
MA251 - Algebra I

Assignment 4 Autumn 2013

Answer the questions on your own paper. Write your own name in the top left-hand
corner, and your university ID number in the top right-hand corner. Use the problems
at the beginning as well as exercises in the lecture notes for a warm up. Solutions to the
FOUR TEST problems must be handed in by 15.00 on MONDAY 25 NOVEMBER
(Monday of the ninth week of term), or they will not be marked. There will be an award
of 5 extra marks for clarity, so do a good job.

These are practice problems for you to sharpen your teeth on.

P1. Let A be a symmetric n × n real matrix. We consider a function f :S → R where
f(v) = vTAv and S = {v ∈ Rn | vTv = 1} is the unit sphere. The set S is compact and
the function f is continuous. It is known in Analysis (Extreme Value Theorem or Weier-
strass’ Theorem) that there exists a point v0 ∈ S such that f(v) achieves its maximum
at v = v0. Prove that v0 is an eigenvector of A.

(Note: This is another proof of the fact that a symmetric matrix admits a real eigenvector,
using methods of Analysis)

P2. In this problem we establish a so called QR-decomposition of a matrix.
(i) Let A ∈ Rn×n be an invertible matrix. Using Gram-Schmidt Orthonormalisation on
columns of A, prove that we can write A = QR where Q is orthogonal and R is upper-
triangular.
(ii) Let B ∈ Rn×n. Prove that we can write B = AS wheres A is invertible and S is
upper-triangular.
(iii) Prove that we can write B = QR where Q is orthogonal and R is upper-triangular.

(iv) Let A =

 3 −2 −7
6 2 4
6 −1 4

. Find an orthogonal matrix Q and an upper-triangular

matrix R such that A = QR.

P3. Prove that the eigenvalues of a complex Hermitian matrix are all real.

P4. Find a 2× 2 complex matrix which is both Hermitian and unitary and whose entries
are not all real numbers.

The following problems are test problems for you to submit for marking. Write
concise but complete solutions only to the questions asked. Additional 5 marks are awarded
for clarity.

1. (i) Find the orders of all elements in the group Z12. [1 mark]

(ii) Write down and prove a formula for the order of an element k ∈ Zn for general n and
k. [2 marks]

2. Classify the following curves and surfaces (ellipse, parabola, etc.) and justify your
answers:
(i) x2 − y2 + 2xy − 1 = 0 (2 dimensions); [1 mark]
(ii) x2 − y2 + 2xy − 1 = 0 (3 dimensions); [1 mark]
(iii) x2 + 2xy + y2 + x+ 1 = 0 (2 dimensions); [1 mark]
(iv) x2 + y2 − 2z2 − x− y − 4z = 0 (3 dimensions); [1 mark]
(v) x2 + y2 + 2z2 + 2xz − 2y + 2z + 2 = 0 (3 dimensions); [1 mark]
(vi) x2 + y2 − z2 + 2xy − 2xz − 2yz − y = 0 (3 dimensions). [1 mark]



3. Let (V,<,>) be an Euclidean space. The Gram matrix of vectors v1, . . . ,vk ∈ V is

G(v1, . . . ,vk) =

< v1,v1 > < v1,v2 > · · · < v1,vk >
...

...
...

< vk,v1 > < vk,v2 > · · · < vk,vk >


(i) Prove that if v1, . . . ,vk are linearly dependent then det(G(v1, . . . ,vk)) = 0. [1 mark]

(ii) Prove that if v1, . . . ,vk are linearly independent then det(G(v1, . . . ,vk)) > 0. (Hint:
Gram matrix is the matrix of <,> restricted to the span of vi-s.) [2 marks]

(iii) The Gram inequality det(G(v1, . . . ,vk)) ≥ 0, which you have just proved, has a very
important special case of k = 2. In this special case, it is called the Schwarz inequality.
Write the Schwarz inequality explicitly (by using a formula for a 2× 2-determinant) and
explain how the Schwarz inequality can be used to define an angle between two vectors
x, y ∈ V . [1 mark]

(iv) We define a Euclidean distance on V by d(x, y) =
√
< x− y, x− y > Using the

Schwarz inequality, prove the triangle inequality d(x, z) ≤ d(x, y) + d(y, z). [1 mark]

(v) Prove that a linear map T :V → V is orthogonal if and only if it is distance preserving,
i.e. d(a, b) = d(T (a), T (b)) for all a, b ∈ V . [2 marks]

4. We are working with a finite dimensional Euclidean space (V, <,> ). Given vectors
v1, . . . ,vn ∈ V , one defines the parallelepiped

P (v1, . . . ,vn) = {
∑

αivi ∈ V | αi ∈ [0, 1]}.

The n-dimensional volume of this parallelepiped is defined inductively:

Vol1(P (v1)) = ||v1|| =
√
< v1,v1 >, Voln(P (v1, . . . ,vn)) = Voln−1(P (v1, . . . ,vn−1)))||w||

where w = vn + α1v1 + . . . + αn−1vn−1 is the unique1 vector of this form orthogonal to
all vi for i ≤ n − 1. Intuitively, we define the n-dimensional volume as a product of the
n−1-dimensional volume of a base and the height. There is nothing to prove at this point.

(i) Using the Gram matrix from problem 3, prove that

det(G(v1, . . . ,vn)) = Voln(P (v1, . . . ,vn))2.

[2 marks]

(ii) Now let n be the dimension of V . Let A be a square matrix whose columns are vi,
the coordinate vectors of vi in some orthonormal basis. Using part (i), prove that

| det(A)| = Voln(P (v1, . . . ,vn)).

[2 marks]

1This follows from the direct sum decomposition V = W ⊕W⊥ where W is the span of the first n− 1
vectors. Then w = π(vn) where π:V →W⊥ is the projection map along W .


