MA251 - Algebra I

Assignment 5

Autumn 2013
Answer the questions on your own paper. Write your own name in the top left-hand corner, and your university ID number in the top right-hand corner. Use the problems at the beginning as well as exercises in the lecture notes for a warm up. Solutions to the FOUR TEST problems must be handed in by $\mathbf{1 5 . 0 0}$ on MONDAY 2 DECEMBER (Monday of the tenth week of term), or they will not be marked. There will be an award of 5 extra marks for clarity, so do a good job.
These are practice problems for you to sharpen your teeth on.
P1. Prove that elements $x_{1}, \ldots, x_{r} \in \mathbb{Z}^{n}$ are linearly independent if and only if they are linearly independent over \mathbb{Q} when regarded as vectors in \mathbb{Q}^{n}.
P2. Write down the possible isomorphism types of abelian groups of orders up to 16 .
P3. Let n be a positive integer. Show that there are $2^{n}-1$ surjective homomorphisms from \mathbb{Z}^{n} to \mathbb{Z}_{2}, and use the First Isomorphism Theorem to deduce that there are exactly $2^{n}-1$ subgroups of \mathbb{Z}^{n} of index 2 . How many subgroups of index 3 are there?
P4. Show that the Smith Normal Form of a unimodular matrix with entries in \mathbb{Z} is the identity matrix. Deduce that any such unimodular matrix can be expressed as the product of elementary unimodular matrices.
P5. Find all subgroups of the groups \mathbb{Z}_{15} and $\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}$. (The former has 4 and the latter has 8.) Express each subgroup as a direct sum of cyclic groups.
P6. Proof of the uniqueness of the Smith Normal Form. Let $A \in \mathbb{Z}^{m \times n}$ be an $m \times n$ matrix with entries in \mathbb{Z}. For $1 \leq i \leq \min (m, n)$, an $i \times i$-submatrix of A is defined to be a matrix obtained from A by deleting any $m-i$ rows and any $n-i$ columns of A. Define

$$
\gamma_{i}(A)=\operatorname{gcd}(\{|\operatorname{det}(S)| ; S \text { is an } i \times i-\text { submatrix of } A\})
$$

(The convention here is that $\operatorname{gcd}(0, n)=n$ for any $n \geq 0$.)
(i) Show that, if B is obtained from A by applying elementary unimodular row and column operations, then $\gamma_{i}(B)=\gamma_{i}(A)$ for $1 \leq i \leq \min (m, n)$. (This is easy for (UR2), (UR3), but a little harder for (UR1).)
(ii) Show that, if B is Smith Normal Form with nonzero diagonal entries $\alpha_{1}, \ldots, \alpha_{r}$, then $\gamma_{i}(B)=\alpha_{1} \alpha_{2} \cdots \alpha_{i}$ for $1 \leq i \leq r$ and $\gamma_{i}(B)=0$ for all $i>r$.
(iii) Deduce that the Smith Normal Form is uniquely determined by A.

P7. Let H be the subgroup of \mathbb{Z}^{n} generated by the columns of a matrix $A \in \mathbb{Z}^{n \times n}$, invertible in $\mathbb{Z}^{n \times n}$. Prove that the index of H in \mathbb{Z}^{3} is equal to $|\operatorname{det}(A)|$.
Compute the index of $<(2,1,1)^{T},(1,2,1)^{T},(1,1,2)^{T}>$ in \mathbb{Z}^{3}.
P8. A group is a set with a binary operation that satisfies all axioms of an abelian group except commutativity. Homomorphism between groups is a function f satisfying $f(x+y)=f(x)+f(y)$.
(i) Prove that a group G is abelian if and only if $f: G \rightarrow G$ defined by $f(x)=2 x$ is a group homomorphism.
(ii) Prove that if a group G satisfies the property that $2 g=1$ for all $g \in G$ then G is abelian.

The following problems are test problems for you to submit for marking. Write concise but complete solutions only to the questions asked. Additional 5 marks are awarded for clarity.

1. Write down the possible isomorphism types of abelian groups of orders 74 and 800 . [3 marks]
2. For the following finitely generated abelian groups G, write down their corresponding matrix, reduce it to Smith Normal Form, and hence express G as a direct sum of cyclic groups:
(i) $\left\langle x_{1}, x_{2}, x_{3} \mid x_{1}-2 x_{2}, x_{1}+6 x_{2}+8 x_{3}, x_{1}+3 x_{3}\right\rangle$;
[2 marks]
(ii) $\left\langle x_{1}, x_{2} \mid 6 x_{1}-6 x_{2},-6 x_{1}-12 x_{2}, 4 x_{1}-8 x_{2}\right\rangle$.
[2 marks]
3. Let G be an abelian group and let $g, h \in G$.
(i) If $|g|=m$ is finite then prove that, for $n \in \mathbb{Z}, n g=0$ if and only if $m \mid n$. [2 marks]
(ii) Let us assume that $|g|$ and $|h|$ are both finite, with $\operatorname{hcf}(|g|,|h|)=1$. Prove that $|g+h|=|g||h|$.
[2 marks]
(iii) Prove that $\mathbb{Z}_{m} \oplus \mathbb{Z}_{n} \cong \mathbb{Z}_{m n}$ if and only if m and n are relatively prime. [2 marks]
4. We consider finite dimensional vector spaces U and V over complex numbers \mathbb{C}, their bases $\mathbf{e}_{i} \in U, i=1,2, \ldots, n$ and $\mathbf{f}_{i} \in V, i=1,2, \ldots, m$, their dual spaces U^{*} and V^{*}, and the dual bases \mathbf{e}^{i} and \mathbf{f}^{i}.
(i) Let $T: U \rightarrow V$ be a linear map. We consider a function $T^{\star}: V^{*} \rightarrow U^{*}$ so that for each $\alpha \in V^{*}, T^{\star}(\alpha)$ is an element of U^{*} defined by

$$
T^{\star}(\alpha)(\mathbf{u})=\alpha(T(\mathbf{u})) \text { for all } \mathbf{u} \in U
$$

Prove that T^{\star} is a linear map.
[2 marks]
The linear map T^{\star} in (i) is called the dual linear map of T.
(ii) Suppose A is the matrix of T and B is the matrix of T^{\star} in the bases described above. Prove that $B=A^{T}$.
[2 marks]
(iii) Now we assume that both vector spaces are Hermitian. As in the Problem 4, HW-3 we consider $T_{U}: U \rightarrow U^{*}$ defined by

$$
T_{U}(\mathbf{w})(\mathbf{u})=<\mathbf{w}, \mathbf{u}>\text { for all } \mathbf{w}, \mathbf{u} \in U .
$$

Prove that if the basis \mathbf{e}_{i} is orthonormal them $T_{U}\left(\mathbf{e}_{i}\right)=\mathbf{e}^{i}$.
[1 marks]
It follows from (iii) that T_{U} is an semilinear ${ }^{1}$ bijection between U and U^{*}. Hence, we can write its inverse in the following part (iv).
(iv) Two linear maps $T: U \rightarrow V$ and $S: V \rightarrow U$ are formally dual if

$$
<T(\mathbf{u}), \mathbf{v}>=<\mathbf{u}, S(\mathbf{v})>\text { for all } \mathbf{v} \in V, \mathbf{u} \in U
$$

Prove that the linear ${ }^{2}$ maps T and $T_{U}^{-1} T^{\star} T_{V}$ are formally dual.
(Hint: Compute the matrices of both sesquilinear maps $U \times V \rightarrow \mathbb{C}$ in a pair of orthonormal bases.)

[^0]
[^0]: ${ }^{1} T_{U}(\alpha \mathbf{v})=\bar{\alpha} T_{U}(\mathbf{v})$ rather then $\alpha T_{U}(\mathbf{v})$
 ${ }^{2}$ Composition of anti-linear maps is linear - you don't have to show that the maps are linear or welldefined

