MA251 - Algebra I

Assignment 3

Autumn 2013
Answer the questions on your own paper. Write your own name in the top left-hand corner, and your university ID number in the top right-hand corner. Use the problems at the beginning as well as exercises in the lecture notes for a warm up. Solutions to the FOUR TEST problems must be handed in by $\mathbf{1 5 . 0 0}$ on MONDAY 11 NOVEMBER (Monday of the seventh week of term), or they will not be marked. There will be an award of 5 extra marks for clarity, so do a good job.
These are practice problems for you to sharpen your teeth on.
P1. Calculate the rank and signature of the quadratic forms corresponding to the matrices

$$
\text { (i) }\left(\begin{array}{rr}
-1 & 3 \\
3 & -9
\end{array}\right) \quad \text { (ii) }\left(\begin{array}{cccc}
0 & 0 & 1 / 2 & 0 \\
0 & 0 & 1 & 1 \\
1 / 2 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

P2. Call two quadratic forms on the n-dimensional vector space V over field \mathbb{K} equivalent if one can be obtained from the other by a change of coordinates. How many equivalence classes are there when (i) $\mathbb{K}=\mathbb{C}$ and $n=4$; and (ii) $\mathbb{K}=\mathbb{R}$ and $n=3$.
P3. What is the answer to parts (i) and (ii) of Question P 2 for general n ?
$\mathbf{P 4}$. (i) Show that any 2×2 real orthogonal matrix is equal to

$$
\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{rr}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)
$$

for some θ. (Hence the matrix represents a rotation about the origin or a reflection about a line through the origin in the 2-dimensional plane.)
(ii) Show that a 3×3 real orthogonal matrix A represents either a rotation about a line through the origin, or a reflection about a plane through the origin followed by a rotation (Hint: First show that A has an eigenvector \mathbf{v}, and change basis to include \mathbf{v}.)
P5. Part (ii) of this problem deals with a square root of a matrix. Part (iii) establishes a polar decomposition of a matrix A : it is analogous to writing a complex number in the polar form $r e^{i \theta}$.
Let A be any invertible $n \times n$ matrix over \mathbb{R}.
(i) Show that $A A^{\mathrm{T}}$ is symmetric and positive definite.
(ii) Show that there is a symmetric positive definite matrix S with $S^{2}=A A^{\mathrm{T}}$.
(iii) Show that there is a symmetric positive definite matrix S and an orthogonal matrix R such that $A=S R$. (Hint: same S as in (ii).)
P6. This question outlines a proof of the convergence of the exponential series for any matrix. For $A \in \mathbb{C}^{n, n}$ with entries $\left(a_{i j}\right)_{1 \leq i, j \leq n}$, let $|A|=\sup _{i, j}\left|a_{i j}\right|$.
(i) Show that $|A B| \leq n|A||B|$ for any $A, B \in \mathbb{C}^{n, n}$.
(ii) Hence deduce that $\left|A^{k}\right| \leq n^{k-1}|A|^{k}$ for all $k \in \mathbb{N}$.
(iii) Prove that there exists $0<r<1$ and $C<\infty$ (depending on A) such that $\left|A^{k}\right| / k!<$ $C r^{k}$ for all $k \in \mathbb{N}$, and deduce that for each i, j, the sequence whose nth term is the (i, j) entry of $\sum_{k=0}^{n} A^{k} / k!$ is convergent.
P7. Find a 2×2 symmetric matrix over \mathbb{C} which is not diagonalisable.
The following problems are test problems for you to submit for marking. Write concise but complete solutions only to the questions asked. Additional 5 marks are awarded for clarity.

1. Prove that the 2-dimensional quadratic from $q(x, y)=\alpha x^{2}+\beta x y+\gamma y^{2}$ is positive definite if and only if $\alpha>0$ and $\beta^{2}-4 \alpha \gamma<0$.
[2 marks]
2. Find orthogonal matrices P such that $P^{\mathrm{T}} A P$ is diagonal for

$$
\text { (i) } A=\left(\begin{array}{rr}
-5 & 12 \\
12 & 5
\end{array}\right) \quad \text { (ii) } A=\left(\begin{array}{rrr}
4 & 0 & -2 \\
0 & 2 & -2 \\
-2 & -2 & 3
\end{array}\right)
$$

[2,3 marks]
3. For the following Euclidean vector spaces (V, ω) and a basis f_{1}, \ldots, f_{n}, run GramSchmidt orthonormalisation process to arrive at an orthonormal basis.
(i) $V=\mathbb{R}^{3}$ with the the standard dot-product $\omega(\mathbf{v}, \mathbf{w})=\mathbf{v}^{T} \mathbf{w} ; f_{1}=(1,0,0)^{T}, f_{2}=$ $(1,1,1)^{T}$ and $f_{3}=(1,-1,1)^{T}$.
[2 marks]
(ii) $V=\mathbb{R}[X]_{\leq 4}$ is the space of real polynomials of degree at most 4 ,

$$
\omega(f(X), g(X))=\int_{-1}^{1} f(X) g(X) d X
$$

$f_{i}=X^{i-1}, i=1,2,3,4,5$.
[2 marks]
(iii) $V=\mathbb{R}[X]_{\leq 4}$ is the space of real polynomials of degree at most 4 ,

$$
\omega(f(X), g(X))=\int_{-\infty}^{+\infty} e^{-X^{2}} f(X) g(X) d X
$$

$f_{i}=X^{i-1}, i=1,2,3,4,5$. (Hint: You will need the Gaussian integral $\int_{-\infty}^{+\infty} X^{2 k} e^{-X^{2}} d X=$ $2^{-k}(2 k-1)!!\sqrt{\pi}$ where $(2 k-1)!!$ is the double factorial defined by $n!!=n \cdot(n-2)!!$ and $(-1)!!=1$.)
[2 marks]
4. Let $\tau: W \times V \rightarrow \mathbb{K}$ be a bilinear map, where V and W are vector spaces over a field \mathbb{K}. Recall that the dual space is denoted by V^{*}. Let U, U_{i} be subspaces of V.
(i) Prove that U^{\perp}, defined by

$$
U^{\perp}=\{\mathbf{w} \in W \mid \tau(\mathbf{w}, \mathbf{u})=\mathbf{0} \quad \forall \mathbf{u} \in U\}
$$

is a subspace of W.
[1 marks]
(ii) Prove that $U \subseteq\left(U^{\perp}\right)^{\perp}$
[1 marks]
(iii) Prove that $U_{1} \subseteq U_{2}$ implies $U_{2}^{\perp} \subseteq U_{1}^{\perp}$ and [1 marks]
(iv) Show that the map $T_{U}: W \rightarrow U^{*}$ defined by $T_{U}(\mathbf{w})(\mathbf{u})=\tau(\mathbf{w}, \mathbf{u})$ for $\mathbf{w} \in W, \mathbf{u} \in U$ is a linear map from W to U^{*}, and that $\operatorname{ker}\left(T_{U}\right)=U^{\perp}$.
[2 marks]
(v) Deduce that $\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right) \geq \operatorname{dim}(W)$.
[2 marks]

