MA251 - Algebra I

Assignment 2

Autumn 2013
Answer the questions on your own paper. Write your own name in the top left-hand corner, and your university ID number in the top right-hand corner. Use the problems at the beginning as well as exercises in the lecture notes for a warm up. Solutions to the FOUR TEST problems must be handed in by $\mathbf{1 5 . 0 0}$ on MONDAY 28 OCTOBER (Monday of the fifth week of term), or they will not be marked. There will be an award of 5 extra marks for clarity, so do a good job.
These are practice problems for you to sharpen your teeth on.
P1. Show that a 2×2-matrix A with $A^{3}=0$ also satisfies $A^{2}=0$.
P2. Let A be an 8×8-matrix A over \mathbb{R}, and suppose that $c_{A}(z)=(1-z)^{8}$ and $\mu_{A}(z)=$ $(z-1)^{4}$. Write down the possible JNFs for A. How would you decide which was the correct JNF?
P3. Is it true that for all $n \times n$-matrices over complex numbers A and B the JNFs of $A B$ and $B A$ are the same? Give a proof or counterexample.
$\mathbf{P 4}$. Let $q: V \rightarrow K$ be a quadratic form. Prove that, for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$,

$$
q(\mathbf{u}+\mathbf{v}+\mathbf{w})-q(\mathbf{u}+\mathbf{v})-q(\mathbf{v}+\mathbf{w})-q(\mathbf{u}+\mathbf{w})+q(\mathbf{u})+q(\mathbf{v})+q(\mathbf{w})=\mathbf{0}
$$

P5. Write down the symmetric matrices corresponding to the quadratic forms
(i) $3 x^{2}-7 x y+11 y^{2}$;
(ii) $x y+y z+x z$;
(iii) $w^{2}-x y+z^{2}$.

P6. A bilinear form $\tau: V \times V \rightarrow K$ is called alternating or anti-symmetric if $\tau(\mathbf{u}, \mathbf{v})=-\tau(\mathbf{v}, \mathbf{u})$ for all $\mathbf{u}, \mathbf{v} \in V$.
(i) Show that the form τ is alternating if and only if $\tau(\mathbf{v}, \mathbf{v})=0$ for all $\mathbf{v} \in V$;
(ii) Show that any bilinear form on V is equal to the sum of a symmetric form and an alternating form.
P7. An $n \times n$ matrix is called orthogonal if $A^{\mathrm{T}} A=I_{n}$. Let A be an orthogonal matrix over \mathbb{R}.
(i) Prove $\operatorname{det}(A)= \pm 1$.
(ii) Prove that, if λ is an eigenvalue of A with $\lambda \in \mathbb{R}$, then $\lambda= \pm 1$.
(Hint: Transpose the equation $A \mathbf{v}=\lambda \mathbf{v}$.)
P8. Let $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$, with real coefficients.
(i) Using either JNF or Lagrange's interpolation, compute A^{n} explicitly for a natural number n.
(ii) Find a polynomial $f(Z)$ of degree less than 2 such that $e^{t A}=f(A)$ and compute $e^{t A}$ explicitly.
(iii) Solve the system of differential equations

$$
\left\{\begin{array}{r}
x^{\prime}(t)=2 x(t)+y(t) \\
y^{\prime}(t)=x(t)+2 y(t)
\end{array}\right.
$$

with initial condition $x(0)=1$ and $y(0)=-1$
The following problems are test problems for you to submit for marking. Write concise but complete solutions only to the questions asked. Additional 5 marks are awarded for clarity.

1. Let $A=\left(\begin{array}{ll}3 & -2 \\ 2 & -2\end{array}\right) \in \mathbb{R}^{2 \times 2}$.
(i) Using either JNF or Lagrange's interpolation, compute A^{n} explicitly for a natural number n.
[2 marks]
(ii) Find a polynomial $f(Z)$ of degree less than 2 such that $e^{t A}=f(A)$ and compute $e^{t A}$ explicitly.
[2 marks]
(iii) Solve the system of differential equations

$$
\left\{\begin{array}{l}
x^{\prime}(t)=3 x(t)-2 y(t) \\
y^{\prime}(t)=2 x(t)-2 y(t)
\end{array},\right.
$$

with initial condition $x(0)=2$ and $y(0)=1$
[1 mark]
2. Let $D: \mathbb{R}[X] \rightarrow \mathbb{R}[X]$ be the differentiation operator $D(f(X))=f^{\prime}(X)$. Prove that $e^{t D}(f(X))=f(X+t)$ for a real number $t \in \mathbb{R}$.
[4 marks]
3. (i) Write down the symmetric matrix A corresponding to the quadratic form $q(\mathbf{v})=$ $w z-x y$ in the 4 variables w, x, y, z.
[1 mark]
(ii) Find a change of coordinates to transform q to the form $\alpha w_{1}^{2}+\beta x_{1}^{2}+\gamma y_{1}^{2}+\delta z_{1}^{2}$.
[2 marks]
(iii) Write down the corresponding change of basis matrix P, and verify that $P^{\mathrm{T}} A P$ is diagonal.
[2 marks]
4. Let V be a vector space over a field \mathbb{K} with a basis $\mathbf{e}_{i}, i \in I$. The dual vector space V^{*} is defined as a set of all linear maps $V \rightarrow \mathbb{K}$. While elements of V are called vectors, elements of V^{*} should be called covectors. Given the basis of V as above, we define a covector $\mathbf{e}^{i} \in V^{*}, i \in I$ by $\mathbf{e}^{i}\left(\mathbf{e}_{j}\right)=\delta_{i j}$ (1 if $i=j, 0$ otherwise).
(i) Prove that the covectors $\mathbf{e}^{i}, i \in I$ are linearly independent.
[2 marks]
(ii) Consider $T \in V^{*}$ defined by $T\left(\mathbf{e}_{i}\right)=1$ for all i. Assuming that V is finite-dimensional, prove that the covectors \mathbf{e}^{i} form a basis and write T explicitly as a linear combination of the covectors \mathbf{e}^{i}.
(iii) Assuming that V is infinite-dimensional, prove that T is not a linear combination of \mathbf{e}^{i}. (It follows that the vectors $\left\{\mathbf{e}^{i}\right\}$ do not form a basis.)
[1 mark]
(iv) Assume that V is finite-dimensional. From what we prove it follows that both V and V^{*} are vector spaces of the same dimension. Consider a linear bijection $\phi: V \rightarrow V^{*}$ defined by $\phi\left(\mathbf{e}_{i}\right)=\mathbf{e}^{i}$. Show that this bijection depends on the original choice of basis. (Hint: Consider 2 different bases in a one dimensional vector space and compute bijections explicitly)
[2 marks]

