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Abstract. Let G × Σ(1) → Σ(1) be a free, properly discontinuous and cellular

action of a group G on a finite dimensional CW -complex Σ(1) that has the ho-

motopy type of the circle. We determine all virtually cyclic groups G that act on

Σ(1) together with the induced action G → Aut(H1(Σ(1),Z)), and we classify the

orbit spaces Σ(1)/G.

Then, we study the same questions for certain families of groups. First, we

consider the family of groups with vcd ≤ 1 which includes semi-direct products

Zn o F and F o Zn and amalgamated products of finite groups with bounded

orders since these groups have vcd = 1. Next, we study locally cyclic groups

consisting of subgroups of the rationals Q with vcd ≤ 2 and subgroups of the

quotient Q/Z with vcd = ∞. The results obtained depend upon the subfamily in

question. In particular, for an action of any subgroup of Q/Z there is only one

orbit space up to homotopy and the induced action on H1(Σ(1),Z) is trivial.

Introduction. Finite groups with free and cellular actions on n-homotopy

spheres Σ(n) (a finitely dimensional CW -complex with the homotopy type of the

n-sphere Sn) have been fully classified, and one can find a classification in a table by

Suzuki-Zassenhaus, see e.g., [1, Chapter IV, Theorem 6.15]. Further, the complete

calculation of the number of homotopy types was obtained in a series of papers

[11]-[16]. Finally, following [4, Proposition 10.2], for any action of a finite group
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G on an odd dimensional homotopy sphere Σ(2n + 1) the induced action G →
Aut(H2n+1(Σ(2n+ 1),Z)) is trivial.
Actions of infinite discrete groups on Σ(2n+1) and H2n+1(Σ(2n+1),Z) have been

studied as well. For more about this subject, we refer the reader to the papers [2],

[7], [25], [27] and [35]. For example, [2, Corollary 1.3] states that a discrete group G

acts freely and properly discontinuously on Rm × Sn for some m,n > 0 if and only if

G is a countable group with periodic cohomology (with any coefficients) after some

n-step with n ≥ 0.

Most of the results which appear in the above-mentioned papers apply to odd-

dimensional homotopy spheres different from Σ(1), and either the result is not true

for a Σ(1) or the techniques used do not apply, see e.g., [27]. The purpose of this

paper is to study groups with free, properly discontinuous and cellular actions on a

homotopy circle Σ(1), noting that we need somewhat different methods than those

used for Σ(n) with n > 1. We address the following problems:

• when a group G acts;

• what is the minimal dimension of Σ(1) on which G acts;

• the description of the action G → Aut(H1(Σ(1),Z)).

We begin by exhibiting a one-to-one correspondence (Proposition 1.8) between

equivalence classes of actions of a group G on Σ(1) and equivalence classes of exten-

sions e → Z → π → G → e, where π is a group with finite cohomological dimension,

cdπ < ∞, where the induced action G → Aut(H1(Σ(1),Z)) is given by the above

extension. Using this result, we then study our problems for several subfamilies of

groups. Here are the main results of this work. Recall that an infinite virtually cyclic

group is the middle term of a short exact sequence of the form

e → Z → G → F → e,

where F is a finite group. If the extension is central we say that the group G is of

type I, otherwise it is of type II. For virtually cyclic groups we have:

Corollary 2.6. Let G× Σ(1) → Σ(1) be an action, where G is a virtually cyclic

group.

(1) If G is finite, then G ∼= Zn for some n ≥ 1;

(2) if G is of type I, then G ∼= Zn o Z for some n ≥ 1;

(3) if G is of type II, then G ∼= Z2n ⋆Zn Z2n for some n ≥ 1, and Z2n ⋆Zn Z2n
∼=

Z oθ Z2n with θ(12n) = −1.
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Theorem 2.10. Let G be a virtually cyclic group. Then the orbit space Σ(1)/G

of an action G×Σ(1) → Σ(1) of a virtually cyclic group G on Σ(1) has the following

homotopy type:

(1) of a circle if the group G is finite;

(2) either of the torus or the Klein bottle if the group G is infinite.

Then, we study possible actions of semi-direct products ZnoF (Theorem 3.2) and

F oZn (Theorem 3.9), and free products with an amalgamated subgroup (Theorem

3.11) on Σ(1). We point out that Theorem 3.11 shows that the class of all groups

acting on Σ(1) is closed with respect to free products.

The family of locally-cyclic groups is divided into two subfamilies, where the first

one consists of subgroups of the rationals Q and the second one subgroups of Q/Z.
Finally, such actions of those groups and corresponding orbit spaces are investi-

gated. Given a set P of primes, write ZP for the localization of Z with respect to

the muliplicative system generated by P . Then, the following results are presented:

Theorem 3.17. There are 2ℵ0 distinct homotopy types of orbit spaces Σ(1)/ZP

with respect to actions of ZP on Σ(1) and any such action induces the trivial action

on H1(Σ(1),Z).
Theorem 3.19. For any subgroup A < Q/Z there is an action of A on some Σ(1)

and exactly one homotopy type of the orbit spaces Σ(1)/A for all its possible actions

on homotopy circles Σ(1). Further, any such action determines the trivial action on

H1(Σ(1),Z).
The paper is divided into three sections. In Section 1, general facts on free,

properly discontinuous and cellular actions of groups on Σ(1) are presented. Also

the questions mentioned there are shown in Proposition 1.8 to be equivalent to an

algebraic problem in terms of extension of the group of integers Z. Other results are

stated in Propositions 1.3 and 1.7. The latter one shows that there is a one-to-one

correspondence between equivalence classes of actions G×Σ(1) → Σ(1) of a group G

on homotopy circles Σ(1) and equivalence classes of extensions e → Z → π → G → e

with cd π < ∞, the cohomological dimension of π.

Section 2 is devoted to classifications of all virtually cyclic groups G acting on Σ(1)

and homotopy types of corresponding orbit spaces Σ(1)/G. These are Corollary 2.6

and Theorem 2.10.

Section 3 takes up the study of other families of groups. For certain groups with

vcd ≤ 1, the main results are stated in Theorems 3.2 and 3.9. Next, we present a

family of groups which contains two subfamilies. One is the family of subgroups of
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Q, the additive groups of rationals which have cd ≤ 2. For this subfamily the main

result is Theorem 3.17. The second subfamily is formed by subgroups of Q/Z. They
have infinite virtual cohomological dimension and the main result on actions of those

groups is Theorem 3.19.

Acknowledgments. The authors are indebted to the referee for his/her many

detailed suggestions which lead to a considerable improvement of the original version

of the paper.

1. Actions on Σ(1) and extensions. A CW -complex Σ(n) is said to

be a homotopy n-sphere, if dimΣ(n) < ∞ and Σ(n) is homotopy equivalent to the

n-sphere Sn. For n = 1, a space Σ(1) is simply called a homotopy circle.

From now on, we assume that any action G × Σ(n) → Σ(n) is free, properly

discontinuous and cellular.

Notice that n ≤ dimΣ(n) and for an action G×Σ(n) → Σ(n) there is a fibration

Σ(n) −→ Σ(n)×G K̃(G, 1) −→ K(G, 1),

where K̃(G, 1) is the universal covering of the Eilenberg-MacLane space K(G, 1) and

Σ(n)×G K̃(G, 1) is the Borel construction which is homotopy equivalent to the orbit

space Σ(n)/G. Consequently, in view of the fibration above there are isomorphisms

πk(Σ(n)) ∼= πk(Σ(n)/G) for k > 1 and n ≥ 1, π1(Σ(n)/G) ∼= G for n > 1, and there

is an extension

(1.1) e → Z → π1(Σ(1)/G) → G → e

of groups. Notice that the action of G on the automorphism group Aut(H1(Σ(1),Z))
induced by G × Σ(1) → Σ(1) corresponds to the action G → Aut(Z) given by the

extension (1.1).

Lemma 1.1. If G× Σ(1) → Σ(1) is an action, then:

(1) the cohomology Hm(Σ(1)/G,A) = 0 for m > dimΣ(1) and any π1(Σ(1)/G)-

local system A;

(2) the group π1(Σ(1)/G) is torsion-free.

Proof. The inequality dim(Σ(1)/G) ≤ dimΣ(1) < ∞ implies (1).

Item (2) is a consequence of (1) and [4, Chapter VIII, Corollary 2.5].

�
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Write cdG (resp. gdG, vcdG) for cohomological (resp. geometric, virtual coho-

mological) dimension of a group G [4, Chapter VIII]. Given a subgroup H < G, we

have the orbit space K̃(G, 1)/H = K(H, 1). Consequently, we deduce gdH ≤ gdG.

Certainly, cdG ≤ gdG for any group G and, in view of [10], it follows that:

cdG = gdG provided cdG ̸= 2 and cdG = 2 implies gdG ≤ 3.

Remark 1.2. The Eilenberg-Ganea Conjecture [10] states that cdG = 2 implies

gdG = 2.

Notice that for an action G × Σ(1) → Σ(1), there is an extension (1.1) with

gdπ1(Σ(1)/G) ≤ dimΣ(1). The converse also holds and it is a particular case of the

following:

Proposition 1.3. Given an extension

e → G′ → G → G′′ → e

there is a CW -complex X̃ of the homotopy type of K(G′, 1), with dim X̃ ≤ gdG, and

an action

G′′ × X̃ −→ X̃

such that the orbit space X̃/G′′ ≃ K(G, 1).

In particular, for an extension e → Z → π → G → e with gd π < ∞, there is such

Σ(1) that gd π ≤ dimΣ(1) and an action G×Σ(1) → Σ(1) with Σ(1)/G ≃ K(π, 1).

Proof. Let X̃ = K̃(G, 1)/G′. Then the extension

e → G′ → G → G′′ → e

leads to an action

G′′ × X̃ −→ X̃.

From the definition of X̃ and the action of G′′ on X̃ we have X̃/G′′ = K̃(G, 1)/G,

which in turn is homeomorphic to K(G, 1).

Now, consider an extension e → Z → π → G → e and an Eilenberg-MacLane

space K(π, 1) with dimK(π, 1) = gd π. Then as above, we derive an action

G× Σ(1) −→ Σ(1)

with Σ(1) = K̃(π, 1)/Z and the proof is complete.

�
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Remark 1.4. Any extension e → Z → π → G → e with gd π < ∞ and the

multiplications Z → Z by n ≥ 1 produce a sequence of extensions e → Z → π →
Gn → e. Groups Gn

∼= π/nZ with n ≥ 1 are possibly distinct and act freely, and

properly discontinuously on some Σ(1) and all of them yield the same orbit space.

Now write Zn for the cyclic group of order n.

Example 1.5. (1) Given a group G with gdG < ∞, the obvious extension

e → Z −→ Z×G −→ Zn ×G → e

yields, in view of Proposition 1.3, an action

(Zn ×G)× Σ(1) −→ Σ(1)

with dimΣ(1) = gdG+ 1.

(2) The Artin braid group Bn on n strands determines an epimorphism Bn →
Sn → e, where Sn is the symmetric group on n letters. Its kernel gives the pure

Artin braid group Pn on n strands. Hence, we have the extension

e → Pn −→ Bn −→ Sn → e.

Given a subgroup G < Sn, we follow [6], to denote by BG
n the G-Artin braid group

defined as the preimage of G in Bn by the projection map of the extension above. In

view of [6, Proposition 2.4(1)], the center Z(BG
n )

∼= Z. Then, we get the extension

e → Z(BG
n )

∼= Z −→ BG
n −→ BG

n /Z(BG
n ) → e.

Because Pn < BG
n < Bn and, cdBn = cdPn = n − 1 (by [19]), the result [4,

Proposition 2.4, Chapter VIII] leads to cdBG
n = n− 1. Therefore gdBG

n = n− 1 for

n ̸= 3 and gdBG
3 ≤ 3. Then Proposition 1.3 yields an action

(BG
n /Z(BG

n ))× Σ(1) → Σ(1)

with dimΣ(1) = n − 1 for n ̸= 3 and dimΣ(1) ≤ 3 for n = 3. We point out that

by [6, Proposition 2.4(1)] we have BG
n /Z(BG

n )
∼= Γ

n+1,G×{e}
0 , where Γ

n+1,G×{e}
0 is the

G × {e}-mapping class group of Sn+1
0 , the orientable surface of genus 0 with n + 1

punctures.

We have been informed by Fred Cohen on the extension

e → Z → B3 → SL2(Z) → e ([24, Theorem 10.5])
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which, in view of Remark 1.4, leads to e → Z → B3 → B3/nZ → e for n ≥ 1, where

SL2(Z) denotes the special 2× 2-linear group over Z. In particular, n = 2 yields

e → Z → B3 → PSL2(Z) → e

with Z ∼= Z(B3) and PSL2(Z) = SL2(Z)/{±1}. Hence, Proposition 1.3 yields

actions

(B3/nZ)× Σ(1) → Σ(1) with dimΣ(1) ≤ 3 and n ≥ 1.

To show the next result, we notice that Proposition 1.3 and [4, Proposition 2.4,

Chapter VIII] say:

Remark 1.6. For any extension e → G′ → G → G′′ → e it follows that:

gdG ≤ gdG′ + gdG′′ and cdG ≤ cdG′ + cdG′′.

Proposition 1.7. If vcdG < ∞ and there is an action G × Σ(n) → Σ(n) then

vcdG ≤ dimΣ(n)− n for n ≥ 1. In particular, G is finite provided dimΣ(n) = n.

Further, if n = 1 then Σ(1) could be chosen such that dimΣ(1) = vcdG + 1 for

vcdG ̸= 1 and dimΣ(1) ≤ 3 for vcdG = 1.

Proof. Given a subgroup G′ ≤ G with [G : G′] < ∞ and cdG′ = m < ∞,

consider the induced action G′ → Aut(Hn(Σ(n),Z)) ∼= Z2 and write G′′ = Ker(G′ →
Aut(Hn(Σ(n),Z)) ∼= Z2. Then [G : G′′] = [G : G′][G′ : G′′] ≤ 2[G : G′] < ∞.

Next, for any G′′-local coefficient system A, the Leray-Serre spectral sequence

Ep,q
2 = Hp(G′′, Hq(Σ(n), A)) determined by the fibration Σ(n) → Σ(n)/G′′ →

K(G′′, 1) converges to Hp+q(Σ(n)/G′′, A). Because Em+n,0
2 = 0, it follows that

Hm+n(Σ(n)/G′′, A) ∼= Hm(G′′, Hn(Σ(n), A)).

In view of the Universal Coefficient Theorem, we have an isomorphismHn(Σ(n), A) ∼=
Hom(Hn(Σ(n),Z), A) ∼= A of ZG′′-modules.

Therefore,Hm+n(Σ(n)/G′′, A) ∼= Hm(G′′, A) and consequently, vcdG ≤ dimΣ(n)−
n.

To show the last statement first, consider an action G × Σ(1) → Σ(1) and the

associated extension e → Z → π = π1(Σ(1)/G)
p→ G → e. Because vcdG < ∞, we

can assume that there is such a normal subgroup G′ < G that cdG′ < ∞ and the
7



index [G : G′] < ∞. Then, the commutative diagram

e // Z // p−1(G′) //
� _

��

G′ //
� _

��

e

e // Z

��

// π
p

//

��

G //

��

e

e // e // π/p−1(G′) // G/G′ // e

determined by that extension above and Serre’s Theorem [4, Theorem 3.1, Chapter

VIII] yield cd π = cd p−1(G′). Next the extension e → Z → p−1(G′) → G′ → e and

Remark 1.6 imply

cdπ = cd p−1(G′) ≤ cdG′ + 1 = vcdG+ 1.

First, for vcdG = 0 we get cdπ ≤ 1 and π is a free group. Thus there is an action

of G× Σ(1) → Σ(1) with dimΣ(1) = 1.

Next, vcdG = 1 implies cdπ = cd p−1(G′) ≤ 2. Because the group Z is normal

in p−1(G′), we deduce that cdπ = 2 and gd π ≤ 3. Hence, there is an action

G× Σ(1) → Σ(1) with dimΣ(1) ≤ 3.

Finally let vcdG ≥ 2. Because gd π = cd π for cd π ̸= 2 and gd π ≤ 3 for

cdπ = 2, we deduce that gd π ≤ vcdG+ 1. Then the first part of this proof leads to

gdπ = vcdG+ 1 and the proof is complete.

�
We say that actions φ : G×Σ(1) → Σ(1) and φ′ : G×Σ′(1) → Σ′(1) are equivalent

if there is a homotopy equivalence f : Σ(1) → Σ′(1) such that the diagram

G× Σ(1)
φ

//

idG×f
��

Σ(1)

f

��
G× Σ′(1)

φ′
// Σ′(1)

commutes. Then, we are in a position to state:

Proposition 1.8. There is a one-to-one correspondence between equivalence classes

of actions G×Σ(1) → Σ(1) of a group G on homotopy circles Σ(1) and equivalence

classes of extensions e → Z → π → G → e with cd π < ∞.

In particular for cdG < ∞, then equivalence classes of actions G× Σ(1) → Σ(1)

on homotopy circles Σ(1) with a fixed action τ of G on H1(Σ(1),Z) ∼= Z are in a
8



one-to-one correspondence with the cohomology group H2
τ (G, Z̃), where the action of

G on Z is determined by τ .

Proof. Certainly, equivalent actions

φ : G× Σ(1) → Σ(1) and φ′ : G× Σ′(1) → Σ′(1)

yield equivalent extensions

e → Z → π1(Σ(1)/G) → G → e and e → Z → π1(Σ
′(1)/G) → G → e.

Now, equivalent extensions

e → Z → π → G → e and e → Z → π′ → G → e

determine an isomorphism α : π → π′ such that the diagram

e // Z // π

α
��

// G // e

e // Z // π′ // G // e

commutes. Then for corresponding actions

φ : G× Σ(1) → Σ(1) and φ′ : G× Σ′(1) → Σ′(1)

given by Proposition 1.3 there is a homotopy equivalence f : Σ(1) → Σ′(1) (deter-

mined by α : π → π′) which leads to an equivalence of that actions.

Certainly, the second statement follows from the first one and the proof is complete.

�

2. Virtually cyclic groups acting on Σ(1). A virtually cyclic group

is a group that has a cyclic subgroup of finite index. Every virtually cyclic group

in fact has a normal cyclic subgroup of finite index (namely, the core of any cyclic

subgroup of finite index), and virtually cyclic groups are also known as cyclic-by-

finite groups. Consequently, an infinite virtually cyclic group is the middle term of

a short exact sequence of the form e → Z → G → F → e, where F is a finite group.

If the extension is central we say that the group G is of type I, otherwise it is of type

II.

A finite-by-cyclic group (that is, a group G with a finite normal subgroup H such

that G/H is cyclic) is always virtually cyclic. A finite-by-dihedral group is always

virtually cyclic as well. In fact, these two families constitute all virtually cyclic
9



groups. The statements below follow from the result of C.T.C. Wall [29, Theorem

5.12] which is basically:

Theorem 2.1. Let G be an infinite finitely generated group. Then the following are

equivalent:

(1) G is a group with two ends;

(2) G has an infinite cyclic subgroup of finite index;

(3) G has a finite normal subgroup F E G with the quotient G/F ∼= Z or

Z2 ⋆ Z2
∼= D∞, the infinite dihedral group;

(4) G is of the form:

(i) F o Z, a semi-direct product with F finite

or

(ii) G1 ⋆F G2, a free product with an amalgamated finite subgroup F , where [Gi :

F ] = 2 for i = 1, 2.

Notice that Theorem 2.1 implies:

Corollary 2.2. Groups of the following three types are virtually cyclic. Moreover,

every virtually cyclic group is exactly one of these three types:

(1) finite;

(2) finite-by-(infinite cyclic);

(3) finite-by-(infinite dihedral).

In particular, every torsion-free virtually cyclic group is either trivial or infinite

cyclic.

In view of [17, Chapter 2, Proposition 19], we may state:

Remark 2.3. A virtually cyclic group G is of type I, if it satisfies Theorem 2.1(4)-(i)

and of type II, if it satisfies Theorem 2.1(4)-(ii).

To study actions of virtually cyclic groups, we need:

Proposition 2.4. Given an action G×Σ(1) → Σ(1) and any finite subgroup F ≤ G,

there is an isomorphism F ∼= Zn for some n ≥ 1.

Proof. Certainly, we may assume that G is a finite group. Because the group

π1(Σ(1)/G) is torsion-free (Lemma 1.1(2)), the extension

e → Z → π1(Σ(1)/G) → G → e
10



and Corollary 2.2 lead to an isomorphism π1(Σ(1)/G) ∼= Z and the proof is complete.

�

Remark 2.5. The groups GLn(Z) (general linear over Z) for n ≥ 2 and SLn(Z)
(special linear over Z) for n ≥ 3 do not act on Σ(1) independently of the dimΣ(1).

Certainly, in view of [26, Chapter IX.14], the groups GL2(Z) and SL3(Z) contain
non-cyclic finite subgroups. But GL2(Z) < GLn(Z) for n ≥ 2 and SL3(Z) < SLn(Z)
for n > 2. Hence, by means of Proposition 2.4, do not exist actions of GLn(Z) for
n ≥ 2 and SLn(Z) for n > 2 on any Σ(1) independently of the dimΣ(1).

Then basing on Theorem 2.1, we derive:

Corollary 2.6. Let G × Σ(1) → Σ(1) be an action, where G is a virtually cyclic

group.

(1) If G is finite, then G ∼= Zn for some n ≥ 1;

(2) if G is of type I, then G ∼= Zn o Z for some n ≥ 1;

(3) if G is of type II, then G ∼= Z2n ⋆Zn Z2n for some n ≥ 1, and Z2n ⋆Zn Z2n
∼=

Z oθ Z2n with θ(12n) = −1.

Proof. Item (1) follows immediately from Proposition 2.4.

Now, we prove item (2). For G being of type I, again by Proposition 2.4, we get

an isomorphism G ∼= Zn oθ Z for some n ≥ 1 and an action θ : Z → Aut(Zn).

Next we prove item (3). Let G be a group of type II. Then by Theorem 2.1, it

holds G ∼= G1 ⋆F G2 with [Gi : F ] = 2 for i = 1, 2. Because, in view of [29, Theorem

1.6], the natural maps Gi → G1 ⋆F G2 are injective for i = 1, 2, it follows again from

Proposition 2.4 that G ∼= Z2n ⋆Zn Z2n for some n ≥ 1.

Further, let x (resp. y) denote the generator of the first (resp. second) copy of

Z2n in Z2n ⋆Zn Z2n. Then
⟨
xy−1

⟩ ∼= Z is a normal subgroup of Z2n ⋆Zn Z2n and

Z2n ⋆Zn Z2n
∼= ZoZ2n, where a generator of Z is sent to xy−1 and a generator of Z2n

to x.

�
Next, consider an action G × Σ(1) → Σ(1) for any of the groups G listed in

Corollary 2.6.

Remark 2.7. In view of [4, Proposition 10.2], the induced actionG → Aut(H1(Σ(1),Z))
is trivial when restricted to any finite subgroup of G.

The following result [18, Corollary 1.3] will be crucial to show Proposition 2.9 and

Theorem 2.10:
11



Lemma 2.8. Let e → A → G → B → e be a central extension with G torsion-free

and B finite. Then G and hence B is abelian.

Now, we can state:

Proposition 2.9. Let G be any of the groups listed in Corollary 2.6. Then there is

an action:

(1) Zn × S1 → S1 for any n ≥ 1;

(2) (Zn oθ Z) × Σ(1) → Σ(1) if and only if θ(1) = ±1 for an action θ : Z →
Aut(Zn). Further:

(i) if θ(1) = −1, then an action (Zn oθ Z)× Σ(1) → Σ(1) on any Σ(1) for n ≥ 3

induces the non-trivial action Znoθ Z → Aut(H1(Σ(1),Z)) given by the composition

Zn oθ Z → Z → Aut(H1(Σ(1),Z));
(ii) if θ(1) = 1, then an action (Zn oθ Z) × Σ(1) → Σ(1) on any Σ(1) for n ≥ 3

induces the trivial action Zn oθ Z → Aut(H1(Σ(1),Z)). For G isomorphic either to

Z or Z2 ⊕ Z there are actions G× Σ(1) → Σ(1) with trivial and non-trivial induced

actions G → Aut(H1(Σ(1),Z));
(3) (Z2n ∗Zn Z2n)×Σ(1) → Σ(1). Further, any action (Z2n ∗Zn Z2n)×Σ(1) → Σ(1)

induces the trivial action Z2n ∗Zn Z2n → Aut(H1(Σ(1),Z)).

Proof. Item (1) is obvious because of the inclusion Zn ≤ S1 for any n ≥ 1.

Now, we prove item (2). Suppose there is an action (Znoθ Z)×Σ(1) → Σ(1) with

a non-trivial action θ : Z → Aut(Zn). The extension

e → Z → π = π1(Σ(1)/(Zn oθ Z))
p→ Zn oθ Z → e

associated with that action leads to the commutative diagram

e // Z // p−1(Zn) //
� _

��

Zn
//

� _

��

e

e // Z

��

// π
p

//

��

Zn oθ Z //

��

e

e // e // Z // Z // e

with exact rows. But, the group p−1(Zn) is torsion-free and Remark 2.7 yields the

trivial action of Zn on H1(Σ(1),Z) ∼= Z. Thus, in view of Lemma 2.8, the extension

e → Z → p−1(Zn) → Zn → e is central. Hence, the group p−1(Zn) is abelian and

p−1(Zn) ∼= Z. Consequently, we get either π ∼= Z⊕Z or π ∼= Zo−1Z =
⟨
a, b; bab−1 =

12



a−1
⟩
. If n > 2, then ZnoθZ is not abelian and it follows that π ∼= Zo−1Z. If n = 2,

then θ is trivial and will be treated later.

But, any element of the group Z o−1 Z has a unique form arbs for some r, s ≥ 0.

A routine calculation shows that any infinite cyclic subgroup
⟨
arbs

⟩
≤ Z o−1 Z is

normal if and only if s = 0 or r = 0 and s is even. First consider the case s = 0.

Then, there is an extension

(2.2) e → Z ∼=
⟨
ar
⟩
→ Z o−1 Z → Zn oθ Z → e

with r ≥ 1 which yields r = n. Next, the relation barb−1 = a−r implies that

θ(1) = −1.

Let now consider the case r = 0 and s = 2s1. Then, we have the extension

e → Z ∼=
⟨
b2s1

⟩
→ Z o−1 Z → Zn oθ Z → e.

But such an extension cannot exist because the group Zn oθ Z is virtually cyclic of

type I and the quotient Z o−1 Z/
⟨
b2s1

⟩ ∼= Z o−1 Z2s1 is virtually cyclic of type II.

Then, for a non-trivial θ, we have shown that θ(1) = −1.

Now, we construct actions which correspond to the cases above.

Given θ : Z → Aut(Zn) with θ(1) = ±1, we define:

◦ : (Zn oθ Z)× (S1 × R1) → S1 × R1

by (1n, 0) ◦ (x, t) = (e
2πi
n x, t), (0, 1) ◦ (x, t) = (β(x), t + 1) for (x, t) ∈ S1 × R1 and

n ≥ 1, where β(x) = x if θ(1) = 1 and β(x) = x̄ (the complex conjugation) if

θ(1) = −1.

For n = 1, 2 we have only one group, Z and Z2 ⊕ Z, respectively. The extensions:

e → Z → Z⊕ Z → Z → e, e → Z → Z o−1 Z → Z → e

and

e → Z → Z⊕ Z → Z2 ⊕ Z → e, e → Z → Z o−1 Z → Z2 ⊕ Z → e

lead to actions

Z× Σ(1) → Σ(1) and (Z2 ⊕ Z)× Σ(1) → Σ(1)

with trivial and non-trivial induced actions Z → Aut(H1(Σ(1),Z)) and (Z2 ⊕ Z) →
Aut(H1(Σ(1),Z)).
Now, we show the further parts of item (2).

(i): If θ(1) = −1, then from the extension (2.2) it follows that the action Zn o−1

Z → Aut(H1(Σ(1),Z)) is non-trivial.
13



(ii): Now, suppose that θ(1) = 1. Then, following the same steps as above, we can

show that an action (Zn ⊕ Z)× Σ(1) → Σ(1) yields the extension

e → Z → π → Zn ⊕ Z → e

with π ∼= Z o Z. We claim that π ∼= Z ⊕ Z for n ≥ 3. Suppose by contradiction

that π ∼= Z o−1 Z. Then the surjective map Z o−1 Z → Zn ⊕ Z factors through the

abelianization (Zo−1Z)ab ∼= Z2⊕Z, so we obtain a surjective map Z2⊕Z → Zn⊕Z.
Since n ≥ 3 this is a contradiction and the result follows. It immediately follows that

the homomorphism Zn ⊕Z → Aut(H1(Σ(1),Z)) is trivial for n ≥ 3. For n = 1, 2, as

we have shown above, the action of Z and Z2⊕Z can be either trivial or non-trivial.

Finally, we show item (3). We define an action of Z2n ∗Zn Z2n
∼= Z o Z2n on

Σ(1) = S1 × R1 as follows:

◦ : (Z o Z2n)× (S1 × R1) → S1 × R1

given by (0, 12n) ◦ (x, t) = (e2πi/nx,−t), (1, 0) ◦ (x, t) = (x, t+ 1) for (x, t) ∈ S1 ×R1.

Next, given an action (Z2n∗ZnZ2n)×Σ(1) → Σ(1), in view of [4, Proposition 10.2],

the induced action Z2n ∗Zn Z2n → Aut(H1(Σ(1),Z)) is trivial because Z2n ∗Zn Z2n is

generated by elements of finite order and the proof is complete.

�

Now, we aim to classify homotopy types of orbits spaces Σ(1)/G for all actions

G×Σ(1) → Σ(1) of virtually cyclic groups G on a homotopy circle Σ(1). By Lemma

1.1, the orbit space Σ(1)/G is an Eilenberg-MacLane space of type K(π, 1) with a

torsion-free group π = π1(Σ(1)/G) and there is an extension

e → Z → π → G → e.

Theorem 2.10. Let G be a virtually cyclic group. Then the orbit space Σ(1)/G of

an action G× Σ(1) → Σ(1) of a virtually cyclic group G on Σ(1) has the homotopy

type:

(1) of a circle if the group G is finite;

(2) either of the 2-torus or the Klein bottle, if the group G is infinite.

Proof. Item (1): If G is a finite group, then by Proposition 2.4 we get G ∼= Zn

for some n ≥ 1. Hence,

e → Z → π → Zn → e

is the associated extension to the action Zn × Σ(1) → Σ(1). In view of Remark 2.7

this extension is central and Lemma 2.8 yields that π ∼= Z and so Σ(1)/G ≃ S1.
14



Item (2): Consider the extension e → Z → π → G → e associated to the action

G×Σ(1) → Σ(1). Since G is virtually cyclic, the group π is virtually polycyclic and

it follows that π has Hirsch length 2. Because π is torsion-free, it is the fundamental

group of a two dimensional flat manifold which is either either the 2-torus or the

Klein bottle and the proof is complete.

�

3. Arbitrary groups acting on Σ(1). We begin from the study of

groups G with vcdG ≤ 1 acting on a Σ(1) such that dimΣ(1) ≤ 2. Observe that G

is finite provided vcdG = 0 or dimΣ(1) = 1 (Proposition 1.7), and by Proposition

2.4, we get G ∼= Zn for some n ≥ 1. Hence, we consider groups G with vcdG = 1

which act on Σ(1) with dimΣ(1) > 1.

Notice that vcd(F oθ1 Zn) = vcd(Zn oθ2 F ) = 1 for any free group F and actions

θ1 : Zn → Aut(F ) and θ2 : F → Aut(Zn). Further, F oθ1 Zn and Zn oθ2 F are

fundamental groups of finite graphs of finite groups. In order to study actions on

homotopy circles of such groups, consider a slightly more general situation. Given a

group G and its subgroup G′ < G write AutG′(G) for the subgroup of Aut(G) given

by automorphisms which send G′ to itself. Notice that any epimorphism p : G → H

induces an action

p̄ : AutKer p(G) → Aut(H).

Lemma 3.1. Let G,H be groups that cdG < ∞ and H acts on some Σ(1). Then:

(1) for any action θ : H → Aut(G), there is an action of the group G oθ H on

some Σ(1);

(2) for an action θ : G → Aut(H) which admits a factorization

G

θ′

zzuu
uu
uu
uu
uu
uu
uu
uu
uu
uu
u

θ

��
AutZ(π)

p̄
// Aut(H),

where p̄ is induced by an extension e → Z → π
p→ H → e determined by an action

of H, there is an action of the group H oθ G on some Σ(1).

Further, if there is g0 ∈ G such that θ(g0) ̸∈ Im p̄ for any p̄ : AutZ(π) → Aut(H)

as above, then the group H oθ G cannot act on any Σ(1).
15



Proof. Item (1): The action of H on some Σ(1) yields an extension

e → Z → π
p→ H → e.

Then, given θ : H → Aut(G), consider θ′ = θp : π → Aut(G). Thus, we get the

extension

e → Z → Goθ′ π → Goθ H → e

and, in view of Remark 1.6, it holds gd(Goθ′ π) < ∞. Hence Proposition 1.3 leads

to an action

(Goθ H)× Σ(1) → Σ(1)

for some Σ(1).

Item (2): The factorization θ = p̄θ′ and the extension e → Z → π
p→ H → e

determined by an action of H on some Σ(1) lead to an extension

e → Z → π oθ′ G → H oθ G → e

and, in view of Remark 1.6, it holds gd(πoθ′ G) < ∞. Hence, Proposition 1.3 yields

an action

(H oθ G)× Σ(1) → Σ(1)

for some Σ(1).

Suppose that there is g0 ∈ G such that θ(g0) ̸∈ Im p̄ for any p̄ : AutZ(π) → Aut(H)

as above and the group H oθ G acts on some Σ(1). Then the subgroup H o Z ∼=
H o

⟨
g0
⟩
< H oθ G acts on that Σ(1) and we get the associated extension

e → Z → π′ p′→ H ×θ Z → e.

Next, the extension above leads to the commutative diagram

e // Z // p−1(H) //
� _

��

H //
� _

��

e

e // Z

��

// π′ p′
//

��

H o Z //

��

e

e // e // Z // Z // e.

Hence, π′ ∼= p′−1(H) o Z and so θ(g0) ∈ Im p̄′. This yields a contradiction and the

proof follows.

�
Setting rk(F ) for the rank of a free group F , we are in a position to show:
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Theorem 3.2. For an action θ : F → Aut(Zn) there is an action of the group

Zn oθ F on Σ(1) with dim Σ(1) ≤ 2 if and only if θ(x) = ±1 for any element x ∈ F

and exactly one homotopy type of the orbit spaces Σ(1)/(Zn oθ F ) provided n ≥ 3,

and 2rk(F ) distinct such homotopy types with n = 1, 2 for all possible actions of such

Zn oθ F on homotopy circles Σ(1). Further:

(1) any action (ZnoθF )×Σ(1) → Σ(1) on a Σ(1) induces the action φ : ZnoθF →
Aut(H1(Σ(1),Z)) given by φ(x) = θ(x) for x ∈ F ;

(2) if θ is trivial, then any action (Zn oθ F )× Σ(1) → Σ(1) on a Σ(1) for n ≥ 3

induces the trivial action Zn oθ F → Aut(H1(Σ(1),Z)). For G isomorphic either to

F or Z2 ⊕ F there are actions G×Σ(1) → Σ(1) with trivial and non-trivial induced

actions G → Aut(H1(Σ(1),Z)).

Proof. Suppose θ : F → Aut(Zn) satisfies θ(x) = ±1 for any element x ∈ F .

Then θ lifts to θ′ : F → Aut(Z), and in view of Proposition 1.3, the extension

e → Z → Z oθ′ F → Zn oθ F → e, leads to an action

(Zn oθ F )× Σ(1) → Σ(1)

with dimΣ(1) ≤ 2. Notice that the induced action φ : Zn oθ F → Aut(H1(Σ(1),Z))
is trivial on Zn, and φ(x) = θ′(x) for any element x ∈ F .

Conversely, suppose there is an action (Zn oθ F ) × Σ(1) → Σ(1), by contra-

diction, and assume that θ(x0) ̸= ±1 for an element x0 ∈ F . Consider the map

θ0 :
⟨
x0

⟩
→ Aut(Zn) with θ0(x0) = θ(x0). Then, in view of Proposition 2.9(2), the

subgroup Zn oθ0

⟨
x0

⟩
< Zn oθ F does not act on any Σ(1), which is a contradiction.

Consequently, it follows that θ(x0) = ±1.

Now, we study the homotopy type of the orbit spaces. Given an action

(ZnoθF )×Σ(1) → Σ(1), we have an associated extension e → Z → π
p→ ZnoθF → e

with a torsion-free group π and the action φ : Zn oθ F → Aut(H1(Σ(1),Z)) which
restricts to the trivial one on Zn. Hence, the extension

e → Z → p−1(Zn) → Zn → e

yields p−1(Zn) ∼= Z. Further, the commutative diagram

e // Z // p−1(Zn) //
� _

��

Zn
//

� _

��

e

e // Z

��

// π
p

//

��

Zn oθ F //

��

e

e // e // F // F // e
17



leads to an isomorphism

π ∼= Z oθ′ F,

where θ′ : F → Aut(Z) is the lifting of θ : F → Aut(Zn). Because θ′ is uniquely

determined by θ for n ≥ 3, there is exactly one homotopy type of the orbit spaces

Σ(1)/(Znoθ F ) for all possible actions of such Znoθ F on homotopy circles Σ(1) for

n ≥ 3. Further, Proposition 1.3 leads to dimΣ(1) ≤ 2.

Now, the group Aut(Zn) is trivial for n = 1, 2. Hence, there are 2rk(F ) homotopy

type of the orbit spaces Σ(1)/(Zn oθ F ) for n = 1, 2.

Item (1): Given an extension e → Z → Foθ′Z → FoθZn → e which arises from an

action (FoθZn)×Σ(1) → Σ(1), the induced action φ : FoθZn → Aut(H1(Σ(1),Z))
is completely determined by φ(x) = θ′(x) for any element x ∈ F , and the result

follows.

Item (2): Now, suppose that θ is trivial. Then an action (Zn ×F )×Σ(1) → Σ(1)

yields the extension

e → Z → π → Zn × F → e

with π ∼= Z oθ′ F . We claim that π ∼= Z × F for n ≥ 3. Suppose by contradiction

that θ′ is non-trivial. Then the surjective map Zoθ′ F → Zn×F implies a surjective

map Z2 ⊕ F ab → Zn ⊕ F ab, where F ab denotes the abelianization of F . Since n ≥ 3

this is a contradiction and the result follows. It immediately follows that the induced

action Zn × F → Aut(H1(Σ(1),Z)) is trivial for n ≥ 3.

For n = 1, 2, the extensions:

e → Z → Z o−1 F → F → e, e → Z → Z× F → F → e

and

e → Z → Z o−1 F → Z2 × F → e, e → Z → Z× F → Z2 × F → e

lead to actions

F × Σ(1) → Σ(1) and (Z2 × F )× Σ(1) → Σ(1)

with trivial and non-trivial induced actions F → Aut(H1(Σ(1),Z)) and Z2 × F →
Aut(H1(Σ(1),Z)).

�

Now, let F =
⟨
X
⟩
be a free group with a basis X and let θ : Zn → Aut(F ) be

an action. In view of Proposition 1.3, any extension e → Z → π
p→ F oθ Zn → e

with gdπ < ∞, leads to an action (F oθ Zn)×Σ(1) → Σ(1) and the induced action
18



φ : F oθ Zn → Aut(H1(Σ(1),Z)) ∼= {±1}. Notice that [21, Proposition 1, Chapter

10] yields the presentation

π =
⟨
X, s, t| xsx−1 = φ′(x)(s), tst−1 = sm, txt−1 = θ(1n)(x)s

mx for some m,mx ∈ Z
⟩
,

where φ′ = φ|F and 1n ∈ Zn. But, by means of Remark 2.7, the induced action

φ : F oθ Zn → Aut(H1(Σ(1),Z)) ∼= {±1} restricts to the trivial action on Zn.

Hence, the extension

e → Z → p−1(Zn) → Zn → e

is central and yields p−1(Zn) ∼= Z, so it follows that s = t±n. Consequently, we get

π =
⟨
X, t| xtnx−1 = φ′(x)(tn), txt−1 = θ′(1)(x)tnmx for some mx ∈ Z

⟩
,

where θ′ : Z → Aut(F ) is the composition of θ : Zn → Aut(F ) with the quotient

map Z → Zn.

Further, the commutative diagram

e // Z // p−1(F ) //
� _

��

F //
� _

��

e

e // Z

��

// π
p

//

��

F oθ Zn
//

��

e

e // e // Zn
// Zn

// e

leads to an isomorphism p−1(F ) ∼= Zoφ′F . Consequently, in view of Serre’s Theorem

[4, Theorem 3.1], we get

cd(π) = cd(Z oφ′ F ) = 2

provided π is torsion-free.

Let I,Λ, L be arbitrary sets and write (∗GGi)i∈I for the free product with an

amalgamated subgroup G < Gi for i ∈ I. In particular, if G = e, the trivial group,

then (∗GGi)i∈I = (∗Gi)i∈I , the free product of groups Gi for i ∈ I. Let F θ(1n) < F

be the fixed point subgroup of the automorphism θ(1n). If n is a prime, then [9,

Theorem 3] determines a decomposition into the free product

F = F θ(1n) ∗ (∗Fi)i∈I ∗ (∗Fλ)λ∈Λ,

where each factor is θ(1n)-invariant and:

(i) for each i ∈ I, Fi =
⟨
yi,1, . . . , yi,n

⟩
such that

θ(1n)(yi,r) = yi,r+1 ( mod n);
19



(ii) for each λ ∈ Λ, there is a set Jλ with Fλ =
⟨
yλ,1, . . . , yλ,n−1, zj | j ∈ Jλ

⟩
such

that

θ(1n)(yλ,s) = yλ,s+1 for s = 1, . . . , n− 2,

θ(1n)(yλ,n−1) = (yλ,1 · · · yλ,n−1)
−1,

θ(1n)(zj) = y−1
λ,1zjyλ,1 for j ∈ Jλ and λ ∈ Λ.

Further, set F θ(1n) =
⟨
xl | l ∈ L

⟩
.

Motivated by the result above, from now on, we study actions of groups of the

form F oθ Zn for any integer n ≥ 1 and homomorphisms θ : Zn → Aut(F ) which

admit a decomposition

F = F θ(1n) ∗ (∗Fi)i∈I ∗ (∗Fλ)λ∈Λ

satisfying (i) and (ii) above. At least if n is a prime, as result of [9, Theorem 3]

stated above, we are considering all possible homomorphisms θ.

Because there is t ∈ F oθ Zn with θ(1n)(x) = txt−1 for all x ∈ F , we derive:

Lemma 3.3. Given an extension e → Z → π → FoθZn → e, write φ : F → Aut(Z)
for the induced action. If F = F θ(1n) ∗ (∗Fi)i∈I ∗ (∗Fλ)λ∈Λ satisfies (i) and (ii) above

then:

(1) no restriction on φ(xl) for l ∈ L;

(2) φ(yi,1) = · · · = φ(yi,n) for i ∈ I;

(3) φ(yλ,1) = · · · = φ(yλ,n−1) = 1 for all λ ∈ Λ;

(4) no restriction on φ(zj) for j ∈ Jλ and λ ∈ Λ.

Proof. Certainly, (1), (2), (3) (for an odd n) and (4) are obvious.

(3) (for an even n): suppose that φ(yλ,1) = · · · = φ(yλ,n−1) = −1. Then, the

relations yλ,1t
ny−1

λ,1 = t−n, tyλ,rt
−1 = yλ,r+1t

nmr for r = 1, . . . , n − 2 and tyn−1t
−1 =

(y1 · · · yn−1)
−1tnmn−1 imply

∑n′

k=1m2k−1 = −1. Hence, we derive (yλ,n−1t)
n = e.

Since the group π is torsion-free, we must have yλ,n−1t = e which is a contradiction

since yλ,n−1 ̸= t−1. So, we must have φ(yλ, 1) = · · · = φ(yλ,n−1) = 1 for any n ≥ 1.

�
Generalized Baumslag-Solitar groups are well known to be torsion-free as they are

the fundamental groups of finite graphs of groups with Z′s as vertex and edge groups.

In particular, the one-relator Baumsalg-Solitar group BS(m,n) =
⟨
x, t; xtmx−1 =

tn
⟩
with m,n ∈ Z\{0} is torsion-free as the fundamental groups of graphs of infinite

cyclic groups where the graph is a 1-loop. We will use in the sequel that:
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Remark 3.4. The one-relator group BS(n,−n) =
⟨
x, t|xtnx−1 = t−n

⟩
is torsion-

free for any n ∈ Z\{0}.

Lemma 3.5. Let J be an arbitrary set. If F =
⟨
y1, . . . , yn−1, zj , j ∈ J

⟩
, θ(1n)(yr) =

yr+1 for r = 1, . . . , n − 2, θ(1n)(yn−1) = (y1 · · · yn−1)
−1 and θ(1n)(zj) = y−1

1 zjy1 for

j ∈ J , then for any extension e → Z → π → F oθ Zn → e with a torsion-free group

π it follows that:

(1) π =
⟨
y1, . . . , yn−1, zj, j ∈ J, t| yrtny−1

r = tn, r = 1, . . . , n− 1, zjt
nz−1

j = tn, j ∈
J, tyrt

−1 = yr+1, r = 1, . . . , n−2, tyn−1t
−1 = (y1 · · · yn−1)

−1tnm, tzjt
−1 = y−1

1 zjy1, j ∈
J
⟩
for any n and m = 0, . . . , n− 2

or

(2) π =
⟨
y1, . . . , yn−1, zj, j ∈ J, t| yrtny−1

r = tn, r = 1, . . . , n− 1, zjt
nz−1

j = tn,

j ∈ J, j ̸= j0, zj0t
nz−1

j0
= t−n, tyrt

−1 = yr+1, r = 1, . . . , n− 2, tyn−1t
−1 =

(y1 · · · yn−1)
−1t−n(1+n′), tzjt

−1 = y−1
1 zjy1t

n(1+2m′), j ∈ J
⟩
for n = 2n′.

Proof. Let F =
⟨
y1, . . . , yn−1, zj , j ∈ J

⟩
, θ(1n)(yr) = yr+1 for r = 1, . . . , n − 2,

θ(1n)(yn−1) = (y1 · · · yn−1)
−1 and θ(1n)(zj) = y−1

1 zjy1 for j ∈ J .

Then, in view of Lemma 3.3, we get

π =
⟨
y1, . . . , yn−1, zj, j ∈ J, t| yrtny−1

r = tn, r = 1, . . . , n− 1, zjt
nz−1

j = t±n, j ∈ J,

tyrt
−1 = yr+1t

nmr , r = 1, . . . , n − 2, tyn−1t
−1 = (y1 · · · yn−1)

−1tnmn−1 , tzjt
−1 =

y−1
1 zjy1t

nmj , j ∈ J
⟩
.

The substitution t′ = t, y′1 = y1, y
′
r = yrt

∑r−1
k=1 nmk for r = 2, . . . , n− 1 and z′j = zj

for j ∈ J implies

π ∼=
⟨
y′1, . . . , y

′
n−1, z

′
j, j ∈ J, t′| y′rt′

ny′−1
r = t′n, r = 1, . . . , n − 1, z′jt

′nz′−1
j =

t′±n, j ∈ J, t′y′rt
′−1 = y′r+1, r = 1, . . . , n−2, t′y′n−1t

′−1 = (y′1 · · · y′n−1)
−1t′nm, t′z′jt

′−1 =

y′−1
1 z′jy

′
1, j ∈ J

⟩
, where m =

∑n−1
r=1 (n− r)mr.

The infinity of the order of t implies −2n = 2nm+ n2mj for zjt
nz−1

j = t−n. Thus,

n or mj is even.

Thus, n or mj is even. Hence, m ≡ −1 (mod n) for any n and an even mj and

m ≡ −1− n′ (mod n) for n = 2n′ and mj odd. Further, the infinity of the order of t

implies mj = 0 for zjt
nz−1

j = tn with j ∈ J .

Because m ≡ −1 (mod n) implies (y1t
−m)n = e, we get

π =
⟨
y1, . . . , yn−1, zj, j ∈ J, t| yrtny−1

r = tn, r = 1, . . . , n− 1, zjt
nz−1

j = t±n, j ∈ J,

tyrt
−1 = yr+1, r = 1, . . . , n−2, tyn−1t

−1 = (y1 · · · yn−1)
−1tnm, tzjt

−1 = y−1
1 zjy1t

nmj , j ∈
J
⟩
,

where mj = 0 with zjt
nz−1

j = tn for any n or mj = 2m′ + 1 with zjt
nz−1

j = t−n for

some m′ ≥ 0, an even n and j ∈ J .
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Consequently,

item (1): π ∼=
⟨
y1, . . . , yn−1, zj, j ∈ J, t| yrtny−1

r = tn, r = 1, . . . , n − 1, zjt
nz−1

j =

tn, j ∈ J, tyrt
−1 = yr+1, r = 1, . . . , n − 2, tyn−1t

−1 = (y1 · · · yn−1)
−1tnm, tzjt

−1 =

y−1
1 zjy1t

nmj , j ∈ J
⟩
for any n and m = 0, . . . ,m− 2

or J = J+ ∪ J− and

π ∼=
⟨
y1, . . . , yn−1, zj, j ∈ J, t| yrtny−1

r = tn, r = 1, . . . , n− 1, zjt
nz−1

j = tn, j ∈ J+,

zjt
nz−1

j = t−n, j ∈ J−, tyrt
−1 = yr+1, r = 1, . . . , n−2, tyn−1t

−1 = (y1 · · · yn−1)
−1t−n(1+n′),

tzjt
−1 = y−1

1 zjy1t
n(1+m′), j ∈ J

⟩
for n = 2n′.

Further, if j0 ∈ J− then the substitution t′ = t, y′r = yr for r = 1, . . . , n−1, z′j = zj

for j ∈ J+ and z′j = zj0zj for j ∈ J− implies

item (2): π ∼=
⟨
y′1, . . . , y

′
n−1, z

′
j, j ∈ J, t′| y′rt′

ny′−1
r = t′n, r = 1, . . . , n−1, z′jt

′nz′−1
j =

t′n, j ∈ J, j ̸= j0, z
′
j0t

′nz′−1
j0

= t′−n, t′y′rt
′−1 = y′r+1, r = 1, . . . , n − 2, t′y′n−1t

′−1 =

(y′1 · · · y′n−1)
−1t′−n(1+n′), t′z′jt

′−1 = y′−1
1 z′jy

′
1t

′n(1+2m′), j ∈ J
⟩
for n = 2n′.

To examine this group, consider the extension

e → Z o F → π → Zn → e,

where Z is sent onto the subgroup
⟨
t′n

⟩
< π.

Suppose that π is non-torsion-free. Because ZoF is torsion-free, there are integers

k ≥ 0, l > 0 and w ∈ F such that (t′lt′nkw)n = e. The even length of the word w

and t being of infinite order lead to a contradiction kn2 + n = 0.

So, the length of the word w is odd. Now, the projection of (t′lt′nkw)n on the

abelianization of the free group
⟨
xj; j ∈ J

⟩
yields a non-trivial element which leads

again to a contradiction.

Consequently, π is torsion-free and the proof is complete.

�
Now, we are in a position to state:

Proposition 3.6. Let F be a free group and n ≥ 1. Then, for any extension e →
Z → π → F oθ Zn → e with a torsion-free group π and the trivial induced action of

Zn on Z, it follows that:
(1) π ∼= Zoτ F , where the action τ : F → Aut(Z) ∼= {±1} is trivial for n > 2 and

is arbitrary for n = 1, 2 provided F θ(1n) = F is any free group. Further, for any two

non-trivial τ1, τ2 : F → Aut(Z) ∼= {±1} the groups Z oτi F are isomorphic i = 1, 2;

(2) π ∼= F oθ′ Z for some action θ′ : Z → Aut(F ) or π ∼=
⟨
x, t|xtnx−1 = t−n

⟩
provided F =

⟨
y1, . . . , yn

⟩
and θ(1n)(yr) = yr+1( mod n) for r = 1, . . . , n.
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Proof. Item (1): Let F =
⟨
X
⟩
and θ : Zn → Aut(F ) be the trivial action,

xtnx−1 = t±n and txt−1 = xtnmx for x ∈ X. Because the order of t is infinite,

tnxt−n = xtn
2mx and xtnx−1 = t±n imply ±n − n = n2mx. For n > 2 this equation

has a solution only in the case n− n = n2mx which implies mx = 0. If n = 2 we get

either mx = 0 for 2 − 2 = 4mx or mx = −1 for −2− 2 = 4mx. Finally, if n = 1 we

get either mx = 0 or mx = −2.

Hence, π ∼=
⟨
X, t| xtx−1 = tτ(x) for x ∈ X

⟩ ∼= Z oτ F where τ : F → Aut(Z) ∼=
{±1} is trivial of n > 2. In case n = 1, 2 the action τ is arbitrary.

Notice that for any two non-trivial actions τ1, τ2 : F → Aut(Z) ∼= {±1} the groups

Z oτ1 F and Z oτ2 F are isomorphic because there is an automorphism α : F → F

such that τ1 ◦ α = τ2.

Item (2): The presentation

π =
⟨
y1, . . . , yn, t| yrtny−1

r = t±n, tyrt
−1 = yr+1 ( mod n)t

nmr for r = 1, . . . , n
⟩

and the order of t imply ±n − n =
∑n

r=1mr. The substitutions: t′ = t, y′1 = y1,

y′r = yrt
∑r−1

k=1 nmk for r = 2, . . . , n lead to an isomorphism

π ∼=
⟨
y′1, . . . , y

′
n, t

′| y′rt′ny′
−1
r = t′±n, t′y′rt

′−1 = y′r+1 for r = 1, . . . , n−1 and t′y′nt
−1 =

y′1t
′(±1−1)n

⟩
.

Hence, π ∼=
⟨
y′1, . . . , y

′
n, t

′| y′rt′ny′
−1
r = t′n, t′y′rt

′−1 = y′r+1( mod n)

⟩ ∼= F oθ′ Z for an

appropriate action action θ′ : Z → Aut(F ) or

π ∼=
⟨
y′1, . . . , y

′
n, t

′| y′rt′ny′
−1
r = t′−n, t′y′rt

′−1 = y′r+1 for r = 1, . . . , n− 1 and

t′y′nt
′−1 = y′1t

′−2n
⟩ ∼=

⟨
x, t′′|xt′′nx−1 = t′′−n

⟩
for x = y′1, t

′′ = t′ and, in view of

Remark 3.4, the result follows and the proof is complete.

�

Proposition 3.7. For F =
⟨
y1, . . . , yn−1, zj , j ∈ J

⟩
, θ(1n)(yr) = yr+1 for r =

1, . . . , n − 2, θ(1n)(yn−1) = (y1 · · · yn−1)
−1 and θ(1n)(zj) = y−1

1 zjy1 for j ∈ J and

n ≥ 1 and an extension e → Z → π → F oθ Zn → e with n ≥ 1, a torsion-free group

π and the trivial induced action of Zn on Z, it follows that:

(1) π ∼= F oτ Z for some τ : Z → Aut(F ) with τn(1) = idF or

(2) π =
⟨
y1, . . . , yn−1, zj, j ∈ J, t| yrtny−1

r = tn, r = 1, . . . , n− 1, zjt
nz−1

j = tn,

j ∈ J, j ̸= j0, zj0t
nz−1

j0
= t−n, tyrt

−1 = yr+1, r = 1, . . . , n− 2, tyn−1t
−1 =

(y1 · · · yn−1)
−1t−n(1+n′), tzjt

−1 = y−1
1 zjy1t

n(1+2m′), j ∈ J
⟩
for n = 2n′ and some

m′ ∈ Z. Further, none of groups in (1) is isomorphic to a group in (2).

Proof. We make use of presentations of π stated in Lemma 3.5.
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Item (1): if π =
⟨
y1, . . . , yn−1, zj, j ∈ J, t| yrtny−1

r = tn, r = 1, . . . , n− 1, zjt
nz−1

j =

tn, j ∈ J, tyrt
−1 = yr+1, r = 1, . . . , n − 2, tyn−1t

−1 = (y1 · · · yn−1)
−1tnm, tzjt

−1 =

y−1
1 zjy1, j ∈ J

⟩
for any n and m = 0, . . . , n− 2 then the map

α : π −→ Z

given by: α(t) = 1, α(y1) = · · · = α(yn−1) = m and α(zj) = 0 for j ∈ J is a

well-defined homomorphism which yields the splitting extension

e → K → π
α→ Z → e

with K = Kerα. Thus,

π ∼= K oτ Z

for τ : Z → Aut(K) with τ(1)(x) = txt−1 for x ∈ K τn(1) = idK . It follows that π is

an HNN -extension and, in view of [5, Thorem 17.1], the group K might be chosen

to be an amalgamated product.

We aim to show an isomorphism K ∼= F . The Reidemeister-Schreier rewriting

procedure [22, Theorem 2.8, p. 91] yields that K is generated by:

γr,k = tkyrt
−k−m for r = 1, . . . , n− 1 and k ∈ Z,

δj,k = tkzjt
−k for j ∈ J and k ∈ Z.

The relation: yrt
ny−1

r = tn leads to

γr,k+n = γr,k

for r = 1, . . . , n− 1;

zjt
nz−1

j = tn to

δj,k+n = δj,k

for j ∈ J and k ∈ Z;
tyrt

−1 = yr+1 for r = 1, . . . , n− 2 to γr,k+1 = γr+1,k for r = 1, . . . , n− 2 and k ∈ Z.
Consequently,

γn−1,k = γn−2,k+1 = · · · = γ1,n+k−2

for any k ∈ Z.
Next, tyn−1t

−1 = (y1 · · · yn−1)
−1tnm yields

γn−1,k+1γ1,k+m · · · γn−1,k+m(n−1) = e

for any k ∈ Z.
Finally, tzjt

−1 = y−1
1 zjy1 leads to

δj,k+1γ
−1
j,k−mδ

−1
j,k−mγ1,k−m = e
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for j ∈ J and k ∈ Z. Thus, we get the presentation:

K =
⟨
γr,k, δj,k| γr,k+n = γr,k, δj,k+n = δj,k, γn−1,k = γn−2,k+1 = · · · = γ1,n+k−2,

δj,k+1γ
−1
j,k−mδ

−1
j,k−mγ1,k−m = e for r = 1, . . . , n− 1, j ∈ J and k ∈ Z

⟩
.

Routine computations show that

F ∼= K =
⟨
γ1,k, δ0,j| k = 0, . . . , n− 2, j ∈ J

⟩
and consequently

π ∼= F oτ Z

for some τ : Z → Aut(F ).

Item (2): in view of Lemma 3.5, remaining groups have the presentations:

π =
⟨
y1, . . . , yn−1, zj, j ∈ J, t| yrtny−1

r = tn, r = 1, . . . , n− 1, zjt
nz−1

j = tn,

j ∈ J, j ̸= j0, zj0t
nz−1

j0
= t−n, tyrt

−1 = yr+1, r = 1, . . . , n− 2, tyn−1t
−1 =

(y1 · · · yn−1)
−1t−n(1+n′), tzjt

−1 = y−1
1 zjy1t

n(1+2m′), j ∈ J
⟩
for n = 2n′.

The groups π =
⟨
y1, . . . , yn−1, zj, j ∈ J, t| yrtny−1

r = tn, r = 1, . . . , n− 1, zjt
nz−1

j =

tn, j ∈ J, tyrt
−1 = yr+1, r = 1, . . . , n− 2, tyn−1t

−1 = (y1 · · · yn−1)
−1tnm,

tzjt
−1 = y−1

1 zjy1, j ∈ J
⟩
for any n and m = 0, . . . , n− 2

and

π =
⟨
y1, . . . , yn−1, zj, j ∈ J, t| yrtny−1

r = tn, r = 1, . . . , n− 1, zjt
nz−1

j = tn,

j ∈ J, j ̸= j0, zj0t
nz−1

j0
= t−n, tyrt

−1 = yr+1, r = 1, . . . , n− 2, tyn−1t
−1 =

(y1 · · · yn−1)
−1t−n(1+n′), tzjt

−1 = y−1
1 zjy1t

n(1+2m′), j ∈ J
⟩
for n = 2n′

are not isomorphic because their abelianizations are isomorphic to

n−1⊕
r=1

Z⊕
⊕
j∈J

Z⊕ Zn and
n−2⊕
r=1

Z⊕ Z2n ⊕
⊕
j∈J

Z⊕ Zn,

respectively and the proof follows.

�

To state the main result, we need the lemma below a proof of which is straight-

forward.

Lemma 3.8. Let H and Gi be groups with actions τi : H → Aut(Gi) for i ∈ I.

(1) If τ : H → Aut(∗Gi)i∈I with τ |Gi
= τi for i ∈ I, then

(∗Gi)i∈I oτ H ∼= (∗H(Gi oτi H))i∈I ;
25



(2) if e → π′ → π
p→ (∗Gi oτ H)i∈I → e are extensions and πi = p−1(Gi oτi H),

then e → π′ → πi → Gi oτi H → e are extensions for i ∈ I and

π ∼= ∗p−1(H)πi.

Now, given an action θ : Zn → Aut(F ) with n ≥ 1 and the decomposition F =

F θ(1n) ∗ (∗i∈IFi) ∗ (∗λ∈ΛFλ) write: θ0 : Zn → Aut(F θ(1n)), θi : Zn → Aut(Fi) and

θλ : Zn → Aut(Fλ) for the induced actions with i ∈ I and λ ∈ Λ. Then, in view

of Lemma 3.8(2), any extension e → Z → π → F oθ Zn → e leads to a family of

extensions:

e → Z → π0 → F θ(1n) oθ0 Zn → e,

e → Z → πi → Fi oθi Zn → e for i ∈ I,

e → Z → πλ → Fλ oθλ Zn → e for λ ∈ Λ

and an isomorphism

π ∼= ∗Z(π0 ∗ (∗πi)i∈I ∗ (∗πλ)λ∈Λ).

Consequently, Propositions 3.6 and 3.7 yield:

Theorem 3.9. Let F be a free group, n ≥ 1, θ : Zn → Aut(F ) an action and

F = F θ(1n) ∗ (∗i∈IFi) ∗ (∗λ∈ΛFλ).

There is an action of the group F oθ Zn on some homotopy circle Σ(1) with

dim Σ(1) ≤ 2 and the homotopy type of the orbit space

Σ(1)/(F oθ Zn) ∼= K(π, 1),

where π ∼= ∗Z(π0 ∗ (∗i∈Iπi ∗ (∗λ∈Λπλ))).

Further:

(1) π0
∼= ZoτF

θ(1n) for all possible actions τ : F θ(1n) → Aut(H1(Σ(1),Z)) ∼= {±1}.
In particular, π ∼= Z× F θ(1n) for n > 2;

(2) πi
∼= Fi oθ′i

Z with Fi =
⟨
yi,1, . . . , yi,n

⟩
and θ′i : Z → Zn

θi→ Aut(Fi), if

the induced action Fi → Aut(H1(Σ(1),Z)) is trivial and πi
∼=

⟨
x, t|xtnx−1 = t−n

⟩
otherwise;

(3) πλ
∼= Fλ oτλ Z with Fλ =

⟨
yλ,1, . . . , yλ,n−1, zj | j ∈ Jλ

⟩
and some τλ : Z →

Aut(Fλ) for any n, if the induced action Fλ → Aut(H1(Σ(1),Z)) is trivial and
πλ

∼=
⟨
yλ,1, . . . , yλ,n−1, zj, j ∈ Jλ, t| yλ,rtny−1

λ,r = tn, r = 1, . . . , n − 1, zjt
nz−1

j =

tn, j ∈ Jλ, j ̸= j0, , zj0t
nz−1

j0
= t−n, tyrt

−1 = yr+1, r = 1, . . . , n − 2, tyn−1t
−1 =

(y1 · · · yn−1)
−1t−n(1+n′), tzjt

−1 = y−1
1 zjy1t

n(1+2m′), j ∈ Jλ
⟩
for n = 2n′, otherwise.

26



Notice that Theorems 3.2 and 3.9 show that the condition vcdG ≤ dimΣ(1) − 1

stated in Proposition 1.7 does not suffice for the existence of an action of G on Σ(1).

There are many more groups G with vcdG ≤ 1. In view of [31, Chapter II,

Proposition 11], vcdG ≤ 1 provided G is the fundamental group of a finite graph of

finite groups. Further, according to [4, Chapter VIII, Example 2 page 228]: “if we

drop the requirement that the graph of finite groups be finite and require instead

that there be a bound on the orders of the finite groups, then it is still true that

vcdG ≤ 1”. Further, if vcdG ≤ 1, then G is the fundamental group of a graph of

finite groups. A proof of that result can be found e.g., in [29].

In order to study a new family of groups G with vcdG ≤ 1, we begin by a slightly

more general situation. Namely, consider groups of the form (∗GGi)i∈I . Because

K((∗Gi)i∈I , 1) =
∨

i∈I K(Gi, 1) and, in view of [3, Proposition 1.1] (see also [4,

Theorem 7.3, Chapter II]), it holds gd (G1 ∗G G2) ≤ max{gdGi, gdG+ 1; i = 1, 2},
we derive

(3.3) gd (∗GGi)i∈I < ∞

provided there is an upper bound of the set {gdGi| for i ∈ I}. Then, vcd (∗GGi)i∈I =

1 provided Gi for i ∈ I and G are finite groups with bounded orders. If (∗GGi)i∈I

acts on a Σ(1), then by means of Proposition 2.4, we get (∗GGi)i∈I ∼= (∗Zk
Zni

)i∈I for

some k, ni ≥ 1. Notice that in view of monomorphisms Zk ↪→ Zni
, it holds k | ni for

i ∈ I.

Further, we may state:

Proposition 3.10. Let Gi be groups and H < G < Gi such subgroups that H is

normal in Gi for i ∈ I. Then there is an extension

e → H −→ (∗GGi)i∈I −→ (∗(G/H)(Gi/H))i∈I → e.

In particular, for H = G, we have the extension

e → G −→ (∗GGi)i∈I −→ (∗(Gi/G))i∈I → e.

Proof. By the functoriality of the amalgamated free product, we derive an epi-

morphism

(∗GGi)i∈I
φ−→ (∗(G/H)(Gi/H))i∈I → e

with H ⊆ Kerφ.

Now, let Si be a set of representatives of the set Gi/G of right cosets for i ∈ I.

In view of [31, Theorem 1], every element x ∈ ∗GGi may be presented by a unique

reduced word (i.e., there is a sequence (g, si1 , . . . , sin) with g ∈ G and sik ∈ Sik ,
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sik ̸= e for k = 1, . . . , n such that x = gsi1 · · · sin in a unique form). Because

S̄i = {s̄i = Hsi; si ∈ Si} is a set of representatives of the set (Gi/H)/(G/H) ∼= Gi/G

of right cosets for i ∈ I, every element x̄ ∈ ∗(G/H)(Gi/H) may be also presented by

a unique reduced word.

Now, for x = gsi1 · · · sin ∈ Kerφ, we get ē = ḡs̄i1 · · · s̄in . Consequently si1 = · · · =
sin = e, x = g ∈ H and the result follows.

�
Notice that Proposition 1.8, Proposition 3.10 and (3.3) lead to:

Theorem 3.11. Let e → Z → πi → Gi → e be extensions such that gd πi < ∞ and

Z < π < πi for i ∈ I. Then there is an action

(∗(π/Z)Gi)i∈I × Σ(1) −→ Σ(1)

with dimΣ(1) ≤ max{gd πi, gd π + 1; i ∈ I} provided there is an upper bound of the

set {gdπi| for i ∈ I}.
In particular, for π = Z, there is an action

(∗Gi)i∈I × Σ(1) −→ Σ(1)

with dimΣ(1) ≤ max{gd πi, 2 | i ∈ I}.

In view of the extensions 0 → Z → Zi → Zni
→ 0 for with Zi = Z for i ∈ I,

Theorem 3.11 and (3.3) yield:

Corollary 3.12. Given a set I and positive integers k, ni with k | ni for i ∈ I, there

is an action

(∗Zk
Zni

)i∈I × Σ(1) −→ Σ(1)

with dimΣ(1) = 2. Further, the induced action of ∗Zk
Zni

on H1(Σ(1),Z) is trivial

and there is exactly one homotopy type of the orbit spaces Σ(1)/(∗Zk
Zni

) for all

possible actions of ∗Zk
Zni

on homotopy circles Σ(1).

Proof. Certainly Theorem 3.11 leads to an action (∗Zk
Zni

)i∈I × Σ(1) −→ Σ(1)

with dimΣ(1) = 2. In view of Remark 2.7, any such an action determines the trivial

action of (∗Zk
Zni

)i∈I on H1(Σ(1),Z).
Further, given an extension e → Z → π → (∗Zk

Zni
)i∈I → e with a torsion-free

group π, we can easily see that there is a system of commutative diagrams

e // Z // Zi
//

� _

��

Zni
//

� _

��

e

e // Z // π // (∗Zk
Zni

)i∈I // e

28



with Zi = Z for i ∈ I which determine the commutative diagram

e // Z // (∗ZZi)i∈I //

α

���
�
�

(∗Zk
Zni

)i∈I //

β

���
�
�

e

e // Z // π // (∗Zk
Zni

)i∈I // e,

where β : (∗Zk
Zni

)i∈I → (∗Zk
Zni

)i∈I is an automorphism. Hence, α : (∗ZZi)i∈I → π

is an isomorphism and we derive that there is exactly one homotopy type of the orbit

spaces Σ(1)/(∗Zk
Zni

)i∈I . This completes the proof.

�
It is well-known that D∞ ∼= Z2 ∗ Z2 for the infinite dihedral group D∞. Further,

by [31], there are isomorphisms SL2(Z) ∼= Z4 ∗Z2 Z6 and PSL2(Z) ∼= Z2 ∗Z3. Hence,

Proposition 3.12 leads to actions of those groups on Σ(1) with dimΣ(1) = 2 (cf.

Example 1.5(2)).

On the other hand, there are groups G with vcdG = 1 which cannot act on any

Σ(1) independently of dimΣ(1). In fact, by means of [30], it holds vcdSL2(Z) = 1.

Hence, vcdGL2(Z) = vcd(SL2(Z) o Z2) = 1 as well. But by Remark 2.5 the group

GL2(Z) cannot act on any Σ(1). Further, given a group G with vcdG = 1 and a

finite group G0, we get vcd(GoG0) = vcd(G0 oG) = 1. Nevertheless by means of

Proposition 2.4 groups G o G0 and G0 o G cannot act on any Σ(1) provided G0 is

non-cyclic.

To conclude our study of groups G with vcdG = 1, we consider the situation

where Σ(1) is a manifold. This includes the case of Σ(1) as a real vector bundle over

S1 which is an n-manifold without boundary with n ≥ 2.

Proposition 3.13. If a finitely generated group G with vcdG < ∞ acts on an

n-manifold M with n ≥ 2 and of the homotopy type of the circle, then:

(1) vcdG ≤ n− 2 if and only if M/G is not compact. In particular, G ∼= Zm for

some m ≥ 1, if and only if M/G is not compact provided for n = 2;

(2) G is any of the groups listed in Corollary 2.6(2)-(3), if and only if M/G is

compact provided n = 2.

Proof. Item (1): Let G′ < G such that G : G′ < ∞ and cdG′ ≤ n− 2.

⇒: Suppose that M/G is compact. Then, M/G′ is also compact and Hn(M,Z) ̸=
0. Because vcdG′ ≤ n − 2, the Leray-Cartan spectral sequence associated with the

fibration M → M/G′ → K(G′, 1) leads to a contradiction Hk(M,Z) = 0 for k ≥ m.

⇐: If G′′ = Ker(G′ → Aut (Z)), then G′ : G′′ ≤ 2 and vcdG = vcdG′′. Further,

Proposition 1.7 leads to vcdG ≤ n − 1. Now, given a G′′-module A, the extension
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e → Z → π → G → e associated with the G-action on M leads to e → Z →
π′′ → G′′ → e. Hence, the corresponding Lyndon-Hochschild spectral sequence

yields Hn−1(G′′, A) = 0 and vcdG ≤ n− 2.

If n = 2, then vcdG = 0 and Proposition 2.4 leads to G ∼= Zm for some m ≥ 1.

Item (2) ⇒: Let G be any of the groups listed in Corollary 2.6(2)-(3). Then

Theorem 2.10 shows that M/G is compact.

⇐: IfM/G is compact then [4, Proposition 8.1, Chapter VIII] yields cd π1(M/G) =

2 and by [29] we get for ends e(G) = e(M/G) = 2. Hence, Theorem 2.1 and Corollary

2.6 imply the result and the proof is complete.

�
At the end, we present a family of groups with an infinite virtual cohomological

dimension and acting on a homotopy circle. To conclude that, we study the family

of the locally cyclic groups. We begin by presenting a very explicit description of

these groups. First, we recall that a group G is called locally cyclic (resp. locally

finite) if each of its finitely generated subgroups is cyclic (resp. finite). Notice that

locally cyclic (resp. finite) groups are closed with respect to subgroups and quotient

groups. Further, [34, Theorem 2.3] implies that any locally cyclic group has period

2 after 0- or 1-step and, by means of Proposition 2.4, any torsion locally finite group

acting on some Σ(1) is locally cyclic.

In view of [28, II.2.k. Theorem], locally cyclic groups are characterized as follows.

Theorem 3.14. A group is locally cyclic if and only if it is isomorphic to a subgroup

of homomorphic image of additive rationals Q.

Further, we show:

Proposition 3.15. A group G is locally cyclic if and only if G is a subgroup of Q
or Q/Z.

Proof. Certainly, any subgroup of Q or Q/Z is locally cyclic.

Let now G be a locally cyclic group. Then, by Theorem 3.14, the group G is iso-

morphic to a subgroup of homomorphic image of Q. Hence, there are such subgroups

A < B < Q that G = B/A. If A is trivial, then G = B < Q.

If A is non-trivial, then nZ < A for some n ≥ 1. Then for any x
y
∈ G, we get

ny x
y
= nx ∈ A and so Q/A is a torsion group. Because Q/A is also divisible, we

obtain that

Q/A ∼=
⊕

Zq∞
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for some primes q and

Q/A < Q/Z ∼=
⊕

Zp∞

for all primes p. Because, B/A < Q/A, we derive that B/A < Q/Z and the proof is

complete.

�
So, our family of groups are divided into two subfamilies, where the first one

consists of subgroups of Q and the second one subgroups of Q/Z. We will see that

the first subfamily have the cohomological dimension two and the second one has

the infinite cohomology dimension.

First, we show that gdA = 2 for any non-cyclic subgroup A < Q of the additive

group of the rationals Q. To aim that, consider the direct system

Z i2
↪→ Z ↪→ · · · ↪→ Z in

↪→ Z ↪→ · · ·

with lim
→

Z ∼= Q, where in : Z ↪→ Z is the multiplication by n for n ≥ 2. Next, fix

maps fn : Xn−1 = S1 → Xn = S1 of degree n for n ≥ 2 and consider the telescope

construction

T (S1) = (
∞⊔
n=1

Xn × I)/ ∼,

where I = [0, 1] is the unit interval and (xn, 1) ∼ (fn+1(xn), 0) for xn ∈ Xn and

n ≥ 1. Then T (S1) is a CW -complex with dim T (S1) = 2. Notice that the maps

fn : Xn−1 = S1 → Xn = S1 above lift, via the exponential map exp : R1 → S1,

to gn : Yn−1 = R1 → Yn = R1 for n ≥ 2. Then the corresponding telescope

construction T (R1) leads to the universal covering of T (R1) → T (S1), where T (R1)

is contractible. Hence, π1(T (S1)) ∼= lim
→

Z ∼= Q, πn(T (S1)) = 0 for n ̸= 1 and so

T (S1) = K(Q, 1). Consequently, gdA = 2 for any non-cyclic subgroup A < Q and,

in view of Proposition 1.3, there is an action

A× Σ(1) → Σ(1)

with dimΣ(1) ≤ 3.

First, we study actions of non-cyclic subgroups A < Q.

Proposition 3.16. Let A < Q be a noncyclic subgroup. Then:

(1) for any central extension e → Z → π → A → e the group π is abelian torsion-

free and with rank two;

(2) H2(A,Z) ∼= Ext(A,Z) ∼=
⊕

2ℵ0 Q⊕
⊕

p Zp∞ provided p is a prime with pA � A
and Z the trivial A-module;
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(3) H2
τ (A, Z̃) ∼= Z2 ⊕ Z2 for any non-trivial A-module structure τ on Z provided

that 2A � A.

Proof. Item (1): Suppose e → Z → π
α→ A → e is a central extension with

a noncyclic A < Q and the commutator [x, y] ̸= 0 for some x, y ∈ π. Because

α([x, y]) = e, we may set [x, y] = m ̸= 0 for some m ∈ Z. Let α(x) = k
l
for some

k, l ∈ Z. But A < Q is noncyclic, so there is such n
p
∈ A that p is a prime with

p - l,m, n. If α(z) = kn
p
, then α(zp) = α(xln) = kn and zp = axln for some a ∈ Z.

Because the extension e → Z → π → A → e is central, the formula (3.4) leads to a

contradiction lmn = [xln, y] = [zp, y] = p[z, y]. Further, the isomorphisms Z⊗Q ∼= Q
and A ⊗ Q ∼= Q imply π ⊗ Q ∼= Q ⊕ Q. But π is torsion-free, as an extension of

torsion-free groups, so we deduce the rank of A is two.

Item (2): In view of (1) we get that H2(A,Z) ∼= Ext(A,Z). By [20, Chapter III]

the group Ext(A,Z) is divisible with card(H2(A,Z)) = 2ℵ0 . If p is a prime such that

pA � A then the extension e → pA → A → Zp → e implies that the Prüffer group

Zp∞ is a direct summand of Ext(A,Z).
Item (3): Given A < Q and an extension e → Z → π → Z → e, any action of A

on Z is trivial provided 2A = A. But 2A � A implies an isomorphism Z/2A ∼= Z2

and so an existence of a non-trivial action of A on Z. Then, for a non-trivial an

A-module structure τ on Z, the Lyndon-Hochschild-Serre spectral sequence applied

to the extension

e → 2A → A → Z2 → e

leads to Ep,q
2 = Hp(Z2, H

q(2A,Z)) ⇒ Hp+q
τ (A, Z̃) and the extension

e → E0,2
2 → H2(A, Z̃) → E2,0

2 → e.

But E2,0
2 = H2(Z,Z) ∼= Z2 and, in view of Proposition 3.16(2), it holds E0,2

2 =

(
⊕

2ℵ0 Q⊕
⊕

pA�A Zp∞)Z2 ∼= Z2. Consequently H2
τ (A, Z̃) ∼= Z2 ⊕ Z2 and the proof is

complete.

�
Given a set P of primes, write ZP for the localization of Z with respect to the

muliplicative system generated by P . Based on the above we obtain the following

result.

Theorem 3.17. There are 2ℵ0 distinct homotopy types of orbit spaces Σ(1)/ZP with

respect to actions of ZP on Σ(1) and any such an action induces the trivial action

on H1(Σ(1),Z).
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Proof. First, suppose that P is an infinite set of primes. Then for any subset

P ′ ⊆ P there is an extension

e → Z α→ ZP ′ ⊕ ZP\P ′
β→ ZP → e,

where α(1) = (1,−1) and the restriction maps β|ZP ′ , β|ZP\P ′ are the inclusion maps

ZP ′ ↪→ ZP , ZP ′ ↪→ ZP , respectively. Notice that for any two distinct subsets P, P ′′ ⊆
P , the groups ZP ′ ⊕ ZP\P ′ and ZP ′′ ⊕ ZP\P ′′ are not isomorphic.

If P = {p1, . . . , pn} for some primes p1, . . . , pn, then ZP = Z[ 1
p1···pn ]. Next for

any two distinct primes p, p′ ̸∈ P and any sequence (mk)k≥1 of natural numbers

consider the subgroup A(p, (mk)) =
⟨
1, pkmk

(p1···pn)kmk
for k ≥ 1

⟩
and A′(p′, (mk)) =⟨

1, p′kmk

(p1···pn)kmk
for k ≥ 1

⟩
of ZP . Then we get an extension

e → Z α→ A(p, (mk))⊕ A′(p′, (mk))
β→ ZP → e,

with the maps α and β defined as above. Notice that the groups A(p, (mk)) ⊕
A′(p′, (mk)) and A(p, (m̄k)) ⊕ A′(p′, (m̄k)) are not isomorphic for two distinct se-

quences (mk) and (m̄k) and this completes the proof.

�

We close the paper with the study of actions on Σ(1) of groups of the second

subfamily which are subgroups of Q/Z. Let p : Q → Q/Z be the quotient map.

Then, gd p−1(A) ≤ 2 and the extension e → Z → p−1(A) → A → e yields, in view of

Proposition 1.3, an action

A× Σ(1) → Σ(1)

with dimΣ(1) ≤ 2. Further, notice that for any non-cyclic subgroup A, this extension
leads also to

e → Z → Ext(A,Z) → Ext(p−1(A),Z) → e.

Because card(Ext(p−1(A),Z)) = 2ℵ0 , we conclude that

card(Ext(A,Z)) = 2ℵ0

for any non-cyclic A < Q/Z.

To present the next result, we need:

Lemma 3.18. If 0 → A → G
p→ B → 0 is a central extension with a torsion-free

abelian group A and a torsion abelian group B, then G is an abelian group.
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Proof. First, invoke one Hall’s commutator formulae

(3.4) [g1g2, g3] = [g1, [g2, g3]][g2, g3][g1, g3]

for any g1, g2, g3 ∈ G. Because B is abelian, [g2, g3] ∈ A. But A is in the center

of G, so we get [g1g2, g3] = [g2, g3][g1, g3]. In particular, [g21, g2] = [g1, g2]
2 and the

inductive argument leads to [gn1 , g2] = [g1, g2]
n for any n > 0.

Let now p(g1)
n = 0 for some n > 0. Then gn1 ∈ A and [gn1 , g2] = [g1, g2]

n = 0.

Because [g1, g2] ∈ A which is torsion-free, the result follows.

�

Theorem 3.19. For any subgroup A < Q/Z there is an action of A on some Σ(1)

and exactly one homotopy type of the orbit spaces Σ(1)/A for all its possible actions

on homotopy circles Σ(1). Further, any such an action induces the trivial action on

H1(Σ(1),Z).

Proof. Certainly, we may assume that A < Q/Z is a non-trivial subgroup. Then,

in view of the canonical extension

e → Z → p−1(A) → A → e,

we get gd p−1(A) ≤ 2 and Proposition 1.3 leads to an action A× Σ(1) → Σ(1) with

dimΣ(1) ≤ 2.

Now, given an action A× Σ(1) → Σ(1), consider the associated extension

e → Z α→ π
β→ A → 0.

Because the group A is torsion, in view of Remark 2.7, the induced action of A on

H1(Σ(1),Z) is trivial. Then, by Lemma 3.18 we get that π is abelian. Because A
is torsion, for any non-trivial x ∈ π there are uniquely determined relatively prime

integers n,m such that mx = nα(1), where m is the order of β(x). Then the map

φ : π → p−1(A)

given by φ(0) = 0 and φ(x) = n
m
provided mx = nα(1) is a well-defined injection. To

show that φ is a homomorphism, take x1, x2 ∈ π with m1x1 = n1α(1) and m2x2 =

n2α(1). Because the least common multiple [m1,m2] is the order of β(x1 + x2), we

derive that [m1,m2](x1 + x2) = ( [m1,m2]
m2

n1 +
[m1,m2]

m1
n2)α(1). Consequently, φ(x1 +

x2) = φ(x1)+φ(x2). Further, the relation φα(1) = 1 leads to such a monomorphism
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φ̄ : A ↪→ A that the diagram

e // Z α // π
β

//
� _

φ
��

A //
� _

φ̄

��

e

e // Z // p−1(A)
p

// A // e

commutes. Next, notice that a torsion abelian group B is co-Hopfian if and only if

each its p-primary component Bp is co-Hopfian, where p runs over the set of all primes.

This follows because any homomorphism preserves the p-primary components. The

p-primary component of A is a subgroup of the p-primary component of Q/Z, which
in turn is the Prüffer group Zp∞ . The only proper subgroups of Zp∞ are the finite

groups Zpn , where 0 ≤ n < ∞ which are certainly co-Hopfian. But the group Zp∞

is co-Hopfian, so we deduce that any monomorphism A ↪→ A is an automorphism.

Consequently, φ : π ↪→ p−1(A) is an isomorphism and the proof is complete.

�
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