn ◦ f i
n

| →μn 0. Note that

∣∣φn ◦ f i
n

∣∣ ≤ ∣∣mn ◦ f i
n

∣∣ +
∣∣∣∣∣

i∑
j=0

(φn − mn) ◦ f
j
n

∣∣∣∣∣ +
∣∣∣∣∣
i−1∑
j=0

(φn − mn) ◦ f
j
n

∣∣∣∣∣,
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so

max
i≤nt1

∣∣φn ◦ f i
n

∣∣ ≤ max
i≤nt1

∣∣mn ◦ f i
n

∣∣ + 2 max
i≤nt1

∣∣∣∣∣
i∑

j=0

(φn − mn) ◦ f
j
n

∣∣∣∣∣.
Now for any s > 0,

n−1 max
j≤nt1

∣∣mn ◦ f
j
n

∣∣2 ≤ s + n−1 max
j≤nt1

(|mn|21{n−1|mn|2>s}
) ◦ f

j
n

≤ s + n−1
nt1∑
j=0

(|mn|21{n−1|mn|2>s}
) ◦ f

j
n

.

Hence

n−1
∣∣∣max
j≤nt1

∣∣mn ◦ f
j
n

∣∣∣∣∣2

2
= n−1| max

j≤nt1

∣∣mn ◦ f
j
n

∣∣2|1 ≤ s + t1||mn|21{n−1|mn|2>s}|1.

Since s > 0 is arbitrary, it follows from assumption (a) that limn→∞ n−1/2|maxj≤nt1 |mn ◦ f
j
n

||2 = 0. Combining this

with assumption (b), n−1/2 maxi≤nt1 |φn ◦ f i
n

| →μn 0 as required. �

Appendix B: Strong distributional convergence for families

In this appendix, we formulate a result on strong distributional convergence [10,31] in the context of families of dynamical
systems.

Let (�n,μn), n ≥ 1, be a sequence of probability spaces with measure-preserving semiflows gn,t : �n → �n. Suppose
that λn is a sequence of probability measures on �n such that λn � μn. Define ρn = dλn/dμn.

Lemma B.1. Suppose that Rn is a sequence of random elements on �n taking values in the metric space (B, dB) and
that R is a random element of B. Suppose moreover that

(S1) supn

∫
ρ1+δ

n dμn < ∞ for some δ > 0;
(S2) dB(Rn ◦ gn,t ,Rn) →μn 0 as n → ∞ for each t ≥ 0 (equivalently, for all t ∈ [0, t0] for some fixed t0 > 0);
(S3) inft1>0 lim supn→∞

∫ | 1
t 1

∫ t1
0 ρn ◦ gn,t dt − 1|dμn = 0.

Then Rn →μn R if and only if Rn →λn R.

Proof. The proof follows [14, Theorem 4,1]. Let LipB denote the space of Lipschitz bounded functions ψ : B → R.
Define An(ψ,w) = ∫

ψ ◦ Rn w dμn for ψ ∈ LipB and w : B → R integrable. Note that |An(ψ,w)| ≤ |ψ |∞|w|1 for all n.
Now Rn →μn R if and only if limn→∞ An(ψ,1) = E(ψ(R)) for every ψ ∈ LipB . Similarly Rn →λn R if and only if

limn→∞ An(ψ,ρn) = E(ψ(R)) for every ψ ∈ LipB . Hence it is enough to show that for every ψ ∈ LipB

lim
n→∞

(
An(ψ,ρn) − An(ψ,1)

) = 0.

Fix t ≥ 0. Since μn is gn,t -invariant,

An(ψ,ρn ◦ gn,t ) − An(ψ,ρn) =
∫

(ψ ◦ Rn − ψ ◦ Rn ◦ gn,t ) ρn ◦ gn,t dμn.

By (S1) and gn,t -invariance, supn,t

∫
ρ1+δ

n ◦ gn,t dμn < ∞. Hence by Hölder’s inequality,

∣∣An(ψ,ρn ◦ gn,t ) − An(ψ,ρn)
∣∣ �

(∫
|ψ ◦ Rn − ψ ◦ Rn ◦ gn,t |q dμn

)1/q

where q is the conjugate exponent to 1 + δ. Now |ψ ◦ Rn − ψ ◦ Rn ◦ gn,t | ≤ 2|ψ |∞ and

|ψ ◦ Rn − ψ ◦ Rn ◦ gn,t | ≤ Lip ψ dB(Rn,Rn ◦ gn,t ) →μn 0,

by (S2). Hence limn→∞(An(ψ,ρn ◦ gn,t ) − An(ψ,ρn)) = 0 for each t ≥ 0. Denote Un,t1 = t−1
1

∫ t1
0 ρn ◦ gn,t dt . Then

(B.1) lim
n→∞An(ψ,Un,t1 − ρn) = 0,
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for each fixed t1 > 0. Now,∣∣An(ψ,ρn) − An(ψ,1)
∣∣ ≤ ∣∣An(ψ,ρn − Un,t1)

∣∣ + ∣∣An(ψ,Un,t1 − 1)
∣∣

≤ ∣∣An(ψ,ρn − Un,t1)
∣∣ + |ψ |∞

∫
|Un,t1 − 1|dμn.

By (B.1),

lim sup
n→∞

∣∣An(ψ,ρn) − An(ψ,1)
∣∣ ≤ |ψ |∞ lim sup

n→∞

∫
|Un,t1 − 1|dμn,

and the result follows from (S3). �

Remark B.2. The discrete-time version of Lemma B.1 takes the following form. Let (�n,μn), n ≥ 1, be a sequence of
probability spaces with measure-preserving maps Tn : �n → �n. Suppose that λn is a sequence of probability measures
on �n such that λn � μn. Define ρn = dλn/dμn. Suppose that Rn is a sequence of random elements on �n taking values
in the metric space (B, d) and that R is a random element of B. We continue to assume (S1). Suppose moreover that

(S4) dB(Rn ◦ Tn,Rn) →μn 0 as n → ∞;

(S5) infN≥1 lim supn→∞
∫ | 1

N

∑N−1
j=0 ρn ◦ T

j
n − 1|dμn = 0.

Then Rn →μn R if and only if Rn →λn R.
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