FREE AND PROPERLY DISCONTINUOUS ACTIONS OF
DISCRETE GROUPS ON HOMOTOPY CIRCLES
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ABSTRACT. Let G x X(1) — X(1) be a free, properly discontinuous and cellular
action of a group G on a finite dimensional CW-complex ¥ (1) that has the ho-
motopy type of the circle. We determine all virtually cyclic groups G that act on
3(1) together with the induced action G — Aut(H'(X(1),Z)), and we classify the
orbit spaces 3(1)/G.

Then, we study the same questions for certain families of groups. First, we
consider the family of groups with ved < 1 which includes semi-direct products
Z, % F and F % Z, and amalgamated products of finite groups with bounded
orders since these groups have ved = 1. Next, we study locally cyclic groups
consisting of subgroups of the rationals @ with ved < 2 and subgroups of the
quotient Q/Z with ved = co. The results obtained depend upon the subfamily in
question. In particular, for an action of any subgroup of Q/Z there is only one

orbit space up to homotopy and the induced action on H'(X(1),Z) is trivial.

Introduction. Finite groups with free and cellular actions on n-homotopy
spheres 3(n) (a finitely dimensional C'W-complex with the homotopy type of the
n-sphere S") have been fully classified, and one can find a classification in a table by
Suzuki-Zassenhaus, see e.g., [1, Chapter IV, Theorem 6.15]. Further, the complete
calculation of the number of homotopy types was obtained in a series of papers

[11]-[16]. Finally, following [4, Proposition 10.2], for any action of a finite group
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G on an odd dimensional homotopy sphere ¥(2n + 1) the induced action G —
Aut(H?"1(2(2n + 1),Z)) is trivial.

Actions of infinite discrete groups on ¥(2n+1) and H?""(3(2n+1),Z) have been
studied as well. For more about this subject, we refer the reader to the papers [2],
[7], [25], [27] and [35]. For example, [2, Corollary 1.3] states that a discrete group G
acts freely and properly discontinuously on R x S™ for some m,n > 0 if and only if
G is a countable group with periodic cohomology (with any coefficients) after some
n-step with n > 0.

Most of the results which appear in the above-mentioned papers apply to odd-
dimensional homotopy spheres different from (1), and either the result is not true
for a ¥(1) or the techniques used do not apply, see e.g., [27]. The purpose of this
paper is to study groups with free, properly discontinuous and cellular actions on a
homotopy circle ¥(1), noting that we need somewhat different methods than those

used for X(n) with n > 1. We address the following problems:

e when a group G acts;
e what is the minimal dimension of ¥(1) on which G acts;
e the description of the action G — Aut(H'(3(1),Z)).

We begin by exhibiting a one-to-one correspondence (Proposition 1.8) between
equivalence classes of actions of a group G on ¥(1) and equivalence classes of exten-
sions e -+ Z — m — (G — e, where 7 is a group with finite cohomological dimension,
cdm < oo, where the induced action G — Aut(H'(X(1),Z)) is given by the above
extension. Using this result, we then study our problems for several subfamilies of
groups. Here are the main results of this work. Recall that an infinite virtually cyclic

group is the middle term of a short exact sequence of the form
e—>2—G—F —e,

where F' is a finite group. If the extension is central we say that the group G is of
type I, otherwise it is of type I1. For virtually cyclic groups we have:

Corollary 2.6. Let G x 3(1) — X(1) be an action, where G is a virtually cyclic
group.

(1) If G 1s finite, then G = Z,, for some n > 1;

(2) if G is of type I, then G = Z,, X Z for somen > 1;

(3) if G is of type 11, then G = Loy, xz, Lopn for some n > 1, and Loy, *z, Lop =

7 319 Loy with 0(1s,) = —1.



Theorem 2.10. Let G be a virtually cyclic group. Then the orbit space 3(1)/G
of an action G x X(1) — X(1) of a virtually cyclic group G on X(1) has the following
homotopy type:

(1) of a circle if the group G is finite;

(2) either of the torus or the Klein bottle if the group G is infinite.

Then, we study possible actions of semi-direct products Z,, x F' (Theorem 3.2) and
F x Z,, (Theorem 3.9), and free products with an amalgamated subgroup (Theorem
3.11) on 3(1). We point out that Theorem 3.11 shows that the class of all groups
acting on (1) is closed with respect to free products.

The family of locally-cyclic groups is divided into two subfamilies, where the first
one consists of subgroups of the rationals Q and the second one subgroups of Q/Z.

Finally, such actions of those groups and corresponding orbit spaces are investi-
gated. Given a set P of primes, write Zp for the localization of Z with respect to
the muliplicative system generated by P. Then, the following results are presented:

Theorem 3.17. There are 2% distinct homotopy types of orbit spaces X(1)/Zp
with respect to actions of Zp on (1) and any such action induces the trivial action
on HY(X(1),Z).

Theorem 3.19. For any subgroup A < Q/7Z there is an action of A on some (1)
and ezactly one homotopy type of the orbit spaces X(1)/A for all its possible actions
on homotopy circles X(1). Further, any such action determines the trivial action on
HY (X(1),7Z).

The paper is divided into three sections. In Section 1, general facts on free,
properly discontinuous and cellular actions of groups on (1) are presented. Also
the questions mentioned there are shown in Proposition 1.8 to be equivalent to an
algebraic problem in terms of extension of the group of integers Z. Other results are
stated in Propositions 1.3 and 1.7. The latter one shows that there is a one-to-one
correspondence between equivalence classes of actions G x ¥(1) — %(1) of a group G
on homotopy circles (1) and equivalence classes of extensionse - Z — 71— G — ¢
with cd m < oo, the cohomological dimension of 7.

Section 2 is devoted to classifications of all virtually cyclic groups G acting on (1)
and homotopy types of corresponding orbit spaces ¥(1)/G. These are Corollary 2.6
and Theorem 2.10.

Section 3 takes up the study of other families of groups. For certain groups with
ved < 1, the main results are stated in Theorems 3.2 and 3.9. Next, we present a

family of groups which contains two subfamilies. One is the family of subgroups of
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Q, the additive groups of rationals which have cd < 2. For this subfamily the main
result is Theorem 3.17. The second subfamily is formed by subgroups of Q/Z. They
have infinite virtual cohomological dimension and the main result on actions of those
groups is Theorem 3.19.

Acknowledgments. The authors are indebted to the referee for his/her many
detailed suggestions which lead to a considerable improvement of the original version

of the paper.

1. Actions on (1) and extensions. A CW-complex ¥(n) is said to
be a homotopy n-sphere, if dim¥(n) < oo and ¥(n) is homotopy equivalent to the
n-sphere S™. For n = 1, a space X(1) is simply called a homotopy circle.

From now on, we assume that any action G x ¥(n) — X(n) is free, properly
discontinuous and cellular.

Notice that n < dim ¥(n) and for an action G x ¥(n) — X(n) there is a fibration

—_~—

Y(n) — X(n) xg K(G,1) — K(G,1),
where K/(C\?,/l) is the universal covering of the Eilenberg-MacLane space K (G, 1) and
Y(n) xg K(G, 1) is the Borel construction which is homotopy equivalent to the orbit
space X(n)/G. Consequently, in view of the fibration above there are isomorphisms
m(X(n)) = m(X(n)/G) for k> 1 and n > 1, m(2(n)/G) = G for n > 1, and there

1S an extension
(1.1) e—>7Z—m(E(1)/)G) =G —e

of groups. Notice that the action of G on the automorphism group Aut(H'(X%(1),7Z))
induced by G x (1) — (1) corresponds to the action G — Aut(Z) given by the

extension (1.1).

Lemma 1.1. If G x X(1) — X(1) is an action, then:

(1) the cohomology H™(3(1)/G,A) = 0 for m > dim%(1) and any m(2(1)/G)-
local system A;

(2) the group m (X(1)/Q) is torsion-free.

Proof. The inequality dim(3(1)/G) < dim ¥(1) < oo implies (1).
Item (2) is a consequence of (1) and [4, Chapter VIII, Corollary 2.5].



Write ¢d G (resp. gd G, ved G) for cohomological (resp. geometric, virtual coho-
mological) dimension of a group G [4, Chapter VIII|. Given a subgroup H < G, we
have the orbit space K/(E,/l) /H = K(H,1). Consequently, we deduce gd H < gd G.

Certainly, cdG < gd G for any group G and, in view of [10], it follows that:
cd G = gd G provided ¢cd G # 2 and c¢d G = 2 implies gd G < 3.

Remark 1.2. The Eilenberg-Ganea Conjecture [10] states that cd G = 2 implies
gd G =2.

Notice that for an action G' x ¥(1) — X(1), there is an extension (1.1) with
gdm(3(1)/G) < dim X(1). The converse also holds and it is a particular case of the

following;:
Proposition 1.3. Given an extension
e—-G —-G—-G" —e
there is a CW -complex X of the homotopy type of K(G', 1), with dim X < gd G, and
an action
G'"x X —X
such that the orbit space X /G" ~ K(G,1).

In particular, for an extension e = Z — m — G — e with gd ™ < oo, there is such
¥(1) that gdm < dim (1) and an action G x 3(1) — (1) with X(1)/G ~ K(m,1).

Proof. Let X = K/(é,/l)/G’. Then the extension
e—>G 5G—->G"—e

leads to an action
G"x X — X.
From the definition of X and the action of G” on X we have X /G" = K(G,1)/G,
which in turn is homeomorphic to K(G, 1).
Now, consider an extension e -+ Z — m — G — e and an FEilenberg-MacLane

space K (m, 1) with dim K (7, 1) = gd 7. Then as above, we derive an action

G x %(1) — B(1)

—_——

with ¥(1) = K(m, 1)/Z and the proof is complete.



Remark 1.4. Any extension e - Z — © — G — e with gdm < oo and the
multiplications Z — Z by n > 1 produce a sequence of extensions e — Z — 7 —
G, — e. Groups G, = 7/nZ with n > 1 are possibly distinct and act freely, and

properly discontinuously on some (1) and all of them yield the same orbit space.
Now write Z,, for the cyclic group of order n.
Example 1.5. (1) Given a group G with gd G < oo, the obvious extension
e 2L —1LxG—Z,xG—e

yields, in view of Proposition 1.3, an action
(Z, x G) x (1) — (1)

with dim (1) = gd G + 1.
(2) The Artin braid group B, on n strands determines an epimorphism B, —
S, — e, where S, is the symmetric group on n letters. Its kernel gives the pure

Artin braid group P, on n strands. Hence, we have the extension
e—~>P,— B, — S5, —e

Given a subgroup G < S, we follow [6], to denote by BS the G-Artin braid group
defined as the preimage of G in B,, by the projection map of the extension above. In
view of [6, Proposition 2.4(1)], the center Z(BY) = Z. Then, we get the extension

e — Z(BY)~7Z — BY — BY/Z(BS) — e.

Because P, < BY < B, and, cdB,, = cdP, = n — 1 (by [19]), the result [4,
Proposition 2.4, Chapter VIII] leads to cdBS = n — 1. Therefore gd BS =n — 1 for
n # 3 and gd B§ < 3. Then Proposition 1.3 yields an action

(B /2(B)) x 5(1) = (1)

with dim¥(1) = n — 1 for n # 3 and dimX(1) < 3 for n = 3. We point out that
by [6, Proposition 2.4(1)] we have BS/Z(BY) = F8+17GX{6}, where Fg“ﬂx{e} is the
G x {e}-mapping class group of Sj*, the orientable surface of genus 0 with n + 1
punctures.

We have been informed by Fred Cohen on the extension

e — 7Z — B3 — SLy(Z) — e ([24, Theorem 10.5])
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which, in view of Remark 1.4, leads to e —+ Z — B3 — Bs/nZ — e for n > 1, where
SLs(Z) denotes the special 2 x 2-linear group over Z. In particular, n = 2 yields

e 7 — By — PSLy(Z) — e

with Z = Z(B;) and PSLy(Z) = SLo(Z)/{£1}. Hence, Proposition 1.3 yields

actions

(Bs/nZ) x (1) — (1) with dim>(1) <3 and n > 1.

To show the next result, we notice that Proposition 1.3 and [4, Proposition 2.4,
Chapter VIII] say:

Remark 1.6. For any extension e -+ G' — G — G” — e it follows that:

gdG <gdG +gdG"and cdG < cd G + cdG".

Proposition 1.7. If ved G < oo and there is an action G x 3(n) — X(n) then
ved G < dim X(n) —n for n > 1. In particular, G is finite provided dim 3(n) = n.

Further, if n = 1 then 3(1) could be chosen such that dim (1) = ved G + 1 for
vedG # 1 and dim ¥(1) < 3 for ved G = 1.

Proof. Given a subgroup G' < G with [G : G'] < o0 and ¢cdG' = m < oo,
consider the induced action G’ — Aut(H"(X(n),Z)) = Zsy and write G” = Ker(G' —
Aut(H™(3(n),Z)) = Zy. Then [G: G"] =[G : G'|[G": G"] < 2[G : G'] < .

Next, for any G”-local coefficient system A, the Leray-Serre spectral sequence
EY? = HP(G",H%(X(n),A)) determined by the fibration ¥(n) — 3(n)/G" —
K(G",1) converges to HPT4(X(n)/G", A). Because 3% = 0, it follows that

H™™(S(n) /G, A) = H™(G", H"(S(n), A)).

~

In view of the Universal Coefficient Theorem, we have an isomorphism H"(3(n), A)
Hom(H™(X(n),Z), A) = A of ZG"-modules.

Therefore, H™™(X(n)/G", A) =2 H™(G", A) and consequently, ved G < dim X(n)—
n.

To show the last statement first, consider an action G x ¥(1) — X(1) and the
associated extension e — Z — 7 = m,(3(1)/G) & G — e. Because ved G < oo, we

can assume that there is such a normal subgroup G’ < G that cd G’ < oo and the
7



index [G : G'] < oco. Then, the commutative diagram

e — 17— p (&) el e
I

e —7 7 G e
T

determined by that extension above and Serre’s Theorem [4, Theorem 3.1, Chapter
VIIT] yield cd 7 = edp~!(G’). Next the extension e — Z — p~'(G’') — G’ — e and
Remark 1.6 imply

cdrm=cdp H(G') <cdG' +1=vedG + 1.

First, for vedG = 0 we get cdm < 1 and 7 is a free group. Thus there is an action
of G x X(1) — X(1) with dim¥(1) = 1.

Next, ved G = 1 implies cd7 = cdp'(G’) < 2. Because the group Z is normal
in p~1(G’), we deduce that cdm = 2 and gd7 < 3. Hence, there is an action
G x X(1) — (1) with dim X(1) < 3.

Finally let vedG > 2. Because gdm = cd7 for cdm # 2 and gdnw < 3 for
cdm = 2, we deduce that gdm < ved G + 1. Then the first part of this proof leads to
gdm =ved G + 1 and the proof is complete.

O

We say that actions ¢ : Gx X(1) — X(1) and ¢’ : GxX'(1) — ¥'(1) are equivalent
if there is a homotopy equivalence f : (1) — ¥'(1) such that the diagram

G x 2(1) —= 2(1)
idGXfi lf
G xT(1) —— (1)

commutes. Then, we are in a position to state:

Proposition 1.8. There is a one-to-one correspondence between equivalence classes
of actions G x X(1) — X(1) of a group G on homotopy circles 3(1) and equivalence
classes of extensions e - Z — m — G — e with cdm < 0.
In particular for cd G < oo, then equivalence classes of actions G x ¥(1) — (1)
on homotopy circles $(1) with a fized action 7 of G on H (X(1),Z) = Z are in a
8



one-to-one correspondence with the cohomology group H?(G, Z), where the action of

G on 7Z is determined by T.

Proof. Certainly, equivalent actions
©:Gx3(1) = 3(1) and ¢ : G x X' (1) = X'(1)
yield equivalent extensions
e—=>Z—-mE(1)/G) G —e and e 5 Z — m(X(1)/G) = G —e.
Now, equivalent extensions
e—>Z—->m—G—eand emZ > >G—e

determine an isomorphism « : 7 — 7’ such that the diagram

e 7 T G e
e 7 i G e

commutes. Then for corresponding actions
0:GxX(1)—=2(1) and ¢ : G x X'(1) = ¥'(1)

given by Proposition 1.3 there is a homotopy equivalence f : 3(1) — ¥'(1) (deter-
mined by « : m — 7’) which leads to an equivalence of that actions.

Certainly, the second statement follows from the first one and the proof is complete.
O

2. Virtually cyclic groups acting on 3(1). A virtually cyclic group
is a group that has a cyclic subgroup of finite index. Every virtually cyclic group
in fact has a normal cyclic subgroup of finite index (namely, the core of any cyclic
subgroup of finite index), and virtually cyclic groups are also known as cyclic-by-
finite groups. Consequently, an infinite virtually cyclic group is the middle term of
a short exact sequence of the form e - Z — G — F — e, where F' is a finite group.
If the extension is central we say that the group G is of type I, otherwise it is of type
I1.

A finite-by-cyclic group (that is, a group G with a finite normal subgroup H such
that G/H is cyclic) is always virtually cyclic. A finite-by-dihedral group is always

virtually cyclic as well. In fact, these two families constitute all virtually cyclic
9



groups. The statements below follow from the result of C.T.C. Wall [29, Theorem
5.12] which is basically:

Theorem 2.1. Let G be an infinite finitely generated group. Then the following are
equivalent:

(1) G is a group with two ends;

(2) G has an infinite cyclic subgroup of finite indez;

(3) G has a finite normal subgroup F < G with the quotient G/F = 7 or

Lo x g = Dy, the infinite dihedral group;

(4) G is of the form:

(i) F X Z, a semi-direct product with F finite

or

(ii) G1 *r Go, a free product with an amalgamated finite subgroup F, where [G; :
F]=2 fori=1,2.

Notice that Theorem 2.1 implies:

Corollary 2.2. Groups of the following three types are virtually cyclic. Moreover,
every virtually cyclic group is exactly one of these three types:

(1) finite;

(2) finite-by-(infinite cyclic);

(3) finite-by-(infinite dihedral).

In particular, every torsion-free virtually cyclic group is either trivial or infinite

cyclic.
In view of [17, Chapter 2, Proposition 19], we may state:

Remark 2.3. A virtually cyclic group G is of type I, if it satisfies Theorem 2.1(4)-(i)
and of type I, if it satisfies Theorem 2.1(4)-(ii).

To study actions of virtually cyclic groups, we need:

Proposition 2.4. Given an action G x%(1) — 3(1) and any finite subgroup F' < G,

there is an isomorphism F = 7, for some n > 1.

Proof. Certainly, we may assume that G is a finite group. Because the group
m(2(1)/G) is torsion-free (Lemma 1.1(2)), the extension

e—=>7Z—-m(3(1)/G) -G —e
10



and Corollary 2.2 lead to an isomorphism 7 (X(1)/G) = Z and the proof is complete.
U

Remark 2.5. The groups GL,(Z) (general linear over Z) for n > 2 and SL,(Z)
(special linear over Z) for n > 3 do not act on X(1) independently of the dim ¥(1).

Certainly, in view of [26, Chapter IX.14], the groups G Lo(Z) and SL3(Z) contain
non-cyclic finite subgroups. But GLy(Z) < GL,(Z) for n > 2 and SL3(Z) < SL,(Z)
for n > 2. Hence, by means of Proposition 2.4, do not exist actions of GL,(Z) for
n > 2 and SL,(Z) for n > 2 on any (1) independently of the dim >(1).

Then basing on Theorem 2.1, we derive:

Corollary 2.6. Let G x X(1) — (1) be an action, where G is a virtually cyclic
group.
(1) If G 1is finite, then G = Z,, for some n > 1;
(2) if G is of type I, then G = Z,, X Z for somen > 1;
(3) if G is of type 11, then G = Loy, x7, Loy for some n > 1, and Loy, *z, Lop =
7, %9 Lo with 0(1sy) = —1.

Proof. Item (1) follows immediately from Proposition 2.4.

Now, we prove item (2). For G being of type I, again by Proposition 2.4, we get
an isomorphism G = Z,, X Z for some n > 1 and an action 6 : Z — Aut(Z,).

Next we prove item (3). Let G be a group of type II. Then by Theorem 2.1, it
holds G = Gy xp Gy with [G; : F] =2 for i = 1,2. Because, in view of [29, Theorem
1.6], the natural maps G; — G *r G are injective for i = 1,2, it follows again from
Proposition 2.4 that G = Zy,, xz,, Zsoy, for some n > 1.

Further, let x (resp. y) denote the generator of the first (resp. second) copy of
Lop i Loy %7, Zon. Then <xy*1> = Z is a normal subgroup of Zy, %z, Zs, and
Loy %7, Loy, = 7 X Ly, where a generator of Z is sent to zy~! and a generator of Zy,
to .

O

Next, consider an action G x ¥(1) — X(1) for any of the groups G listed in
Corollary 2.6.

Remark 2.7. In view of [4, Proposition 10.2], the induced action G — Aut(H'(3(1),Z))

is trivial when restricted to any finite subgroup of G.

The following result [18, Corollary 1.3] will be crucial to show Proposition 2.9 and

Theorem 2.10:
11



Lemma 2.8. Lete - A — G — B — e be a central extension with G torsion-free
and B finite. Then G and hence B is abelian.

Now, we can state:

Proposition 2.9. Let G be any of the groups listed in Corollary 2.6. Then there is
an action:

(1) Z, x St — St for anyn > 1;

(2) (Zn X9 Z) x X(1) — X(1) if and only if 0(1) = 1 for an action 0 : 7 —
Aut(Z,,). Further:

(i) if 0(1) = —1, then an action (Z, xg Z) x (1) = X(1) on any 3(1) forn >3
induces the non-trivial action Z, x¢Z — Aut(H'(X(1),Z)) given by the composition
Zp oL — 7 — Aut(H'(X(1),2Z));

(ii) if O(1) = 1, then an action (Z, xg Z) x (1) — X(1) on any X(1) forn >3
induces the trivial action Z, g Z — Aut(H'(X(1),Z)). For G isomorphic either to
Z or Zs ® Z there are actions G x X(1) — X(1) with trivial and non-trivial induced
actions G — Aut(H'(2(1),2Z));

(3) (Zaon *z,, Zon) x X(1) — X(1). Further, any action (Zay, %z, Zon) X X(1) — 3(1)
induces the trivial action Zay, *z,, Lo, — Aut(H'(X(1),7Z)).

Proof. Item (1) is obvious because of the inclusion Z,, < S' for any n > 1.
Now, we prove item (2). Suppose there is an action (Z,, x9Z) x (1) — %(1) with

a non-trivial action 6 : Z — Aut(Z,). The extension
e—=Z—=m=m(32(1)/(Zn xgZ)) B Ly xgZ — ¢

associated with that action leads to the commutative diagram

e Z Ly Nol, — e
e e 7 e

with exact rows. But, the group p~!(Z,) is torsion-free and Remark 2.7 yields the
trivial action of Z,, on H*(%(1),Z) = Z. Thus, in view of Lemma 2.8, the extension
e - 7Z — pYZ,) = Z, — e is central. Hence, the group p~'(Z,) is abelian and

p~Y(Z,) = 7. Consequently, we get either 71 2 Z@Zor m X Zx_ 7 = <a, b; bab™! =
12



a~'). If n > 2, then Z, x¢Z is not abelian and it follows that 7 = Z x_; Z. If n = 2,
then @ is trivial and will be treated later.

But, any element of the group Z x_; Z has a unique form a"b° for some r,s > 0.
A routine calculation shows that any infinite cyclic subgroup <a7”bs> < Zx_7Zis
normal if and only if s = 0 or » = 0 and s is even. First consider the case s = 0.

Then, there is an extension
(2.2) e > 22{a") 2 LX_ 1L —LyXgL—e

with » > 1 which yields » = n. Next, the relation ba"db~! = a~" implies that
(1) = —1.

Let now consider the case r = 0 and s = 2s;. Then, we have the extension
e > L= (V") 5 ZX_ 4L — Ly XgZ —e.

But such an extension cannot exist because the group Z, Xy 7Z is virtually cyclic of
type I and the quotient Z x_, Z/<1)281> = 7Z X _q Zas, is virtually cyclic of type I1.
Then, for a non-trivial €, we have shown that (1) = —1.

Now, we construct actions which correspond to the cases above.

Given 0 : Z — Aut(Z,,) with 6(1) = £1, we define:

0: (Zy g 7Z) x (S* x RY) = S' x R!

2mi

by (1,,0) o (z,t) = (e x,t), (0,1) o (z,t) = (B(x),t + 1) for (z,t) € S* x R! and
> 1, where f(z) = x if 6(1) = 1 and S(z) = Z (the complex conjugation) if
6(1) = —1.

For n = 1,2 we have only one group, Z and Z, & Z, respectively. The extensions:

n

e >L —1LPL—>7Z—e e—>L—>LX11—>1L—e

and

e L LBl —Lo®l —e, ¢ >L—>LXANL—>TPl —e

lead to actions
Zx%(1) = X(1) and (Zo®Z) x (1) — X(1)

with trivial and non-trivial induced actions Z — Aut(H'(X(1),Z)) and (Zy & Z) —
Aut(HY(X(1),Z)).

Now, we show the further parts of item (2).

(i): If (1) = —1, then from the extension (2.2) it follows that the action Z, x_;

Z — Aut(H'(X(1),Z)) is non-trivial.
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(ii): Now, suppose that #(1) = 1. Then, following the same steps as above, we can
show that an action (Z, ® Z) x (1) — (1) yields the extension

e—2 —m—>7L, Pl —e

with m = Z x Z. We claim that 7 =2 Z @& Z for n > 3. Suppose by contradiction
that m =2 Z x_1 Z. Then the surjective map Z x_1 Z — Z, ® Z factors through the
abelianization (Z x_; Z)® = Z, @ Z, so we obtain a surjective map Zy ®Z — Z, O Z.
Since n > 3 this is a contradiction and the result follows. It immediately follows that
the homomorphism Z, & 7Z — Aut(H'(X(1),Z)) is trivial for n > 3. Forn = 1,2, as
we have shown above, the action of Z and Z, & 7Z can be either trivial or non-trivial.

Finally, we show item (3). We define an action of Zy, *z, Zs, = Z X Zs, on
%(1) =S x R! as follows:

0:(Z % Zyy) x (S' x R') — S' x R!

given by (0, 1y,) o (z,t) = (e2™/"x, —t), (1,0) o (2,t) = (x,t + 1) for (z,t) € S* x R
Next, given an action (Zay, *z, Za,) X 2(1) — X(1), in view of [4, Proposition 10.2],
the induced action Zs, *z, Za, — Aut(H*(X(1),Z)) is trivial because Za,, *z, Za, is

generated by elements of finite order and the proof is complete.
O

Now, we aim to classify homotopy types of orbits spaces ¥(1)/G for all actions
G x X(1) — X(1) of virtually cyclic groups G on a homotopy circle ¥(1). By Lemma
1.1, the orbit space ¥(1)/G is an Eilenberg-MacLane space of type K (m,1) with a

torsion-free group m = m1(X(1)/G) and there is an extension

e—=>7Z—1m—G—e.

Theorem 2.10. Let G be a virtually cyclic group. Then the orbit space ¥(1)/G of
an action G x (1) — X(1) of a virtually cyclic group G on (1) has the homotopy
type:

(1) of a circle if the group G is finite;

(2) either of the 2-torus or the Klein bottle, if the group G is infinite.

Proof. Item (1): If G is a finite group, then by Proposition 2.4 we get G = Z,

for some n > 1. Hence,

e—>42 —>m—> 1L, —>e

is the associated extension to the action Z, x (1) — X(1). In view of Remark 2.7

this extension is central and Lemma 2.8 yields that 7 2 Z and so 3(1)/G ~ S'.
14



Item (2): Consider the extension e - Z — m — G — e associated to the action
G x X(1) = X(1). Since G is virtually cyclic, the group 7 is virtually polycyclic and
it follows that 7 has Hirsch length 2. Because 7 is torsion-free, it is the fundamental
group of a two dimensional flat manifold which is either either the 2-torus or the

Klein bottle and the proof is complete.
O

3. Arbitrary groups acting on X(1). We begin from the study of
groups G with ved G < 1 acting on a (1) such that dim ¥(1) < 2. Observe that G
is finite provided ved G = 0 or dim ¥(1) = 1 (Proposition 1.7), and by Proposition
2.4, we get G = 7Z, for some n > 1. Hence, we consider groups G with vedG =1
which act on X(1) with dim X(1) > 1.

Notice that ved(F' xg, Z,) = ved(Zy, xg, F') = 1 for any free group F' and actions
0, : Z, — Aut(F) and 0y : F — Aut(Z,). Further, F' x¢y, Z, and Z, x4, I are
fundamental groups of finite graphs of finite groups. In order to study actions on
homotopy circles of such groups, consider a slightly more general situation. Given a
group G and its subgroup G’ < G write Autg: (G) for the subgroup of Aut(G) given
by automorphisms which send G’ to itself. Notice that any epimorphism p : G — H
induces an action

D Autge ,(G) — Aut(H).

Lemma 3.1. Let G, H be groups that cd G < oo and H acts on some 3(1). Then:
(1) for any action 6 : H — Aut(G), there is an action of the group G g H on
some X(1);
(2) for an action 6 : G — Aut(H) which admits a factorization

G

0!

Auty() Aut(H),

where p is induced by an extension e — 7 — m > H — e determined by an action
of H, there is an action of the group H xg G on some ¥(1).
Further, if there is go € G such that 0(go) & Imp for any p : Autz(n) — Aut(H)

as above, then the group H X9 G cannot act on any X(1).
15



Proof. Item (1): The action of H on some ¥(1) yields an extension
e—>Z—n15H—e.

Then, given 6 : H — Aut(G), consider ¢ = 0p : m — Aut(G). Thus, we get the

extension
e >Z—>Gxgm—>GXgH — e

and, in view of Remark 1.6, it holds gd(G Xy m) < co. Hence Proposition 1.3 leads

to an action
(G xg H) x X(1) — £(1)

for some X(1).
Ttem (2): The factorization §# = p#’ and the extension e — Z — 7 > H — e

determined by an action of H on some (1) lead to an extension
e—7Z—7mXNgG— HxXpG — e

and, in view of Remark 1.6, it holds gd(m x¢ G) < co. Hence, Proposition 1.3 yields

an action
(H %9 G) x X(1) — £(1)

for some ¥(1).

Suppose that there is gg € G such that 6(go) € Im p for any p : Auty(w) — Aut(H)
as above and the group H xy G acts on some %(1). Then the subgroup H x Z =
H x <go> < H x4 G acts on that ¥(1) and we get the associated extension

/
e=Z 15 HxyZ —e.

Next, the extension above leads to the commutative diagram

e —=7Z —p Y(H) H e
.

e 7 i Hx7 —se

e e Z Z e.

Hence, 7’ = p/~Y(H) x Z and so 6(go) € Imp’. This yields a contradiction and the
proof follows.
U

Setting rk(F') for the rank of a free group F, we are in a position to show:
16



Theorem 3.2. For an action 0 : F — Aut(Z,) there is an action of the group
Zyp, X9 F on 3(1) with dim X(1) < 2 if and only if 6(z) = £1 for any element v € F
and exactly one homotopy type of the orbit spaces X(1)/(Zy, xg F) provided n > 3,

2THE) distinct such homotopy types with n = 1,2 for all possible actions of such

and
Zy, X9 F on homotopy circles X(1). Further:

(1) any action (Z, X F)xX(1) — X(1) on a (1) induces the action ¢ : Z, XgF —
Aut(HY(X(1),Z)) given by o(x) = 0(x) for x € F;

(2) if 0 is trivial, then any action (Z, Xg F') x (1) — 3(1) on a (1) forn >3
induces the trivial action Z, xg F — Aut(HY(X(1),Z)). For G isomorphic either to
F orZy ® F there are actions G x X(1) — (1) with trivial and non-trivial induced

actions G — Aut(H'(%(1),Z)).

Proof. Suppose 0 : F — Aut(Z,) satisfies (x) = +1 for any element z € F.
Then 6 lifts to 0’ : F — Aut(Z), and in view of Proposition 1.3, the extension
e >4 — L Xg F— 7Z, g ' — e, leads to an action

(Zn, ¥ F) x (1) — X(1)
with dim 3(1) < 2. Notice that the induced action ¢ : Z,, xg F — Aut(H'(X(1),7Z))

is trivial on Z,, and ¢(z) = 0'(z) for any element z € F.

Conversely, suppose there is an action (Z, Xy F) x ¥(1) — ¥(1), by contra-
diction, and assume that 6(xy) # £1 for an element xy € F. Consider the map
0o : (xo) — Aut(Z,) with 6y(z¢) = 6(zo). Then, in view of Proposition 2.9(2), the
subgroup Z,, Xy, <x0> < Zy, ¥ F does not act on any (1), which is a contradiction.
Consequently, it follows that 0(xy) = £1.

Now, we study the homotopy type of the orbit spaces. Given an action
(Zpx19F)x (1) — 3(1), we have an associated extension e — Z — m = Z, xgF — e
with a torsion-free group 7 and the action ¢ : Z,, xg F' — Aut(H'(X(1),Z)) which

restricts to the trivial one on Z,. Hence, the extension
e—=Z—p Y Zy) =Ly —e

yields p~*(Z,) = Z. Further, the commutative diagram

o
£

e Z, Lip Mg FF —— ¢
e e F e




leads to an isomorphism

WgZNyF,

where ¢ : ' — Aut(Z) is the lifting of 6 : F' — Aut(Z,). Because ' is uniquely
determined by 6 for n > 3, there is exactly one homotopy type of the orbit spaces
¥(1)/(Z,, x¢ F) for all possible actions of such Z,, Xy F' on homotopy circles (1) for
n > 3. Further, Proposition 1.3 leads to dim X(1) < 2.

Now, the group Aut(Z,) is trivial for n = 1,2. Hence, there are 2%
type of the orbit spaces 3(1)/(Z, xg F') for n =1, 2.

Item (1): Given an extension e — Z — F'xgZ — Fx¢Z, — e which arises from an
action (F' xpZ,)x %(1) — 3(1), the induced action ¢ : F x4Z,, — Aut(H'(X(1),Z))
is completely determined by ¢(z) = ¢'(x) for any element x € F, and the result

() homotopy

follows.

Item (2): Now, suppose that 6 is trivial. Then an action (Z, x F') x (1) — X(1)
yields the extension

e—2—>m7m—>Z, xF —e

with 7 = Z xg F. We claim that 7 =2 Z x F for n > 3. Suppose by contradiction
that @ is non-trivial. Then the surjective map Z x¢ F — Z,, X F implies a surjective
map Zy ® F® — Z, ® F®, where F® denotes the abelianization of F. Since n > 3
this is a contradiction and the result follows. It immediately follows that the induced
action Z, x F — Aut(H'(X(1),Z)) is trivial for n > 3.

For n =1, 2, the extensions:
e—=L—ILXx 1 F—-F—e e—wZ—ZxF—>F—e
and
e 2L =LA\ F >ZogXxF —e e>Z —>7ZXF—7ZyxF —e
lead to actions
FxX(1)—X(1) and (Zy x F) x (1) — X(1)

with trivial and non-trivial induced actions F' — Aut(H'(X(1),Z)) and Zy x F —
Aut(HY(2(1),Z)).
U

Now, let F = (X) be a free group with a basis X and let 6 : Z, — Aut(F) be

an action. In view of Proposition 1.3, any extension e — Z — 7 = F Xy Z, — e

with gd 7 < 0o, leads to an action (F Xy Z,) x 3(1) — ¥(1) and the induced action
18



0 : F xgZ, — Aut(H'(X(1),Z)) = {£1}. Notice that [21, Proposition 1, Chapter
10] yields the presentation

T =(X,s,t| xsz™" = ¢ (2)(s), tst™" =", tat™" = 0(1,)(x)s™ for some m, m, € Z),

where ¢' = ¢|r and 1, € Z,. But, by means of Remark 2.7, the induced action
0 F %9 Z, — Aut(H'(X(1),Z)) = {£1} restricts to the trivial action on Z,.
Hence, the extension

e—=Z—p Y Zy) =Ly —e

is central and yields p~(Z,) = Z, so it follows that s = t*". Consequently, we get
= (X, t| at"z™" = ' (x)(t"), tat™" = 0'(1)(x)t"™* for some m, € Z),

where ¢ : Z — Aut(F) is the composition of 0 : Z, — Aut(F) with the quotient
map Z — Zy,.

Further, the commutative diagram

e Z FxoZ, —=e
e e n Ly, e

leads to an isomorphism p~(F) = Zx F. Consequently, in view of Serre’s Theorem

[4, Theorem 3.1], we get
cd(m) =cd(Z xy F) =2

provided 7 is torsion-free.

Let I,A, L be arbitrary sets and write (xgG})ier for the free product with an
amalgamated subgroup G' < G| for ¢ € I. In particular, if G = e, the trivial group,
then (x¢G;)icr = (%G)ier, the free product of groups G; for i € I. Let Fon) < F
be the fixed point subgroup of the automorphism 6(1,). If n is a prime, then 9,

Theorem 3] determines a decomposition into the free product
F = F'0) s (xF) e * (%)) sen,

where each factor is #(1,)-invariant and:
(i) for each i € I, F; = <y1-71, . ,ym> such that

€(1n>(yz,7‘) = Yir+1(mod n);
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(ii) for each A € A, there is a set J, with F) = <y)\,1, e Un—1,% | J € J,\> such
that

0(1,)(yrs) = yast1 for s=1,...,n—2,

0(10) (Yrn—1) = (Y1 - - ym_l)’l,
0(1,) (%) = yﬂzjyx,l for j € Jy and A € A.

Further, set F/Un) = (x| | € L).
Motivated by the result above, from now on, we study actions of groups of the
form F xg Z, for any integer n > 1 and homomorphisms 0 : Z,, — Aut(F') which

admit a decomposition
F = FOU0n) (%F})ier * (xF)) ren

satisfying (i) and (ii) above. At least if n is a prime, as result of [9, Theorem 3]
stated above, we are considering all possible homomorphisms 6.

Because there is t € F Xy Z,, with (1,,)(z) = tzt~! for all z € F', we derive:

Lemma 3.3. Given an extension e — Z — m — F xgZ, — e, write p : F' — Aut(Z)
for the induced action. If F = F0n) x (xF})icr * (%Fx)xea satisfies (i) and (ii) above
then:

(1) no restriction on ¢(x;) forl € L;

(2) o(ir) = - = @(Yin) foricI;

(3) e(ya1) = -+ = @(yan-1) =1 for all X € A;

(4) no restriction on @(z;) for j € Jy and X € A.

Proof. Certainly, (1), (2), (3) (for an odd n) and (4) are obvious.

(3) (for an even n): suppose that ¢(yr1) = -+ = @(yxn-1) = —1. Then, the
relations y)\71t”yﬂ =17 byt =yt forr=1,...,n — 2 and ty, 1t =
(Y1 Yn1) "1 imply ZZ/:l mok—1 = —1. Hence, we derive (y,—1t)" = e.
Since the group 7 is torsion-free, we must have y, ,_1t = e which is a contradiction
since ynn—1 # 1. So, we must have ¢(y, 1) = -+ = @(yan_1) = 1 for any n > 1.
O

Generalized Baumslag-Solitar groups are well known to be torsion-free as they are
the fundamental groups of finite graphs of groups with Z’s as vertex and edge groups.
In particular, the one-relator Baumsalg-Solitar group BS(m,n) = <:1:,t; xt"rTl =
t”> with m,n € Z\{0} is torsion-free as the fundamental groups of graphs of infinite

cyclic groups where the graph is a 1-loop. We will use in the sequel that:
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Remark 3.4. The one-relator group BS(n, —n) = (z,t|zt"z~" = ") is torsion-
free for any n € Z\{0}.

Lemma 3.5. Let J be an arbitrary set. If F = (y1,...,Yn-1,2;,j € J), 0(1,)(y) =
Yrar forr=1,...,n =2, 0(1)(Yn-1) = (Y1 yu-1)"" and 0(1,)(2) = yi ' zjyn for
J € J, then for any extension e — Z — m — F xg Z, — e with a torsion-free group
7 it follows that:

(1) 7 = <y1,...,yn_1,zj,j e St|lyty b=t r=1,...,n—1, zjt”zj_l =1", 7€
byt ™ =y, =1, =2, byt = (Y1) T bzt =y i, €
J> for anyn and m =0,...,n—2

or

2) m=(y1, - Yn-1, 25§ € Sty t"y b =t" r=1,...,n—1, zjt”zj’l =",

JeJJ# jo zigthay =t byt =y, r =1, = 2, byt =

(Y1 -+ Y1) I Tl = gy 12D G e J) forn =2n'.

Proof. Let ' = <y1,...,yn_1,zj ] € J>, 0(1,)(yr) = ypy1 for r=1,...,n — 2,
(1) (Yn-1) = (41 Y1) " and 0(1,)(2) = yy ‘231 for j € J.

Then, in view of Lemma 3.3, we get

T={Y1,-- - Yn-1,%,J € Lt|yt"yt =t", r=1,...,n—1, zjt”zj’l =t 5 € J,

tyt™h = yeat™™r o = 1, 0n = 2ty att = (g1 ypon) T dzt ! =
yi tztt™i g € J).

The substitution t' =t, y; = y1, y. = ytZioimme for r =2, ... .n—1 and zi = 2
for 7 € J implies

T (Y, Y1 2 €, vy ™yt =" = 1,...,n — 1, z’ﬁ’"z’}l
e Lty T =y, r =1, =2, Pyl T = (gl )T T =

y’{lz’jy’l, j e J>, where m = >

n—1

i (n—=r)m,.

The infinity of the order of ¢ implies —2n = 2nm + n?m; for zjt"zj_l =t~". Thus,
n or m; is even.
Thus, n or m; is even. Hence, m = —1 (modn) for any n and an even m; and
m = —1—n'(mod n) for n = 2n’ and m; odd. Further, the infinity of the order of ¢
implies m; = 0 for zjt”zj_l = t" with j € J.
Because m = —1 (mod n) implies (y;t~™)" = e, we get
=Y, Yn-1,2,J € Lyt "yt =1 r =1, n—1, itz =1 j €,
tyt =y, r =1, =2ty T = (YY) T it =y eyt €
J),
where m; = 0 with zjt”zj_l = t" for any n or m; = 2m’ + 1 with zjt”zj_l =t~ " for

some m' > 0, an even n and j € J.
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Consequently,

item (1): m = <y1, ey Yno1, 25, ) € Sty tty b =t r=1,...,n—1, th”zj_l =
tn7 .] € J7 tyrtil = Yr+1, T = ]-7 s, 27tyn—1t71 = (yl t 'yn—l)iltnmat'zjtil =
yl_lzjylt”mj,j € J> forany n and m=0,...,m — 2

or J=J,UJ_ and

T <y1,...,yn_1,zj,j e Jtlythyt=t"r=1,...,n—1, zjt"zj_l =t" 5 € Jy,
Z]tnzj_l - t_n) ] € ‘]—7 ty’rt_l =Yr41, T = 17 s an_27 tyn—lt_l = (yl e yn—1>_lt_n(1+nl)7
tzt™t = yl_lzjylt”(Hm'),j € J> for n = 2n’.

Further, if jo € J_ then the substitution ' = ¢, y, =y, forr =1,... ,n—1, 2 = 2
for j € Jy and 2} = z;,z; for j € J_ implies
-1
J
" G € G # Jo, At =T Y T =y r =1, e =2,y T =
(g -yl )T T =y Ty ) G e T for o= 20,

To examine this group, consider the extension

item (2): = (ys,... s Un1, 25,7 € '] YAy =t =1, =1, 2"

e—=>2LxF —m—7,—e,

where 7Z is sent onto the subgroup <t’ "> < .

Suppose that 7 is non-torsion-free. Because Z x F' is torsion-free, there are integers
k>0,1>0and w e F such that (¢t w)" = e. The even length of the word w
and ¢ being of infinite order lead to a contradiction kn? +n = 0.

So, the length of the word w is odd. Now, the projection of (t’lt’”kw)” on the
abelianization of the free group <xj; jed > yields a non-trivial element which leads
again to a contradiction.

Consequently, 7 is torsion-free and the proof is complete.

Now, we are in a position to state:

Proposition 3.6. Let F' be a free group and n > 1. Then, for any extension e —
7 — 1 — F Xg 7, — e with a torsion-free group © and the trivial induced action of
Ly, on 7, it follows that:

(1) m = Z %, F, where the action T : F — Aut(Z) = {£1} is trivial for n > 2 and
is arbitrary for n = 1,2 provided F?On) = F is any free group. Further, for any two
non-trivial 7,7y : F'— Aut(Z) = {£1} the groups 7 x., F' are isomorphic i = 1,2;

(2) ™ = F xg Z for some action §' : Z — Aut(F) or 7 = (z,t|at"a™" = )

provided ' = <y1, . ,yn> and 0(1,)(Yr) = Yr41(mod n) for r=1,...,n.
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Proof. Item (1): Let F = (X) and 6 : Z, — Aut(F) be the trivial action,

rt"r~t = 7" and txt™! = at™= for ¥ € X. Because the order of ¢ is infinite,

tatm = "™ and xthzt = 30 imply £n — n = n?

2

m,. For n > 2 this equation
has a solution only in the case n —n = n*m, which implies m, = 0. If n = 2 we get
either m, = 0 for 2 — 2 = 4m, or m, = —1 for —2 — 2 = 4m,. Finally, if n = 1 we
get either m, = 0 or m, = —2.

Hence, 7 = (X, t|ata™t = ") for v € X) 2 Z x, F where 7 : F — Aut(Z) =
{£1} is trivial of n > 2. In case n = 1,2 the action 7 is arbitrary.

Notice that for any two non-trivial actions 71,7 : F' — Aut(Z) = {£1} the groups
Z X7 F and Z %, F' are isomorphic because there is an automorphism o : ' — F
such that 7 o = 7.

Item (2): The presentation

m = <y1, ... 7yn7 t| yrtnyr_l = t:‘:TL’ tyrt_l = yT+1(mOd n)tan fOl"T’ f— 17 e ,TL>
and the order of t imply £n —n = >_"_ m,. The substitutions: t' = ¢, y| = yi,
Yl = y,ﬂtzz;i "k for r =2, ...,n lead to an isomorphism
T (Y Ut ynt™y
yllt/(ilfl)n»

Hence, m 2 (yi, ...y, t'] Yty Tt =yl = Yr+1( mod n)> = F Xg Z for an

b= gyt =y forr =1,...,n—land t'y,t~! =

appropriate action action ¢’ : Z — Aut(F') or
=TT Yty =y = Yo, forr=1,...,n—land

tynt' =t = gyt = (x| at"amt = ') for @ = yi, t = t' and, in view of
Remark 3.4, the result follows and the proof is complete.
O

Proposition 3.7. For F' = (y1,...,yn-1,%,4 € J), 0(1,)(y;) = ypi1 for r =
Loooon =2, 001,)(Yn1) = (Y1 yn1)"" and 0(1,)(z;) = vy 'zjy1 for j € J and
n > 1 and an extension e = Z — m — F Xy Z, — e with n > 1, a torsion-free group
7w and the trivial induced action of Z,, on Z, it follows that:

(1) 1 = F X, Z for some 7 : Z — Aut(F) with 7 (1) = idg or

(2) 7= (Y1, Un-1,2,J € Jtlyt"y b =t r =1, n—1, Zt"z =7,

JEeJJ# jo zigthay, =t byt =y, r =1, = 2, byt =

(Y1 Yoor) ) 27 =y 2yt 5o ) for no= 20/ and some

m’ € Z. Further, none of groups in (1) is isomorphic to a group in (2).

Proof. We make use of presentations of 7 stated in Lemma 3.5.
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Item (1): if m = (y1,...,Yn-1,25,J € Lt|yt "y, P =", r=1,...,n—1, zjt”zj_l =
g€ J byt =y, r = 1,00 n = 2ty at Tt = (YY) ™ 2t =
yl_lzjyl,j € J> for any n and m = 0,...,n — 2 then the map

a:m— 7

given by: a(t) = 1, a(ys) = -+ = a(yp—1) = m and «a(z;) = 0 for j € J is a

well-defined homomorphism which yields the splitting extension
e K137 —e

with K = Ker a. Thus,
T2 K X, Z

for 7: Z — Aut(K) with 7(1)(z) = tzt~! for x € K 7"(1) = idg. It follows that 7 is
an H N N-extension and, in view of [5, Thorem 17.1], the group K might be chosen
to be an amalgamated product.

We aim to show an isomorphism K = F. The Reidemeister-Schreier rewriting
procedure [22, Theorem 2.8, p. 91] yields that K is generated by:

Yo = iyt forr=1,...,n—1and k € Z,

Sjr =thz;t™% for j € J and k € Z.

The relation: y,t"y ' = t" leads to

Yrk+n = Vrk

forr=1,...,n—1;
,zjt"zj_1 =1" to
Ojktn = Ojk
for j € J and k € Z;
ty,t=t =y, forr = L...,n—=2t0 Yppt1 = Vs forr=1,... ,n—2and k € Z.

Consequently,
Tn—1,k = Vn—2,k+1 = *** = V1,n+k—2
for any k € Z.
Next, ty,_1t™" = (y1 -+ Y1) t"™ yields

Tn—1,k+17V1,k+m * * " Vn—1,k+m(n—1) = €
for any k € Z.
Finally, tz;t~* = y; 'z;y1 leads to

-1 —1 _
05kA1Y] om0 f—m Vih—m = €
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for j € J and k € Z. Thus, we get the presentation:

K= <%~,kz, 5j,k\ Yrk+n = Vrks 5j,k+n = (Sj,ka Yn—1,k = Vn—2,k+1 = **° = V1,n+k—2,

5j,k+17;/§_m5;;_m71,k—m =eforr=1,....n—1, 7€ Jand k € Z>.

Routine computations show that
F2K = (o, k=0,...,n-2j€l)
and consequently
T2 F X, 7

for some 7 : Z — Aut(F).

Item (2): in view of Lemma 3.5, remaining groups have the presentations:
T =Y, Un-1,%,J € Lt|yt "yt =17 r =1, n—1, zt"z =1,
Jje€J,j# jo, zjot"zj_ol =t tyt =y, r=1,....,n— 2, ty,_1t L=
(Y1 -+ Y1) ) gl = g gy (2D e J> for n = 2n’.

The groups m = <y1, ey Yno1, 25, ) € Lty ttyt =" r=1,...,n—1, zjt”zj_l

t eyt =y, r =1, n = 2ty 1t = (1Y) T,
tzt™t :yflzjyl,j € J> forany nand m=0,...,n —2
and
T={Y1, .- Yn-1,2j, € Lty t"y,t =t", r=1,...,n—1, zjtnzj_l = t",
j€J i jo, zjot”zj_ol =t "ty t =y, r=1,....,n— 2, ty,_1t ' =
(Y1 -+ Ypa) ) ol = g g 12D G e J) for n = 2n/

are not isomorphic because their abelianizations are isomorphic to
n—1 n—2
PrzoPzez, and PLZ& Ly ®PZS L,
r=1 jeJ r=1 jed

respectively and the proof follows.

O

To state the main result, we need the lemma below a proof of which is straight-

forward.

Lemma 3.8. Let H and G; be groups with actions 7; : H — Aut(G;) fori € I.
(1) If 7 - H — Aut(xG;)ie; with T|g, = 7; for i € I, then

(%G)ier X7 H = (x5(G; X0, H))jer;
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(2) if e = 7" = 1 B (%G x; H)ier — e are extensions and m; = p~ (G x,, H),
then e —» 1’ — m; — G; x,, H — e are extensions fori € I and

T *p—1(H)T-

Now, given an action 6 : Z, — Aut(F') with n > 1 and the decomposition F' =
FOUn) s (ki1 F) * (kaenFy) write: 0 @ Z, — Aut(F90), 0, : Z, — Aut(F;) and
0\ : Z, — Aut(F)) for the induced actions with ¢ € I and A € A. Then, in view
of Lemma 3.8(2), any extension e — Z — m — F Xy Z,, — e leads to a family of

extensions:

e — 7 — my — FOU) sy 7, — e,
e >72—m — F, %9, Z, —eforiel,
e —= 7L — m\ — F\ g, Z, - efor A€ A

and an isomorphism
T = kg (o * (%7i)ier * ($7r)ren)-

Consequently, Propositions 3.6 and 3.7 yield:

Theorem 3.9. Let F' be a free group, n > 1, 0 : Z, — Aut(F) an action and
F = Fo0n) 4 (kicrF5) * (kaeaFr).
There is an action of the group F xg Z, on some homotopy circle X(1) with

dim (1) < 2 and the homotopy type of the orbit space
S(V)/(F %9 Zy) = K(m, 1),

where m = xz,(mo * (ki mi * (xaeamn)))-
Further:

(1) o = Zx, F9) for all possible actions T : FOn) — Aut(H(X(1),7Z)) = {£1}.
In particular, 7 = 7 x FOUn) forn > 2;

(2) m = F, xg Z with F; = <yi71,...,yi,n> and 0, : Z — 7y, iy Aut(F;), if
the induced action F; — Aut(H'(X(1),Z)) is trivial and m; = (@, t|at"z™" = t7)
otherwise;

(3) m\ = Fy X, Z with F\ = <y)\71,...,y,\7n_1,zj | j € JA> and some T\ 1 Z —
Aut(Fy) for any n, if the induced action Fy — Aut(H*(X(1),Z)) is trivial and
T = <y,\71, s Yan—1,25,] € J,\,t|y,\,7«t"y;’i =t r=1,....,n—1, zjt”zj_l =
t", 7 € I, # Jo, ,zjot"zj_ol =t "ty =y, = 1,...n — 2, ty, 1t =

(Y1 -+ Yoor) AT bzt = g2yt 20 G e L) for no= 20, otherwise.
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Notice that Theorems 3.2 and 3.9 show that the condition ved G < dim¥(1) — 1
stated in Proposition 1.7 does not suffice for the existence of an action of G' on 3(1).

There are many more groups G with vedG < 1. In view of [31, Chapter II,
Proposition 11|, ved G < 1 provided G is the fundamental group of a finite graph of
finite groups. Further, according to [4, Chapter VIII, Example 2 page 228]: “if we
drop the requirement that the graph of finite groups be finite and require instead
that there be a bound on the orders of the finite groups, then it is still true that
ved G < 17. Further, if ved G < 1, then G is the fundamental group of a graph of
finite groups. A proof of that result can be found e.g., in [29].

In order to study a new family of groups G with ved G < 1, we begin by a slightly
more general situation. Namely, consider groups of the form (x¢G;);c;. Because
K((*Gy)ier, 1) = V,e; K(Gi,1) and, in view of [3, Proposition 1.1] (see also [4,
Theorem 7.3, Chapter I1]), it holds gd (G *¢ G2) < max{gd G;,gd G+ 1; i = 1,2},

we derive
(33) gd (*GGi)iEI < 0

provided there is an upper bound of the set {gd G;| for i € I'}. Then, ved (x¢G;)ier =
1 provided G; for ¢ € I and G are finite groups with bounded orders. If (xqG;)icr
acts on a (1), then by means of Proposition 2.4, we get (x¢Gi)icr = (%2, Zn, )icr for
some k,n; > 1. Notice that in view of monomorphisms Zj < Z,,, it holds k | n; for
1€l

Further, we may state:

Proposition 3.10. Let G; be groups and H < G < G; such subgroups that H is

normal in G; for i € I. Then there is an extension
e = H — (x¢Gi)iecr — (xq/m(Gi/H))icr — e.
In particular, for H = G, we have the extension
e = G — (xqGy)iecr — (x(Gi/G))ier — €.

Proof. By the functoriality of the amalgamated free product, we derive an epi-
morphism
(x¢Gi)ier = (%) (Gi/H))ier — €
with H C Ker .
Now, let S; be a set of representatives of the set G;/G of right cosets for i € I.
In view of [31, Theorem 1], every element 2 € xgG; may be presented by a unique

reduced word (i.e., there is a sequence (g, s;,,...,s;,) with ¢ € G and s;, € 5;,,
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sy, # e for k = 1,...,n such that z = g¢gs;, ---s;, in a unique form). Because
S; = {8, = Hs;; s; € S;} is a set of representatives of the set (G;/H)/(G/H) = G,;/G
of right cosets for 7 € I, every element Z € *(g/m)(Gi/H) may be also presented by
a unique reduced word.

Now, for z = gs;, - - - s;, € Kery, we get € = gs;, - - 5;,. Consequently s;, =--- =
s;, = e, x =g € H and the result follows.

n

Notice that Proposition 1.8, Proposition 3.10 and (3.3) lead to:

Theorem 3.11. Let ¢ — Z — m; — G; — e be extensions such that gd m; < oo and
Z < m<m fori€l. Then there is an action

(*(ﬂ-/Z)GZ)iej X 2(1) — 2(1)
with dim ¥(1) < max{gdm;,gd 7 + 1; i € I} provided there is an upper bound of the
set {gd ;| fori e I}.
In particular, for m = 7Z, there is an action
(%G;)ier x 2(1) — X(1)
with dim ¥(1) < max{gdm;,2| i € I}.
In view of the extensions 0 — Z — Z; — Z,, — 0 for with Z; = Z for i € I,

Theorem 3.11 and (3.3) yield:

Corollary 3.12. Given a set I and positive integers k,n; with k | n; for i € I, there
s an action

(%2, Zn,)ier X L(1) — X(1)
with dim (1) = 2. Further, the induced action of xz,Z,, on H'(3(1),Z) is trivial
and there is exactly one homotopy type of the orbit spaces X(1)/(xz,Zy,;) for all

possible actions of xz, L, on homotopy circles 3(1).

Proof. Certainly Theorem 3.11 leads to an action (xz,Z,,)icr X (1) — (1)
with dim (1) = 2. In view of Remark 2.7, any such an action determines the trivial
action of (xz,Zn,)icr on H'(X(1),Z).

Further, given an extension e — Z — m — (%z,Z,,)ic; — e with a torsion-free

group 7, we can easily see that there is a system of commutative diagrams

e Z Z; L, e
e Z T (%2, Zn,)ic1 — €
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with Z; = Z for ¢ € I which determine the commutative diagram

e — L — (¥zZL;)icr —> (*Zani)iEI —e€
| |
v y

€ Z T (*Zkzni)ief —— 6’

where 1 (%7, Zn,)ic1 — (%2, Zn,)icr is an automorphism. Hence, « : (%zZ;)ie; — 7
is an isomorphism and we derive that there is exactly one homotopy type of the orbit
spaces 3(1)/(xz,Zn,)iecr. This completes the proof.

O

It is well-known that D., = Zs % Zs for the infinite dihedral group D.,. Further,
by [31], there are isomorphisms SLs(Z) = Zy4 %7, Z¢ and PSLo(Z) = Zs * Zs3. Hence,
Proposition 3.12 leads to actions of those groups on ¥(1) with dim¥(1) = 2 (cf.
Example 1.5(2)).

On the other hand, there are groups G with ved G = 1 which cannot act on any
¥(1) independently of dim ¥(1). In fact, by means of [30], it holds ved SLy(Z) = 1.
Hence, ved GLy(Z) = ved(SLa(Z) X Zs) = 1 as well. But by Remark 2.5 the group
GLy(Z) cannot act on any X(1). Further, given a group G with vedG = 1 and a
finite group Gy, we get ved(G x Gg) = ved(Gy x G) = 1. Nevertheless by means of
Proposition 2.4 groups G x Gy and Gy x G cannot act on any (1) provided Gy is
non-cyclic.

To conclude our study of groups G with ved G = 1, we consider the situation
where (1) is a manifold. This includes the case of ¥(1) as a real vector bundle over

S! which is an n-manifold without boundary with n > 2.

Proposition 3.13. If a finitely generated group G with vedG < oo acts on an
n-manifold M with n > 2 and of the homotopy type of the circle, then:

(1) ved G < n —2 if and only if M/G is not compact. In particular, G = Z,, for
some m > 1, if and only if M /G is not compact provided for n = 2;

(2) G is any of the groups listed in Corollary 2.6(2)-(3), if and only if M/G is

compact provided n = 2.

Proof. Item (1): Let G’ < G such that G : G’ < co and cd G’ < n — 2.

=-: Suppose that M /G is compact. Then, M /G’ is also compact and H"(M,Z) #
0. Because ved G' < n — 2, the Leray-Cartan spectral sequence associated with the
fibration M — M/G' — K(G', 1) leads to a contradiction H*(M,Z) = 0 for k > m.

<: If G" = Ker(G' — Aut (Z)), then G' : G” < 2 and ved G = ved G”. Further,

Proposition 1.7 leads to ved G < n — 1. Now, given a G”-module A, the extension
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e > 7Z — m™ — G — e associated with the G-action on M leads to e — Z —
7 — G" — e. Hence, the corresponding Lyndon-Hochschild spectral sequence
yields H"1(G", A) = 0 and ved G < n — 2.

If n =2, then ved G = 0 and Proposition 2.4 leads to G = Z,, for some m > 1.

Item (2) =: Let G be any of the groups listed in Corollary 2.6(2)-(3). Then
Theorem 2.10 shows that M/G is compact.

<: If M /G is compact then [4, Proposition 8.1, Chapter VIII] yields cd m (M/G) =
2 and by [29] we get for ends e(G) = e(M/G) = 2. Hence, Theorem 2.1 and Corollary
2.6 imply the result and the proof is complete.

O

At the end, we present a family of groups with an infinite virtual cohomological
dimension and acting on a homotopy circle. To conclude that, we study the family
of the locally cyclic groups. We begin by presenting a very explicit description of
these groups. First, we recall that a group G is called locally cyclic (resp. locally
finite) if each of its finitely generated subgroups is cyclic (resp. finite). Notice that
locally cyclic (resp. finite) groups are closed with respect to subgroups and quotient
groups. Further, [34, Theorem 2.3] implies that any locally cyclic group has period
2 after 0- or 1-step and, by means of Proposition 2.4, any torsion locally finite group
acting on some (1) is locally cyclic.

In view of [28, I1.2.k. Theorem)], locally cyclic groups are characterized as follows.

Theorem 3.14. A group is locally cyclic if and only if it is isomorphic to a subgroup

of homomorphic image of additive rationals Q.
Further, we show:

Proposition 3.15. A group G is locally cyclic if and only if G is a subgroup of Q
or Q/Z.

Proof. Certainly, any subgroup of Q or Q/Z is locally cyclic.

Let now G be a locally cyclic group. Then, by Theorem 3.14, the group G is iso-
morphic to a subgroup of homomorphic image of Q. Hence, there are such subgroups
A <B < Q that G =B/A. If A is trivial, then G =B < Q.

If A is non-trivial, then nZ < A for some n > 1. Then for any 5 € G, we get
ny% = nx € A and so Q/A is a torsion group. Because Q/A is also divisible, we
obtain that

Q/A = P Zs~
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for some primes ¢ and
Q/A < Q/Z= P Zy~
for all primes p. Because, B/A < Q/A, we derive that B/A < Q/Z and the proof is
complete.
O

So, our family of groups are divided into two subfamilies, where the first one
consists of subgroups of Q and the second one subgroups of Q/Z. We will see that
the first subfamily have the cohomological dimension two and the second one has
the infinite cohomology dimension.

First, we show that gd A = 2 for any non-cyclic subgroup A < Q of the additive

group of the rationals Q. To aim that, consider the direct system
/RNy R/ S/ R

with imZ = Q, where 4, : Z — 7Z is the multiplication by n for n > 2. Next, fix
—
maps f, : Xp_1 = St = X,, = S! of degree n for n > 2 and consider the telescope

construction .
TS = (| | Xax 1)/~
n=1

where I = [0,1] is the unit interval and (z,,1) ~ (fn41(x,),0) for z, € X, and
n > 1. Then T(S') is a CW-complex with dim 7 (S') = 2. Notice that the maps
fo: Xpo1 = St = X, = St above lift, via the exponential map exp : R — S,
to g, : Yoo1 = R — Y, = R! for n > 2. Then the corresponding telescope
construction 7 (R!) leads to the universal covering of 7(R') — T(S'), where T (R')
is contractible. Hence, mi(7(S')) & limZ = Q, m,(7(S')) = 0 for n # 1 and so
T(SY) = K(Q,1). Consequently, gd A Z 2 for any non-cyclic subgroup A < Q and,

in view of Proposition 1.3, there is an action
A x X(1) = 3(1)

with dim %(1) < 3.

First, we study actions of non-cyclic subgroups A < Q.

Proposition 3.16. Let A < Q be a noncyclic subgroup. Then:

(1) for any central extension e — Z — m — A — e the group m is abelian torsion-
free and with rank two;

(2) H*(A,Z) = Ext(A,Z) = @yny QO P, Zyp provided p is a prime with pA 5 A

and 7Z the trivial A-module;
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(3) H2(A,Z) = Zy ® Zy for any non-trivial A-module structure T on Z provided
that 2A < A.

Proof. Item (1): Suppose e — Z — m —» A — e is a central extension with
a noncyclic A < @Q and the commutator [z,y] # 0 for some z,y € m. Because
a([z,y]) = e, we may set [z,y] = m # 0 for some m € Z. Let a(z) = % for some
k,l € Z. But A < Q is noncyclic, so there is such % € A that p is a prime with
ptlm,n. If a(z) = %”, then a(z?) = a(z!") = kn and 2P = ax'™ for some a € Z.
Because the extension e — Z — m — A — e is central, the formula (3.4) leads to a
contradiction Imn = [2'",y] = [2?,y] = p|z, y]. Further, the isomorphisms Z®Q = Q
and A®Q = Q imply r® Q = Q & Q. But 7 is torsion-free, as an extension of
torsion-free groups, so we deduce the rank of A is two.

Item (2): In view of (1) we get that H2(A,Z) = Ext(A,Z). By [20, Chapter III]
the group Ext(A, Z) is divisible with card(H?(A,Z)) = 2%. If p is a prime such that
pA S A then the extension e — pA — A — 7Z, — e implies that the Priiffer group
Ly is a direct summand of Ext(A, Z).

Item (3): Given A < Q and an extension e — Z — m — Z — e, any action of A
on Z is trivial provided 2A = A. But 2A < A implies an isomorphism Z/2A = Z,
and so an existence of a non-trivial action of A on Z. Then, for a non-trivial an
A-module structure 7 on Z, the Lyndon-Hochschild-Serre spectral sequence applied

to the extension

e —>20A A —>7Zy e

leads to E2? = H?(Zy, H1(2A, 7)) = HP*9(A,Z) and the extension
e — E? — H*(AZ) = E3° > e.

But E;° = H*(ZZ) = Z, and, in view of Proposition 3.16(2), it holds Ey* =

(Do Q® Dpacs Zp=)™ = Zy. Consequently HZ(A, 7) = 7y ® 7y and the proof is
complete.

O

Given a set P of primes, write Zp for the localization of Z with respect to the

muliplicative system generated by P. Based on the above we obtain the following

result.

Theorem 3.17. There are 2% distinct homotopy types of orbit spaces %(1)/Zp with

respect to actions of Zp on X(1) and any such an action induces the trivial action

on H'(X(1),7Z). "



Proof. First, suppose that P is an infinite set of primes. Then for any subset

P’ C P there is an extension
€—>Z$ZP/EBZP\]D/ ﬁ)Zp—)(i,

where (1) = (1, —1) and the restriction maps 3|z, 8|z, ,, are the inclusion maps
Lpr — ZLp, Lpr — ZLp, respectively. Notice that for any two distinct subsets P, P” C
P, the groups Zp: @ Zp\p and Zpr @ Zp\pr are not isomorphic.

If P={p1,...,pn} for some primes pi,...,p,, then Zp = Z[p1~-1~pn]' Next for
any two distinct primes p,p’ ¢ P and any sequence (my)r>1 of natural numbers

consider the subgroup A(p, (my)) = (1 P for k> 1) and A'(p/, (my)) =

" (p1-pn)F Tk

M for ke > 1> of Zp. Then we get an extension

<1’ (p1---pn )™k
e = 7.2 Ap, (mi)) @ A(p, (mi)) & Zp — e,

with the maps « and § defined as above. Notice that the groups A(p, (my)) &
A(p', (my)) and A(p, (my)) @& A'(p/, (my)) are not isomorphic for two distinct se-
quences (my) and (my) and this completes the proof.

U

We close the paper with the study of actions on (1) of groups of the second
subfamily which are subgroups of Q/Z. Let p : Q — Q/Z be the quotient map.
Then, gdp~1(A) < 2 and the extension e — Z — p~}(A) — A — ¢ yields, in view of

Proposition 1.3, an action
A x X(1) = (1)

with dim 3(1) < 2. Further, notice that for any non-cyclic subgroup A, this extension

leads also to
e — Z — Ext(A,Z) — Ext(p ' (A),Z) — e.
Because card(Ext(p~'(A),Z)) = 2% we conclude that
card(Ext(A, Z)) = 2%

for any non-cyclic A < Q/Z.

To present the next result, we need:

Lemma 3.18. If0 - A — G 5 B — 0 is a central extension with a torsion-free

abelian group A and a torsion abelian group B, then G is an abelian group.
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Proof. First, invoke one Hall’s commutator formulae

(3.4) (9192, 93] = [91, [92, 93]1[92, 95][91, 93]

for any g1, 92,93 € G. Because B is abelian, [gs, 93] € A. But A is in the center
of G, so we get [g192, 3] = [92, g3][g1,95]. In particular, [g7, go] = [g1, g2]? and the
inductive argument leads to [¢7, go] = [g1, 2| for any n > 0.

Let now p(g1)" = 0 for some n > 0. Then g7 € A and [¢7, go] = [91,92]" = 0.
Because [g1, go] € A which is torsion-free, the result follows.

U

Theorem 3.19. For any subgroup A < Q/Z there is an action of A on some ¥(1)
and ezactly one homotopy type of the orbit spaces (1) /A for all its possible actions

on homotopy circles ¥(1). Further, any such an action induces the trivial action on

HY(2(1),Z).

Proof. Certainly, we may assume that A < Q/Z is a non-trivial subgroup. Then,

in view of the canonical extension
e—=7Z—p HA) = A—e,

we get gdp~t(A) < 2 and Proposition 1.3 leads to an action A x %(1) — (1) with
dim ¥(1) < 2.

Now, given an action A x (1) — ¥(1), consider the associated extension
esZ 375 A0

Because the group A is torsion, in view of Remark 2.7, the induced action of A on
H'(X(1),Z) is trivial. Then, by Lemma 3.18 we get that 7 is abelian. Because A
is torsion, for any non-trivial z € 7 there are uniquely determined relatively prime

integers n, m such that maz = na(1l), where m is the order of f(x). Then the map
pom—pH(A)

given by ¢(0) = 0 and p(x) = * provided maz = na(1) is a well-defined injection. To
show that ¢ is a homomorphism, take z1,zy € 7 with mix; = nja(1) and mexy =
nea(1). Because the least common multiple [my, ms] is the order of G(x; + z3), we

derive that [my, mo)(z1 + o) = (Imely, 4 [memely )6 (1), Consequently, ¢(z1 +

m2 mi

x9) = p(z1) + @(x2). Further, the relation ¢ (1) = 1 leads to such a monomorphism
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@ : A — A that the diagram

e Z—2 1 A
oL
e —>7 —=pLA) == A

— e

commutes. Next, notice that a torsion abelian group B is co-Hopfian if and only if

each its p-primary component B, is co-Hopfian, where p runs over the set of all primes.

This follows because any homomorphism preserves the p-primary components. The

p-primary component of A is a subgroup of the p-primary component of Q/Z, which

in turn is the Priffer group Z,~. The only proper subgroups of Z,~ are the finite

groups Zyn, where 0 < n < oo which are certainly co-Hopfian. But the group Z,-

is co-Hopfian, so we deduce that any monomorphism A < A is an automorphism.

Consequently, ¢ : 7 < p~!(A) is an isomorphism and the proof is complete.
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