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1 Review of Some Linear Algebra
Students will need to be familiar with the whole of the contents of the First Year Linear
Algebra module (MA106). In this section, we shall review the material on matrices of linear
maps and change of basis. Other material will be reviewed as it arises.

1.1 The matrix of a linear map with respect to a fixed basis

Let V and W be vector spaces over a field1 K. Let T : V → W be a linear map, where
dim(V ) = n, dim(W ) = m. Choose a basis e1, . . . , en of V and a basis f1, . . . , fm of W .

Now, for 1 ≤ j ≤ n, T (ej) ∈W , so T (ej) can be written uniquely as a linear combination of
f1, . . . , fm. Let

T (e1) = α11f1 + α21f2 + · · ·+ αm1fm

T (e2) = α12f1 + α22f2 + · · ·+ αm2fm

· · ·
T (en) = α1nf1 + α2nf2 + · · ·+ αmnfm

where the coefficients αij ∈ K (for 1 ≤ i ≤ m, 1 ≤ j ≤ n) are uniquely determined.

The coefficients αij form an m× n matrix

A =


α11 α12 . . . α1n

α21 α22 . . . α2n

. . .
αm1 αm2 . . . αmn


over K. Then A is called the matrix of the linear map T with respect to the chosen bases of
V and W . Note that the columns of A are the images T (e1), . . . , T (en) of the basis vectors
of V represented as column vectors with respect to the basis f1, . . . , fm of W .

It was shown in MA106 that T is uniquely determined by A, and so there is a one-one
correspondence between linear maps T : V →W and m×n matrices over K, which depends
on the choice of bases of V and W .

For v ∈ V , we can write v uniquely as a linear combination of the basis vectors ei; that is,
v = x1e1 + · · ·+ xnen, where the xi are uniquely determined by v and the basis ei. We shall
call xi the coordinates of v with respect to the basis e1, . . . , en. We associate the column
vector

v =


x1
x2
...
xn

 ∈ Kn,1,

to v, where Kn,1 denotes the space of n× 1-column vectors with entries in K. Notice that v
is equal to (x1, x2, . . . , xn)T, the transpose of the row vector (x1, x2, . . . , xn). To simplify the
typography, we shall often write column vectors in this manner.

It was proved in MA106 that if A is the matrix of the linear map T , then for v ∈ V , we
have T (v) = w if and only if Av = w, where w ∈ Km,1 is the column vector associated with
w ∈W .

1It is conventional to use either F or K as the letter to denote a field. F stands for a field, while K comes
from the German word “körper”.
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1.2 Change of basis

Let V be a vector space of dimension n over a field K, and let e1, . . . , en and e′1, . . . , e
′
n be

two bases of V . Then there is an invertible n× n matrix P = (σij) such that

e′j =

n∑
i=1

σijei for 1 ≤ j ≤ n. (∗)

P is called the basis change matrix or transition matrix for the original basis e1, . . . , en and
the new basis e′1, . . . , e

′
n. Note that the columns of P are the new basis vectors e′i written as

column vectors in the old basis vectors ei. (Recall also that P is the matrix of the identity
map V → V using basis e′1, . . . , e

′
n in the domain and basis e1, . . . , en in the codomain.)

Usually the original basis e1, . . . , en will be the standard basis of Kn.

Example. Let V = R3, e1 = (1 0 0), e2 = (0 1 0), e3 = (0 0 1) (the standard basis) and
e′1 = (0 1 2), e′2 = (1 2 0), e′3 = (−1 0 0). Then

P =

0 1 −1
1 2 0
2 0 0

 .

The following result was proved in MA106.

Proposition 1.1 With the above notation, let v ∈ V , and let v and v′ denote the column
vectors associated with v when we use the bases e1, . . . , en and e′1, . . . , e

′
n, respectively. Then

Pv′ = v.

So, in the example above, if we take v = (1 −2 4) = e1−2e2 + 4e3 then v = 2e′1−2e′2−3e′3,
and you can check that Pv′ = v.

This equation Pv′ = v describes the change of coordinates associated with the basis change.
In Section 3 below, such basis changes will arise as changes of coordinates, so we will use this
relationship quite often.

Now let T : V → W , ei, fi and A be as in Subsection 1.1 above, and choose new bases
e′1, . . . , e

′
n of V and f ′1, . . . , f

′
m of W . Then

T (e′j) =
m∑
i=1

βijf
′
i for 1 ≤ j ≤ n,

where B = (βij) is the m× n matrix of T with respect to the bases {e′i} and {f ′i} of V and
W . Let the n × n matrix P = (σij) be the basis change matrix for original basis {ei} and
new basis {e′i}, and let the m ×m matrix Q = (τij) be the basis change matrix for original
basis {fi} and new basis {f ′i}. The following theorem was proved in MA106:

Theorem 1.2 With the above notation, we have AP = QB, or equivalently B = Q−1AP .

In most of the applications in this course we will have V = W (= Kn), {ei} = {e′i}, {fi} = {f ′i}
and P = Q, and hence B = P−1AP .

2 The Jordan Canonical Form

2.1 Introduction

Throughout this section V will be a vector space of dimension n over a field K, T : V → V
will be a linear operator2, and A will be the matrix of T with respect to a fixed basis e1, . . . , en

2i.e. a linear map from a space to itself
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of V . Our aim is to find a new basis e′1, . . . , e
′
n for V , such that the matrix of T with respect

to the new basis is as simple as possible. Equivalently (by Theorem 1.2), we want to find
an invertible matrix P (the associated basis change matrix) such that P−1AP is a simple as
possible.

Our preferred form of matrix is a diagonal matrix, but we saw in MA106 that the matrix(
1 1
0 1

)
, for example, is not similar to a diagonal matrix. We shall generally assume that

K = C. This is to ensure that the characteristic polynomial of A factorises into linear factors.
Under this assumption, it can be proved that A is always similar to a matrix B = (βij) of
a certain type (called the Jordan canonical form or sometimes Jordan normal form of the
matrix), which is not far off being diagonal. In fact βij is zero except when j = i or j = i+ 1,
and βi,i+1 is either 0 or 1.

We start by summarising some definitions and results from MA106. We shall use 0 both
for the zero vector in V and the zero n × n matrix. The zero linear operator 0V : V → V
corresponds to the zero matrix 0, and the identity linear operator IV : V → V corresponds
to the identity n× n matrix In.

Because of the correspondence between linear maps and matrices, which respects addition
and multiplication, all statements about A can be rephrased as equivalent statements about
T . For example, if p(x) is a polynomial equation in a variable x, then p(A) = 0⇔ p(T ) = 0V .

If Tv = λv for λ ∈ K and 0 6= v ∈ V , or equivalently, if Av = λv, then λ is an eigenvalue,
and v a corresponding eigenvector of T and A. The eigenvalues can be computed as the roots
of the characteristic polynomial cA(x) = det(A− xIn) of A.

The eigenvectors corresponding to λ are the non-zero elements in the nullspace (= kernel)
of the linear operator T − λIV This nullspace is called the eigenspace of T with respect to
the eigenvalue λ. In other words, the eigenspace is equal to {v ∈ V | T (v) = λv }, which is
equal to the set of eigenvectors together with 0.

The dimension of the eigenspace, which is called the nullity of T − λIV is therefore equal to
the number of linearly independent eigenvectors corresponding to λ. This number plays an
important role in the theory of the Jordan canonical form. From the Dimension Theorem,
proved in MA106, we know that

rank(T − λIV ) + nullity(T − λIV ) = n,

where rank(T − λIV ) is equal to the dimension of the image of T − λIV .

For the sake of completeness, we shall now repeat the results proved in MA106 about the
diagonalisability of matrices. We shall use the theorem that a set of n linearly independent
vectors of V form a basis of V without further explicit reference.

Theorem 2.1 Let T : V → V be a linear operator. Then the matrix of T is diagonal with
respect to some basis of V if and only if V has a basis consisting of eigenvectors of T .

Proof: Suppose that the matrix A = (αij) of T is diagonal with respect to the basis
e1, . . . , en of V . Recall from Subsection 1.1 that the image of the i-th basis vector of V is
represented by the i-th column of A. But since A is diagonal, this column has the single
non-zero entry αii. Hence T (ei) = αiiei, and so each basis vector ei is an eigenvector of A.

Conversely, suppose that e1, . . . , en is a basis of V consisting entirely of eigenvectors of T .
Then, for each i, we have T (ei) = λiei for some λi ∈ K. But then the matrix of A with
respect to this basis is the diagonal matrix A = (αij) with αii = λi for each i. 2
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Theorem 2.2 Let λ1, . . . , λr be distinct eigenvalues of T : V → V , and let v1, . . . ,vr be
corresponding eigenvectors. (So T (vi) = λivi for 1 ≤ i ≤ r.) Then v1, . . . ,vr are linearly
independent.

Proof: We prove this by induction on r. It is true for r = 1, because eigenvectors are
non-zero by definition. For r > 1, suppose that for some α1, . . . , αr ∈ K we have

α1v1 + α2v2 + · · ·+ αrvr = 0.

Then, applying T to this equation gives

α1λ1v1 + α2λ2v2 + · · ·+ αrλrvr = 0.

Now, subtracting λ1 times the first equation from the second gives

α2(λ2 − λ1)v2 + · · ·+ αr(λr − λ1)vr = 0.

By inductive hypothesis, v2, . . . ,vr are linearly independent, so αi(λi−λ1) = 0 for 2 ≤ i ≤ r.
But, by assumption, λi − λ1 6= 0 for i > 1, so we must have αi = 0 for i > 1. But then
α1v1 = 0, so α1 is also zero. Thus αi = 0 for all i, which proves that v1, . . . ,vr are linearly
independent. 2

Corollary 2.3 If the linear operator T : V → V (or equivalently the n× n matrix A) has n
distinct eigenvalues, where n = dim(V ), then T (or A) is diagonalisable.

Proof: Under the hypothesis, there are n linearly independent eigenvectors, which therefore
form a basis of V . The result follows from Theorem 2.1. 2

2.2 The Cayley-Hamilton theorem

This theorem says that a matrix satisfies its own characteristic equation. It is easy to visualise
with the following “non-proof”:

cA(A) = det(A−AI) = det(0) = 0.

This argument is faulty because you cannot really plug the matrix A into det(A− xI): you
must compute this polynomial first.

Theorem 2.4 (Cayley-Hamilton) Let cA(x) be the characteristic polynomial of the n×n
matrix A over an arbitrary field K. Then cA(A) = 0.

Proof: Recall from MA106 that, for any n × n matrix B, we have Badj(B) = det(B)In,
where adj(B) is the n× n matrix whose (j, i)-th entry is the cofactor cij = (−1)i+j det(Bij),
and Bij is the (n− 1)× (n− 1) matrix obtained by deleting the i-th row and the j-th column
of B.

By definition, cA(x) = det(A − xIn), and (A − xIn)adj(A − xIn) = det(A − xIn)In. Now
det(A−xIn) is a polynomial of degree n in x; that is det(A−xIn) = a0x

0 +a1x
1 + · · ·+anx

n,
with ai ∈ K. Similarly, putting B = A − xIn in the last paragraph, we see that the (j, i)-
th entry (−1)i+j det(Bij) of adj(B) is a polynomial of degree at most n − 1 in x. Hence
adj(A− xIn) is itself a polynomial of degree at most n− 1 in x in which the coefficients are
n × n matrices over K. That is, adj(A − xIn) = B0x

0 + B1x + · · · + Bn−1x
n−1, where each

Bi is an n× n matrix over K. So we have

(A− xIn)(B0x
0 +B1x+ · · ·+Bn−1x

n−1) = (a0x
0 + a1x

1 + · · ·+ anx
n)In.

Since this is a polynomial identity, we can equate coefficients of the powers of x on the left
and right hand sides. In the list of equations below, the equations on the left are the result
of equating coefficients of xi for 0 ≤ i ≤ n, and those on right are obtained by multiplying
Ai by the corresponding left hand equation.
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AB0 = a0In, AB0 = a0In
AB1 − B0 = a1In, A2B1 − AB0 = a1A
AB2 − B1 = a2In, A3B2 − A2B1 = a2A

2

· · · · · ·
ABn−1 − Bn−2 = an−1In, AnBn−1 − An−1Bn−2 = an−1A

n−1

− Bn−1 = anIn, −AnBn−1 = anA
n

Now summing all of the equations in the right hand column gives

0 = a0A
0 + a1A+ . . .+ an−1A

n−1 + anA
n

(remember A0 = In), which says exactly that cA(A) = 0. 2

By the correspondence between linear maps and matrices, we also have cA(T ) = 0.

2.3 The minimal polynomial

We start this section with a brief general discussion of polynomials in a single variable x with
coefficients in a field K, such as p = p(x) = 2x2 − 3x + 11. The set of all such polynomials
is denoted by K[x]. There are two binary operations on this set: addition and multiplication
of polynomials. These operations turn K[x] into a ring, which will be studied in great detail
in Algebra-II.

As a ring K[x] has a number of properties in common3 with the integers Z. The notation a|b
mean a divides b. It can be applied to integers (for instance, 3|12), and also to polynomials
(for instance, (x− 3)|(x2 − 4x+ 3)).

We can divide one polynomial p (with p 6= 0) into another polynomial q and get a remainder
with degree less than p. For example, if q = x5 − 3, p = x2 + x+ 1, then we find q = sp+ r
with s = x3 − x2 + 1 and r = −x− 4. For both Z and K[x], this is known as the Euclidean
Algorithm.

A polynomial r is said to be a greatest common divisor of p, q ∈ K[x] if r|p, r|q, and, for any
polynomial r′ with r′|p, r′|q, we have r′|r. Any two polynomials p, q ∈ K[x] have a greatest
common divisor and a least common multiple (which is defined similarly), but these are only
determined up to multiplication by a constant. For example, x − 1 is a greatest common
divisor of x2 − 2x+ 1 and x2 − 3x+ 2, but so is 1− x and 2x− 2. To resolve this ambiguity,
we make the following definition.

Definition. A polynomial with coefficients in a field K is called monic if the coefficient of
the highest power of x is 1.

For example, x3 − 2x2 + x+ 11 is monic, but 2x2 − x− 1 is not.

Now we can define gcd(p, q) to be the unique monic greatest common divisor of p and q, and
similarly for lcm(p, q).

As with the integers, we can use the Euclidean Algorithm to compute gcd(p, q). For example,
if p = x4 − 3x3 + 2x2, q = x3 − 2x2 − x+ 2, then p = q(x− 1) + r with r = x2 − 3x+ 2, and
q = r(x+ 1), so gcd(p, q) = r.

Theorem 2.5 Let A be an n×n matrix over K representing the linear operator T : V → V .
The following statements hold:

(i) there is a unique monic non-zero polynomial p(x) with minimal degree and coefficients
in K such that p(A) = 0,

3Technically speaking, they are both Euclidean Domains that is an important topic in Algebra-II.
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(ii) if q(x) is any polynomial with q(A) = 0, then p|q.

Proof: (i) If we have any polynomial p(x) with p(A) = 0, then we can make p monic
by multiplying it by a constant. By Theorem 2.4, there exists such a p(x), namely cA(x).
If we had two distinct monic polynomials p1(x), p2(x) of the same minimal degree with
p1(A) = p2(A) = 0, then p = p1 − p2 would be a non-zero polynomial of smaller degree with
p(A) = 0, contradicting the minimality of the degree, so p is unique.

(ii) Let p(x) be the minimal monic polynomial in (i) and suppose that q(A) = 0. As we saw
above, we can write q = sp + r where r has smaller degree than p. If r is non-zero, then
r(A) = q(A)− s(A)p(A) = 0 contradicting the minimality of p, so r = 0 and p|q. 2

Definition. The unique monic polynomial µA(x) of minimal degree with µA(A) = 0 is
called the minimal polynomial of A or of the corresponding linear operator T . (Note that
p(A) = 0⇐⇒ p(T ) = 0 for p ∈ K[x].)

By Theorem 2.4 and Theorem 2.5 (ii), we have:

Corollary 2.6 The minimal polynomial of a square matrix A divides its characteristic poly-
nomial.

Similar matrices A and B represent the same linear operator T , and so their minimal poly-
nomial is the same as that of T . Hence we have

Proposition 2.7 Similar matrices have the same minimal polynomial.

For a vector v ∈ V , we can also define a relative minimal polynomial µA,v as the unique
monic polynomial p of minimal degree for which p(T )(v) = 0V . Since p(T ) = 0 if and only
if p(T )(v) = 0V for all v ∈ V , µA is the least common multiple of the polynomials µA,v for
all v ∈ V .

But p(T )(v) = 0V for all v ∈ V if and only if p(T )(bi) = 0V for all bi in a basis b1, . . . ,bn
of V (exercise), so µA is the least common multiple of the polynomials µA,bi

.

This gives a method of calculating µA. For any v ∈ V , we can compute µA,v by calculating the
sequence of vectors v, T (v), T 2(v), T 3(v) and stopping when it becomes linearly dependent.
In practice, we compute T (v) etc. as Av for the corresponding column vector v ∈ Kn,1.

For example, let K = R and

A =


3 −1 0 1
1 1 0 1
0 0 1 0
0 0 0 1

 .

Using the standard basis b1 = (1 0 0 0)T, b2 = (0 1 0 0)T, b1 = (0 0 1 0)T, b4 = (0 0 0 1)T

of R4,1, we have:

Ab1 = (3 1 0 0)T, A2b1 = A(Ab1) = (8 4 0 0)T = 4Ab1 − 4b1, so (A2 − 4A+ 4)b1 = 0, and
hence µA,b1 = x2 − 4x+ 4 = (x− 2)2.

Ab2 = (−1 1 0 0)T, A2b2 = (−4 0 0 0)T = 4Ab2 − 4b2, so µA,b2 = x2 − 4x+ 4.

Ab3 = b3, so µA,b3 = x− 1.

Ab4 = (1 1 0 1)T , A2b4 = (3 3 0 1)T = 3Ab4− 2b4, so µA,b4 = x2− 3x+ 2 = (x− 2)(x− 1).

So we have µA = lcm(µA,b1 , µA,b2 , µA,b3 , µA,b4) = (x− 2)2(x− 1).
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2.4 Jordan chains and Jordan blocks

The Cayley-Hamilton theorem and the theory of minimal polynomials are valid for any matrix
over an arbitrary field K, but the theory of Jordan forms will require an additional assumption
that the characteristic polynomial cA(x) is split in K[x], i.e. it factorises into linear factors. If
the field K = C then all polynomials in K[x] factorise into linear factors by the Fundamental
Theorem of Algebra and JCF works for any matrix.

Definition. A Jordan chain of length k is a sequence of non-zero vectors v1, . . . ,vk ∈ Kn,1

that satisfies
Av1 = λv1, Avi = λvi + vi−1, 2 ≤ i ≤ k,

for some eigenvalue λ of A.

Equivalently, (A− λIn)v1 = 0 and (A− λIn)vi = vi−1 for 2 ≤ i ≤ k, so (A− λIn)ivi = 0 for
1 ≤ i ≤ k.

It is instructive to keep in mind the following model of a Jordan chain that works over
complex or real field. Let V be the vector space of functions in the form f(z)eλz where f(z)
is the polynomial of degree less than k. Consider the derivative, that is, the linear operator
T : V → V given by T (φ(z)) = φ′(z). Vectors vi = zi−1eλz/(i−1)! form the Jordan chain for
T and the basis of V . In particular, the matrix of T in this basis is the Jordan block defined
below.

Definition. A non-zero vector v ∈ V such that (A − λIn)iv = 0 for some i > 0 is called a
generalised eigenvector of A with respect to the eigenvalue λ.

Note that, for fixed i > 0, {v ∈ V | (A− λIn)iv = 0 } is the nullspace of (A− λIn)i, and is
called the generalised eigenspace of index i of A with respect to λ. When i = 1, this is the
ordinary eigenspace of A with respect to λ.

Notice that v ∈ V is an eigenvector with eigenvalue λ if and only if µA,v = x− λ. Similarly,
generalised eigenvectors are characterised by the property µA,v = (x− λ)i.

For example, consider the matrix

A =

3 1 0
0 3 1
0 0 3

 .

We see that, for the standard basis of K3,1, we have Ab1 = 3b1, Ab2 = 3b2 + b1, Ab3 =
3b3 +b2, so b1,b2,b3 is a Jordan chain of length 3 for the eigenvalue 3 of A. The generalised
eigenspaces of index 1, 2, and 3 are respectively 〈b1〉, 〈b1,b2〉, and 〈b1,b2,b3〉.
Notice that the dimension of a generalised eigenspace of A is the nullity of (T −λIV )i, which
is a a function of the linear operator T associated with A. Since similar matrices represent
the same linear operator, we have

Proposition 2.8 The dimensions of corresponding generalised eigenspaces of similar matri-
ces are the same.

Definition. We define a Jordan block with eigenvalue λ of degree k to be a k × k matrix
Jλ,k = (γij), such that γii = λ for 1 ≤ i ≤ k, γi,i+1 = 1 for 1 ≤ i < k, and γij = 0 if j is not
equal to i or i+ 1. So, for example,

J1,2 =

(
1 1
0 1

)
, Jλ,3 =

 3−i
2 1 0
0 3−i

2 1
0 0 3−i

2

 , and J0,4 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


9



are Jordan blocks, where λ = 3−i
2 in the second example.

It should be clear that the matrix of T with respect to the basis v1, . . . ,vn of Kn,1 is a Jordan
block of degree n if and only if v1, . . . ,vn is a Jordan chain for A.

Note also that for A = Jλ,k, µA,vi = (x − λ)i, so µA = (x − λ)k. Since Jλ,k is an upper
triangular matrix with entries λ on the diagonal, we see that the characteristic polynomial
cA of A is also equal to (λ− x)k.

Warning: Some authors put the 1’s below rather than above the main diagonal in a Jordan
block. This corresponds to either writing the Jordan chain in the reversed order or using
rows instead of columns for the standard vector space. However, if an author does both (uses
rows and reverses the order) then 1’s will go back above the diagonal.

2.5 Jordan bases and the Jordan canonical form

Definition. A Jordan basis for A is a basis of Kn,1 which is a disjoint union of Jordan chains.

We denote the m×n matrix in which all entries are 0 by 0m,n. If A is an m×m matrix and
B an n× n matrix, then we denote the (m+ n)× (m+ n) matrix with block form(

A 0m,n
0n,m B

)
,

by A⊕B. For example

(
−1 2

0 1

)
⊕

1 1 −1
1 0 1
2 0 −2

 =


−1 2 0 0 0

0 1 0 0 0
0 0 1 1 −1
0 0 1 0 1
0 0 2 0 −2

 .

So, if
w1,1, . . . , w1,k1 , w2,1, . . . , w2,k2 , . . . , ws,1, . . . , ws,ks

is a Jordan basis forA in which wi,1, . . . , wi,ki is a Jordan chain for the eigenvalue λi for 1 ≤ i ≤
s, then the matrix of T with respect to this basis is the direct sum Jλ1,k1⊕Jλ2,k2⊕· · ·⊕Jλs,ks
of the corresponding Jordan blocks.

We can now state the main theorem of this section, which says that Jordan bases exist.

Theorem 2.9 Let A be an n× n matrix over K such that cA(x) splits into linear factors in
K[x]. Then there exists a Jordan basis for A, and hence A is similar to a matrix J which is
a direct sum of Jordan blocks. The Jordan blocks occurring in J are uniquely determined by
A.

The matrix J in the theorem is said to be the Jordan canonical form (JCF) or sometimes
Jordan normal form of A. It is uniquely determined by A up to the order of the blocks.

We will prove the theorem later. First we derive some consequences and study methods for
calculating the JCF of a matrix. As we have discussed before, polynomials over C always
split. The gives the following corollary.

Corollary 2.10 Let A be an n× n matrix over C. Then there exists a Jordan basis for A.

The proof of the following corollary requires algebraic techniques beyond the scope of this
course. You can try to prove yourself after you have done Algebra-II4. The trick is to find

4Or you can take Galois Theory next year and this should become obvious.
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a field extension F ≥ K such that cA(x) splits in F [x]. For example, consider the rotation

by 90 degrees matrix A =

(
0 1
−1 0

)
. Since cA(x) = x2 + 1, its eigenvalues are imaginary

numbers i and −i. Hence, it admits no JCF over R but over complex numbers it has JCF(
i 0
0 −i

)
.

Corollary 2.11 Let A be an n×n matrix over K. Then there exists a field extension F ≥ K
and a Jordan basis for A in Fn,1.

The next two corollaries are immediate5 consequences of Theorem 2.9 but they are worth
stating because of their computational significance. The first one needs Theorem 1.2 as well.

Corollary 2.12 Let A be an n × n matrix over K that admits a Jordan basis. If P is the
matrix having a Jordan basis as columns, then P−1AP is the JCF of A.

Notice that a Jordan basis is not, in general, unique. Thus, there exists multiple matrices
P such that J = P−1AP is the JCF of A. Suppose now that the eigenvalues of A are
λ1, . . . , λt, and that the Jordan blocks in J for the eigenvalue λi are Jλi,ki,1 , . . . , Jλi,ki,ji ,

where ki,1 ≥ ki,2 ≥ · · · ≥ ki,ji . The final corollary follows from an explicit calculation6 for J
because both minimal and characteristic polynomials of J and A are the same.

Corollary 2.13 The characteristic polynomial cA(x) =
∏t
i=1(λi − x)ki, where ki = ki,1 +

· · ·+ ki,ji for 1 ≤ i ≤ t. The minimal polynomial µA(x) =
∏t
i=1(x− λi)ki,1.

2.6 The JCF when n = 2 and 3

When n = 2 and n = 3, the JCF can be deduced just from the minimal and characteristic
polynomials. Let us consider these cases.

When n = 2, we have either two distinct eigenvalues λ1, λ2, or a single repeated eigenvalue
λ1. If the eigenvalues are distinct, then by Corollary 2.3 A is diagonalisable and the JCF is
the diagonal matrix Jλ1,1 ⊕ Jλ2,1.

Example 1. A =

(
1 4
1 1

)
. We calculate cA(x) = x2 − 2x− 3 = (x− 3)(x+ 1), so there are

two distinct eigenvalues, 3 and −1. Associated eigenvectors are (2 1)T and (−2 1)T, so we

put P =

(
2 −2
1 1

)
and then P−1AP =

(
3 0
0 −1

)
.

If the eigenvalues are equal, then there are two possible JCF’s, Jλ1,1⊕Jλ1,1, which is a scalar
matrix, and Jλ1,2. The minimal polynomial is respectively (x−λ1) and (x−λ1)2 in these two
cases. In fact, these cases can be distinguished without any calculation whatsoever, because
in the first case A = PJP−1 = J so A is its own JCF.

In the second case, a Jordan basis consists of a single Jordan chain of length 2. To find such
a chain, let v2 be any vector for which (A − λ1I2)v2 6= 0 and let v1 = (A − λ1I2)v2. (In
practice, it is often easier to find the vectors in a Jordan chain in reverse order.)

Example 2. A =

(
1 4
−1 −3

)
. We have cA(x) = x2 + 2x+ 1 = (x+ 1)2, so there is a single

5This means I am not proving them here but I expect you to be able to prove them
6The characteristic polynomial of J is the product of the characteristic polynomials of the Jordan blocks

and the minimal polynomial of J is the least common multiple of characteristic polynomials of the Jordan
blocks
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eigenvalue −1 with multiplicity 2. Since the first column of A+ I2 is non-zero, we can choose

v2 = (1 0)T and v1 = (A+ I2)v2 = (2 −1)T, so P =

(
2 1
−1 0

)
and P−1AP =

(
−1 1

0 −1

)
.

Now let n = 3. If there are three distinct eigenvalues, then A is diagonalisable.

Suppose that there are two distinct eigenvalues, so one has multiplicity 2, and the other
has multiplicity 1. Let the eigenvalues be λ1, λ1, λ2, with λ1 6= λ2. Then there are two
possible JCF’s for A, Jλ1,1 ⊕ Jλ1,1 ⊕ Jλ2,1 and Jλ1,2 ⊕ Jλ2,1, and the minimal polynomial is
(x− λ1)(x− λ2) in the first case and (x− λ1)2(x− λ2) in the second.

In the first case, a Jordan basis is a union of three Jordan chains of length 1, each of which
consists of an eigenvector of A.

Example 3. A =

 2 0 0
1 5 2
−2 −6 −2

. Then

cA(x) = (2− x)[(5− x)(−2− x) + 12] = (2− x)(x2 − 3x+ 2) = (2− x)2(1− x).

We know from the theory above that the minimal polynomial must be (x − 2)(x − 1) or
(x− 2)2(x− 1). We can decide which simply by calculating (A− 2I3)(A− I3) to test whether
or not it is 0. We have

A− 2I3 =

 0 0 0
1 3 2
−2 −6 −4

 , A− I3 =

 1 0 0
1 4 2
−2 −6 −3

 ,

and the product of these two matrices is 0, so µA = (x− 2)(x− 1).

The eigenvectors v for λ1 = 2 satisfy (A − 2I3)v = 0, and we must find two linearly inde-
pendent solutions; for example we can take v1 = (0 2 −3)T, v2 = (1 −1 1)T. An eigenvector
for the eigenvalue 1 is v3 = (0 1 −2)T, so we can choose

P =

 0 1 0
2 −1 1
−3 1 −2


and then P−1AP is diagonal with entries 2, 2, 1.

In the second case, there are two Jordan chains, one for λ1 of length 2, and one for λ2
of length 1. For the first chain, we need to find a vector v2 with (A − λ1I3)2v2 = 0 but
(A − λ1I3)v2 6= 0, and then the chain is v1 = (A − λ1I3)v2,v2. For the second chain, we
simply need an eigenvector for λ2.

Example 4. A =

 3 2 1
0 3 1
−1 −4 −1

. Then

cA(x) = (3− x)[(3− x)(−1− x) + 4]− 2 + (3− x) = −x3 + 5x2 − 8x+ 4 = (2− x)2(1− x),

as in Example 3. We have

A−2I3 =

 1 2 1
0 1 1
−1 −4 −3

 , (A−2I3)
2 =

 0 0 0
−1 −3 −2

2 6 4

 , (A−I3) =

 2 2 1
0 2 1
−1 −4 −2

 .

and we can check that (A− 2I3)(A− I3) is non-zero, so we must have µA = (x− 2)2(x− 1).
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For the Jordan chain of length 2, we need a vector with (A−2I3)
2v2 = 0 but (A−2I3)v2 6= 0,

and we can choose v2 = (2 0 −1)T. Then v1 = (A− 2I3)v2 = (1 −1 1)T. An eigenvector for
the eigenvalue 1 is v3 = (0 1 −2)T, so we can choose

P =

 1 2 0
−1 0 1

1 −1 −2


and then

P−1AP =

2 1 0
0 2 0
0 0 1

 .

Finally, suppose that there is a single eigenvalue, λ1, so cA = (λ1 − x)3. There are three
possible JCF’s for A, Jλ1,1⊕Jλ1,1⊕Jλ1,1, Jλ1,2⊕Jλ1,1, and Jλ1,3, and the minimal polynomials
in the three cases are (x− λ1), (x− λ1)2, and (x− λ1)3, respectively.

In the first case, J is a scalar matrix, andA = PJP−1 = J , so this is recognisable immediately.

In the second case, there are two Jordan chains, one of length 2 and one of length 1. For the
first, we choose v2 with (A − λ1I3)v2 6= 0, and let v1 = (A − λ1I3)v2. (This case is easier
than the case illustrated in Example 4, because we have (A− λ1I3)2v = 0 for all v ∈ C3,1.)
For the second Jordan chain, we choose v3 to be an eigenvector for λ1 such that v2 and v3

are linearly independent.

Example 5. A =

 0 2 1
−1 −3 −1

1 2 0

. Then

cA(x) = −x[(3 + x)x+ 2]− 2(x+ 1)− 2 + (3 + x) = −x3 − 3x2 − 3x− 1 = −(1 + x)3.

We have

A+ I3 =

 1 2 1
−1 −2 −1

1 2 1

 ,

and we can check that (A + I3)
2 = 0. The first column of A + I3 is non-zero, so (A +

I3)(1 0 0)T 6= 0, and we can choose v2 = (1 0 0)T and v1 = (A+ I3)v2 = (1 −1 1)T. For v3

we need to choose a vector which is not a multiple of v1 such that (A + I3)v3 = 0, and we
can choose v3 = (0 1 −2)T. So we have

P =

 1 1 0
−1 0 1

1 0 −2


and then

P−1AP =

−1 1 0
0 −1 0
0 0 −1

 .

In the third case, there is a single Jordan chain, and we choose v3 such that (A−λ1I3)2v3 6= 0,
v2 = (A− λ1I3)v3, v1 = (A− λ1I3)2v3.

Example 6. A =

 0 1 0
−1 −1 1

1 0 −2

. Then

cA(x) = −x[(2 + x)(1 + x)]− (2 + x) + 1 = −(1 + x)3.
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We have

A+ I3 =

 1 1 0
−1 0 1

1 0 −1

 , (A+ I3)
2 =

0 1 1
0 −1 −1
0 1 1

 ,

so (A+ I3)
2 6= 0 and µA = (x+ 1)3. For v3, we need a vector that is not in the nullspace of

(A+ I3)
2. Since the second column, which is the image of (0 1 0)T is non-zero, we can choose

v3 = (0 1 0)T, and then v2 = (A + I3)v3 = (1 0 0)T and v1 = (A + I3)v2 = (1 −1 1)T. So
we have

P =

 1 1 0
−1 0 1

1 0 0


and then

P−1AP =

−1 1 0
0 −1 1
0 0 −1

 .

2.7 The general case

For dimensions higher than 3, we cannot always determine the JCF just from the charac-
teristic and minimal polynomials. For example, when n = 4, the JCF’s Jλ,2 ⊕ Jλ,2 and
Jλ,2 ⊕ Jλ,1 ⊕ Jλ,1 both have cA = (λ− x)4 and µA = (x− λ)2.

In general, we can compute the JCF from the dimensions of the generalised eigenspaces.

Let Jλ,k be a Jordan block and let A = Jλ,k − λIk. Then we calculate that, for 1 ≤ i < k,
Ai has (k − i) 1’s on the i-th diagonal upwards from the main diagonal, and Ak = 0. For
example, when k = 4,

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , A2 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , A3 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , A4 = 0.

(A matrix A for which Ak = 0 for some k > 0 is called nilpotent.)

It should be clear from this that, for 1 ≤ i ≤ k, rank(Ai) = k − i, so nullity(Ai) = i, and for
i ≥ k, rank(Ai) = 0, nullity(Ai) = k.

On the other hand, if µ 6= λ and A = Jλ,k − µIk, then, for any integer i, Ai is an upper
triangular matrix with non-zero entries (λ − µ)i on the diagonal, and so rank(Ai) = k,
nullity(Ai) = 0.

It is easy to see that, for square matrices A and B, rank(A ⊕ B) = rank(A) + rank(B) and
nullity(A ⊕ B) = nullity(A) + nullity(B). So, for a matrix J in JCF, we can determine the
sizes of the Jordan blocks for an eigenvalue λ of J from a knowledge of the nullities of the
matrices (J − λ)i for i > 0.

For example, suppose that J = J−2,3 ⊕ J−2,3 ⊕ J−2,1 ⊕ J1,2. Then nullity(J + 2I9) = 3,
nullity(J + 2I9)

2 = 5, nullity(J + 2I9)
i = 7 for i ≥ 3, nullity(J − I9) = 1, nullity(J − I9)i = 2

for i ≥ 2.

First observe that the total number of Jordan blocks with eigenvalue λ is equal to
nullity(J − λIn).

More generally, the number of Jordan blocks Jλ,j for λ with j ≥ i is equal to
nullity((J − λIn)i)− nullity((J − λIn)i−1).
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The nullspace of (J − λIn)i was defined earlier to be the generalised eigenspace of index i of
J with respect to the eigenvalue λ. If J is the JCF of a matrix A, then A and J are similar
matrices, so it follows from Proposition 2.8 that nullity((J − λIn)i) = nullity((A− λIn)i).

So, summing up, we have:

Theorem 2.14 Let λ be an eigenvalue of a matrix A and let J be the JCF of A. The
following hold.

(i) The number of Jordan blocks of J with eigenvalue λ is equal to nullity(A− λIn).
(ii) More generally, for i > 0, the number of Jordan blocks of J with eigenvalue λ and degree

at least i is equal to nullity((A− λIn)i)− nullity((A− λIn)i−1).

Note that this proves the uniqueness part of Theorem 2.9.

2.8 Examples

Example 7. A =


−2 0 0 0

0 −2 1 0
0 0 −2 0
1 0 −2 −2

. Then cA(x) = (−2 − x)4, so there is a single

eigenvalue −2 with multiplicity 4. We find (A+2I4) =


0 0 0 0
0 0 1 0
0 0 0 0
1 0 −2 0

, and (A+2I4)
2 = 0,

so µA = (x+ 2)2, and the JCF of A could be J−2,2 ⊕ J−2,2 or J−2,2 ⊕ J−2,1 ⊕ J−2,1.
To decide which case holds, we calculate the nullity of A + 2I4 which, by Theorem 2.14, is
equal to the number of Jordan blocks with eigenvalue −2. Since A+2I4 has just two non-zero
rows, which are distinct, its rank is clearly 2, so its nullity is 4 − 2 = 2, and hence the JCF
of A is J−2,2 ⊕ J−2,2.
A Jordan basis consists of a union of two Jordan chains, which we will call v1,v2, and
v3,v4, where v1 and v3 are eigenvectors and v2 and v4 are generalised eigenvectors of index
2. To find such chains, it is probably easiest to find v2 and v4 first and then to calculate
v1 = (A+ 2I4)v2 and v3 = (A+ 2I4)v4.

Although it is not hard to find v2 and v4 in practice, we have to be careful, because they
need to be chosen so that no linear combination of them lies in the nullspace of (A + 2I4).
In fact, since this nullspace is spanned by the second and fourth standard basis vectors, the
obvious choice is v2 = (1 0 0 0)T, v4 = (0 0 1 0)T, and then v1 = (A+ 2I4)v2 = (0 0 0 1)T,
v3 = (A+ 2I4)v4 = (0 1 0 −2)T, so to transform A to JCF, we put

P =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 −2 0

 , P−1 =


0 2 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 , P−1AP =


−2 1 0 0

0 −2 0 0
0 0 −2 1
0 0 0 −2

 .

Example 8. A =


−1 −3 −1 0

0 2 1 0
0 0 2 0
0 3 1 −1

. Then cA(x) = (−1− x)2(2− x)2, so there are two

eigenvalue −1, 2, both with multiplicity 2. There are four possibilities for the JCF (one or
two blocks for each of the two eigenvalues). We could determine the JCF by computing the
minimal polynomial µA but it is probably easier to compute the nullities of the eigenspaces
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and use Theorem 2.14. We have

A+I4 =


0 −3 −1 0
0 3 1 0
0 0 3 0
0 3 1 0

 , (A−2I4) =


−3 −3 −1 0

0 0 1 0
0 0 0 0
0 3 1 −3

 , (A−2I4)
2 =


9 9 0 0
0 0 0 0
0 0 0 0
0 −9 0 9

 .

The rank of A+ I4 is clearly 2, so its nullity is also 2, and hence there are two Jordan blocks
with eigenvalue −1. The three non-zero rows of (A − 2I4) are linearly independent, so its
rank is 3, hence its nullity 1, so there is just one Jordan block with eigenvalue 2, and the JCF
of A is J−1,1 ⊕ J−1,1 ⊕ J2,2.
For the two Jordan chains of length 1 for eigenvalue −1, we just need two linearly independent
eigenvectors, and the obvious choice is v1 = (1 0 0 0)T, v2 = (0 0 0 1)T. For the Jordan
chain v3,v4 for eigenvalue 2, we need to choose v4 in the nullspace of (A− 2I4)

2 but not in
the nullspace of A− 2I4. (This is why we calculated (A− 2I4)

2.) An obvious choice here is
v4 = (0 0 1 0)T, and then v3 = (−1 1 0 1)T, and to transform A to JCF, we put

P =


1 0 −1 0
0 0 1 0
0 0 0 1
0 1 1 0

 , P−1 =


1 1 0 0
0 −1 0 1
0 1 0 0
0 0 1 0

 , P−1AP =


−1 0 0 0

0 −1 0 0
0 0 2 1
0 0 0 2

 .

2.9 Proof of Theorem 2.9 (non-examinable)

We proceed by induction on n = dim(V ). The case n = 1 is clear.

Let λ be an eigenvalue of T and let U = im(T − λIV ) and m = dim(U). Then m =
rank(T −λIV ) = n−nullity(T −λIV ) < n, because the eigenvectors for λ lie in the nullspace
of T − λIV . For u ∈ U , we have u = (T − λIV )(v) for some v ∈ V , and hence T (u) =
T (T − λIV )(v) = (T − λIV )T (v) ∈ U . So T restricts to TU : U → U , and we can apply our
inductive hypothesis to TU to deduce that U has a basis e1, . . . , em, which is a disjoint union
of Jordan chains for TU .

We now show how to extend the Jordan basis of U to one of V . We do this in two stages. For
the first stage, suppose that l of the Jordan chains of TU are for the eigenvalue λ (possibly
l = 0). For each such chain v1, . . . ,vk with T (v1) = λv1, T (vi) = λvi + vi−1, 2 ≤ i ≤ k,
since vk ∈ U = im(T − λIV ), we can find vk+1 ∈ V with T (vk+1) = λvk+1 + vk, thereby
extending the chain by an extra vector. So far we have adjoined l new vectors to the basis,
by extending the length l Jordan chains by 1. Let us call these new vectors w1, . . . ,wl.

For the second stage, observe that the first vector in each of the l chains lies in the eigenspace
of TU for λ. We know that the dimension of the eigenspace of T for λ is the nullspace of
(T − λIV ), which has dimension n −m. So we can adjoin (n −m) − l further eigenvectors
of T to the l that we have already to complete a basis of the nullspace of (T − λIV ). Let us
call these (n −m) − l new vectors wl+1, . . . ,wn−m. They are adjoined to our basis of V in
the second stage. They each form a Jordan chain of length 1, so we now have a collection of
n vectors which form a disjoint union of Jordan chains.

To complete the proof, we need to show that these n vectors form a basis of V , for which is
it is enough to show that they are linearly independent.

Partly because of notational difficulties, we provide only a sketch proof of this, and leave the
details to the student. Suppose that α1w1 + · · · + αn−mwn−m + x = 0, where x is a linear
combination of the basis vectors of U . Applying T − λIn gives

α1(T − λIn)(w1) + · · ·+ αl(T − λIn)(wl) + (T − λIn)(x).
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Each of αi(T − λIn)(wi) for 1 ≤ i ≤ l is the last member of one of the l Jordan chains for
TU . When we apply (T − λIn) to one of the basis vectors of U , we get a linear combination
of the basis vectors of U other than αi(T − λIn)(wi) for 1 ≤ i ≤ l. Hence, by the linear
independence of the basis of U , we deduce that αi = 0 for 1 ≤ i ≤ l This implies that
(T − λIn)(x) = 0, so x is in the eigenspace of TU for the eigenvalue λ. But, by construction,
wl+1, . . . ,wn−m extend a basis of this eigenspace of TU to that the eigenspace of V , so we
also get αi = 0 for l + 1 ≤ i ≤ n−m, which completes the proof.

2.10 Powers of matrices

The theory we developed can be used to compute powers of matrices efficiently. Suppose we

need to compute A2012 where A =


−2 0 0 0

0 −2 1 0
0 0 −2 0
1 0 −2 −2

 from section 2.8.

There are two practical ways of computing An for a general matrix. The first one involves
Jordan forms. If J = P−1AP is the JCF of A then it is sufficient to compute Jn because of
the telescoping product:

An = (PJP−1)n = PJP−1PJP−1P . . . JP−1 = PJnP−1.

If J =


Jk1,λ1 0 · · · 0

0 Jk2,λ2 · · · 0
. . .

0 0 · · · Jkt,λt

 then Jn =


Jnk1,λ1 0 · · · 0

0 Jnk2,λ2 · · · 0
. . .

0 0 · · · Jnkt,λt

 .

Finally, the power of an individual Jordan block can be computed as

Jnk,λ =


λn nλn−1 · · · Cnk−2λ

n−k+2 Cnk−1λ
n−k+1

0 λn · · · Cnk−3λ
n−k+3 Cnk−2λ

n−k+2

. . .
. . .

. . .
. . .

0 0 · · · λn nλn−1

0 0 · · · 0 λn


where Cnt = n!/(n− t)!t! is the Choose-function, interpreted as Cnt = 0 whenever t > n.

Let us apply it to the matrix from example 7 in 2.8:

An = PJnP−1 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 −2 0



−2 1 0 0

0 −2 0 0
0 0 −2 1
0 0 0 −2


n

0 2 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 −2 0




(−2)n n(−2)n−1 0 0
0 (−2)n 0 0
0 0 (−2)n n(−2)n−1

0 0 0 (−2)n




0 2 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 =


(−2)n 0 0 0

0 (−2)n n(−2)n−1 0
0 0 (−2)n 0

n(−2)n−1 0 n(−2)n (−2)n

 .

The second method of computing An uses Lagrange’s interpolation polynomial. It is less
labour intensive and more suitable for pen-and-paper calculations. Suppose ψ(A) = 0 for a

17



polynomial ψ(z), in practice, ψ(z) is either minimal or characteristic polynomial. Dividing
with a remainder zn = q(z)ψ(z) + h(z), we conclude that

An = q(A)ψ(A) + h(A) = h(A).

Division with a remainder may appear problematic7 for large n but there is a shortcut. If we
know the roots of ψ(z), say α1, . . . , αk with their multiplicities m1, . . . ,mk, then h(z) can be
found by solving the system of simultaneous equations in coefficients of h(z):

f (t)(αj) = h(t)(αj), 1 ≤ j ≤ k, 0 ≤ t < mj

where f(z) = zn and f (t) = f (t−1)′ is the t-th derivative. In other words, h(z) is Lagrange’s
interpolation polynomial for the function zn at the roots of ψ(z).

We know that µA(z) = (z+ 2)2 for the matrix A above. Suppose the Lagrange interpolation
of zn at the roots of (z + 2)2 is h(z) = αz + β. The condition on the coefficients is given by{

(−2)n = h(−2) = −2α+ β
n(−2)n−1 = h′(−2) = α

Solving them gives α = n(−2)n−1 and β = (1− n)(−2)n. It follows that

An = n(−2)n−1A+ (1− n)(−2)nI =


(−2)n 0 0 0

0 (−2)n n(−2)n−1 0
0 0 (−2)n 0

n(−2)n−1 0 n(−2)n (−2)n

 .

2.11 Applications to difference equations

Let us consider an initial value problem for an autonomous system with discrete time:

x(n+ 1) = Ax(n), n ∈ N, x(0) = w.

Here x(n) ∈ Km is a sequence of vectors in a vector space over a field K. One thinks of x(n)
as a state of the system at time n. The initial state is x(0) = w. The n × n-matrix A with
coefficients in K describes the evolution of the system. The adjective autonomous means
that the evolution equation does not change with the time8.

It takes longer to formulate this problem then to solve it. The solution is a no-brainer:

x(n) = Ax(n− 1) = A2x(n− 2) = · · · = Anx(0) = Anw.

As a working example, let us consider a 2-step linearly recursive sequence. It is determined
by a quadruple (a, b, c, d) ∈ K4 and the rules

s0 = a, s1 = b, sn = csn−1 + dsn−2 for n ≥ 2.

Such sequences are ubiquitous. Arithmetic sequences form a subclass with c = 2, d = −1.
In general, (a, b, 2,−1) determines the arithmetic sequence starting at a with the difference
b− a. For instance, (0, 1, 2,−1) determines the sequence of natural numbers sn = n.

A geometric sequence starting at a with ratio q admits a non-unique description. One obvi-
ous quadruples giving it is (a, aq, q, 0). However, it is conceptually better to use quadruple
(a, aq, 2q,−q2) because the sequences coming from (a, b, 2q,−q2) include both arithmetic and
geometric sequences and can be called arithmo-geometric sequences.

If c = d = 1 then this is a Fibonacci type sequence. For instance, (0, 1, 1, 1) determines
Fibonacci numbers Fn while (2, 1, 1, 1) determines Lucas numbers Ln.

7Try to divide z2012 by z2 + z + 1 without reading any further.
8A nonautonomous system would be described by x(n+ 1) = A(n)x(n) here.
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All of these examples admit closed9 formulae for a generic term sn. Can we find a closed
formula for sn, in general? Yes, we can because this problem is reduced to an initial value
problem with discrete time if we set

x(n) =

(
sn
sn+1

)
, w =

(
a
b

)
, A =

(
0 1
d c

)
.

Computing the characteristic polynomial, cA(z) = z2 − cz − d. If c2 + 4d = 0, the JCF of

A is J =

(
c/2 1
0 c/2

)
. Let q = c/2. Then d = −q2 and we are dealing with the arithmo-

geometric sequence (a, b, 2q,−q2). Let us find the closed formula for sn in this case using

Jordan forms. As A =

(
0 1
−q2 2q

)
one can choose the Jordan basis e2 =

(
0
1

)
, e1 =

(
1
q

)
.

If P =

(
1 0
q 1

)
then P−1 =

(
1 0
−q 1

)
and

An = (PJP−1)n = PJnP−1 = P

(
qn nqn−1

0 qn

)
P−1 =

(
(1− n)qn nqn−1

−nqn+1 (1 + n)qn

)
.

This gives the closed formula for arithmo-geometric sequence we were seeking:

sn = (1− n)qna+ nqn−1b.

If c2+4d 6= 0, the JCF of A is

(
(c+

√
c2 + 4d)/2 0

0 (c−
√
c2 + 4d)/2

)
and the closed formula

for sn will involve the sum of two geometric sequences. Let us see it through for Fibonacci
and Lucas numbers using Lagrange’s polynomial. Since c = d = 1, c2 + 4d = 5 and the roots
of cA(z) are the golden ratio λ = (1 +

√
5)/2 and 1− λ = (1−

√
5)/2. It is useful to observe

that 2λ − 1 =
√

5 and λ(1 − λ) = −1. Let us introduce the number µn = λn − (1 − λ)n.
Suppose the Lagrange interpolation of zn at the roots of z2 − z − 1 is h(z) = αz + β. The
condition on the coefficients is given by{

λn = h(λ) = αλ+ β
(1− λ)n = h(1− λ) = α(1− λ) + β

Solving them gives α = µn/
√

5 and β = µn−1/
√

5. It follows that

An = αA+ β = µn/
√

5A+ µn−1/
√

5I2 =

(
µn−1/

√
5 µn/

√
5

µn/
√

5 (µn + µn−1)/
√

5

)
.

Since

(
Fn
Fn+1

)
= An

(
0
1

)
, it immediately implies that

An =

(
Fn−1 Fn
Fn Fn+1

)
and Fn = µn/

√
5 .

Similarly for the Lucas numbers, we get

(
Ln
Ln+1

)
= An

(
2
1

)
and

Ln = 2Fn−1 + Fn = Fn−1 + Fn+1 = (µn−1 + µn+1)/
√

5.

9Closed means non-recursive, for instance, sn = a+ n(b− a) for the arithmetic sequence
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2.12 Functions of matrices

We restrict to K = R in this section. Let us consider a power series
∑

n anz
n, an ∈ R with a

positive radius of convergence ε. It defines a function f : (−ε, ε)→ R by

f(x) =

∞∑
n=0

anx
n

and the power series is Taylor’s series of f(x) at zero. In particular,

an = f [n](0) = f (n)(0)/n!,

where f [n](z) = f (n)(z)/n! is a divided derivative. We extend the function f(z) to matrices
by the formula

f(A) =
∞∑
n=0

f [n](0)An .

The right hand side of this formula is a matrix whose entries are series. All these series need
to converge for f(A) to be well defined. If the norm10 of A is less than ε then f(A) is well
defined. Alternatively, if all eigenvalues of A belong to (−ε, ε) then f(A) is well defined as
can be seen from the JCF method of computing f(A). If

J =


Jk1,λ1 0 · · · 0

0 Jk2,λ2 · · · 0
. . .

0 0 · · · Jkt,λt

 = P−1AP

is the JCF of A then

f(A) = Pf(J)P−1 = P


f(Jk1,λ1) 0 · · · 0

0 f(Jk2,λ2) · · · 0
. . .

0 0 · · · f(Jkt,λt)


while

f(Jk,λ) =


f(λ) f [1](λ) · · · f [k−1](λ)

0 f(λ) · · · f [k−2](λ)
. . .

0 0 · · · f(λ)

 .

Lagrange’s method of computing f(A) works as well despite the fact that there is no sensible
way to divide with a remainder in analytic functions. For instance,

ez =
ez

z2 + 1
ψ(z) + 0 =

ez − 1

z2 + 1
ψ(z) + 1 =

ez − z
z2 + 1

ψ(z) + z

for ψ(z) = z2 + 1. Thus, there are infinitely many ways to divide with a remainder as
f(z) = q(z)ψ(z) + h(z). The point is that f(A) = h(A) only if q(A) is well defined. Notice
that the naive expression q(A) = (f(A) − h(A))ψ(A)−1 involves division by zero. However,
if h(z) is the interpolation polynomial then q(A) is well defined and the calculation f(A) =
q(A)ψ(A) + h(A) = h(A) carries through.

Let us compute eA for the matrix A from example 7, section 2.8. Recall that Taylor’s series
for exponent ex =

∑∞
n=0 x

n/n! converges for all x. Consequently the matrix exponent
eA =

∑∞
n=0A

n/n! is defined for all real m-by-m matrices.

10this notion is beyond the scope of this module and will be discussed in Differentiation
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Suppose the Lagrange interpolation of ez at the roots of µA(z) = (z + 2)2 is h(z) = αz + β.
The condition on the coefficients is given by{

e−2 = h(−2) = −2α+ β
e−2 = h′(−2) = α

Solving them gives α = e−2 and β = 3e−2. It follows that

eA = e−2A+ 3e−2I =


e−2 0 0 0

0 e−2 e−2 0
0 0 e−2 0

e−2 0 −2e−2 e−2

 .

2.13 Applications to differential equations

Let us now consider an initial value problem for an autonomous system with continuous time:

dx(t)

dt
= Ax(t), t ∈ [0,∞), x(0) = w.

Here A ∈ Rn×n, w ∈ Rn are given, x : R≥0 → Rn is a smooth function to be found. One
thinks of x(t) as a state of the system at time t. The solution to this problem is

x(t) = etAw

because, as one can easily check,

d

dt
(x(t)) =

∑
n

d

dt

(
tn

n!
Anw

)
=
∑
n

tn−1

(n− 1)!
Anw = A

∑
k

tk

k!
Akw = Ax(t).

Let us consider a harmonic oscillator described by equation y
′′
(t) + y(t) = 0. The general

solution y(t) = α sin(t) + β cos(t) is well known. Let us obtain it using matrix exponents.
Setting

x(t) =

(
y(t)

y
′
(t)

)
, A =

(
0 1
−1 0

)
the harmonic oscillator becomes the initial value problem with a solution x(t) = etAx(0).
The eigenvalues of A are i and −i. Interpolating ezt at these values of z gives the following
condition on h(z) = αz + β {

eit = h(i) = αi+ β
e−it = h(−i) = −αi+ β

Solving them gives α = (eit−e−it)/2i = sin(t) and β = (eit+e−it)/2 = cos(t). It follows that

etA = sin(t)A+ cos(t)I2 =

(
cos(t) sin(t)
− sin(t) cos(t)

)
and y(t) = cos(t)y(0) + sin(t)y

′
(0).

As another example, let us consider a system of differential equations
y′1 = y1 − 3y3
y′2 = y1 − y2 − 6y3
y′3 = −y1 + 2y2 + 5y3

with initial condition


y1(0) = 1
y2(0) = 1
y3(0) = 0

Using matrices

x(t) =

y1(t)y2(t)
y3(t)

 , w =

1
1
0

 , A =

 1 0 −3
1 −1 −6
−1 2 5

 ,
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it becomes an initial value problem. The characteristic polynomial is cA(z) = −z3 + 5z2 −
8z + 4 = (1− z)(2− z)2. We need to interpolate etz at 1 and 2 by h(z) = αz2 + βz + γ. At
the multiple root 2 we need to interpolate up to order 2 that involves tracking the derivative
(etz)′ = tetz: 

et = h(1) = α+ β + γ
e2t = h(2) = 4α+ 2β + γ
te2t = h′(2) = 4α+ β

Solving, α = (t− 1)e2t + et, β = (4− 3t)e2t − 4et, γ = (2t− 3)e2t + 4et. It follows that

etA = e2t

3t− 3 −6t+ 6 −9t+ 6
3t− 2 −6t+ 4 −9t+ 3
−t 2t 3t+ 1

+ et

4 −6 −6
2 −3 −3
0 0 0


and

x(t) =

y1(t)y2(t)
y3(t)

 = etA

1
1
0

 =

 (3− 3t)e2t − 2et

(2− 3t)e2t − et
te2t

 .

3 Bilinear Maps and Quadratic Forms

3.1 Bilinear maps: definitions

Let V and W be vector spaces over a field K.

Definition. A bilinear map on W and V is a map τ : W × V → K such that

(i) τ(α1w1 + α2w2,v) = α1τ(w1,v) + α2τ(w2,v) and
(ii) τ(w, α1v1 + α2v2) = α1τ(w,v1) + α2τ(w,v2)

for all w,w1,w2 ∈ W , v,v1,v2 ∈ V , and α1, α2 ∈ K. Notice the difference between linear
and bilinear maps. For instance, let V = W = K. Addition is a linear map but not bilinear.
On the other hand, multiplication is bilinear but not linear.

Let us choose a basis e1, . . . , en of V and a basis f1, . . . , fm of W .

Let τ : W × V → K be a bilinear map, and let αij = τ(fi, ej), for 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Then the m× n matrix A = (αij) is defined to be the matrix of τ with respect to the bases
e1, . . . , en and f1, . . . , fm of V and W .

For v ∈ V , w ∈W , let v = x1e1 + · · ·+ xnen and w = y1f1 + · · ·+ ymfm, and hence

v =


x1
x2
.
.
xn

 ∈ Kn,1, and w =


y1
y2
.
.
ym

 ∈ Km,1.

Then, by using the equations (i) and (ii) above, we get

τ(w,v) =
m∑
i=1

n∑
j=1

yi τ(fi, ej)xj =
m∑
i=1

n∑
j=1

yi αij xj = wTAv (2.1)

For example, let V = W = R2 and use the natural basis of V . Suppose that A =

(
1 −1
2 0

)
.

Then

τ((y1, y2), (x1, x2)) = (y1, y2)

(
1 −1
2 0

)(
x1
x2

)
= y1x1 − y1x2 + 2y2x1.
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3.2 Bilinear maps: change of basis

We retain the notation of the previous subsection. As in Subsection 1.2 above, suppose that
we choose new bases e′1, . . . , e

′
n of V and f ′1, . . . , f

′
m of W , and let P = (σij) and Q = (τij) be

the associated basis change matrices. Then, by Proposition 1.1, if v′ and w′ are the column
vectors representing the vectors v and w with respect to the bases {e′i} and {f ′i}, we have
Pv′ = v and Qw′ = w, and so

wTAv = w′
T
QTAPv′,

and hence, by Equation (2.1):

Theorem 3.1 Let A be the matrix of the bilinear map τ : W × V → K with respect to the
bases e1, . . . , en and f1, . . . , fm of V and W , and let B be its matrix with respect to the bases
e′1, . . . , e

′
n and f ′1, . . . , f

′
m of V and W . Let P and Q be the basis change matrices, as defined

above. Then B = QTAP .

Compare this result with Theorem 1.2.

We shall be concerned from now on only with the case where V = W . A bilinear map
τ : V × V → K is called a bilinear form on V . Theorem 3.1 then becomes:

Theorem 3.2 Let A be the matrix of the bilinear form τ on V with respect to the basis
e1, . . . , en of V , and let B be its matrix with respect to the basis e′1, . . . , e

′
n of V . Let P the

basis change matrix with original basis {ei} and new basis {e′i}. Then B = PTAP .

So, in the example at the end of Subsection 3.1, if we choose the new basis e′1 = (1 −1),

e′2 = (1 0) then P =

(
1 1
−1 0

)
, PTAP =

(
0 −1
2 1

)
, and

τ
(

(y′1e
′
1 + y′2e

′
2 , x

′
1e
′
1 + x′2e

′
2)
)

= −y′1x′2 + 2y′2x
′
1 + y′2x

′
2.

Definition. Matrices A and B are called congruent if there exists an invertible matrix P
with B = PTAP .

Definition. A bilinear form τ on V is called symmetric if τ(w,v) = τ(v,w) for all v,w ∈ V .
An n× n matrix A is called symmetric if AT = A.

We then clearly have:

Proposition 3.3 The bilinear form τ is symmetric if and only if its matrix (with respect to
any basis) is symmetric.

The best known example is when V = Rn, and τ is defined by

τ((x1, x2, . . . , xn), (y1, y2, . . . , yn)) = x1y1 + x2y2 + · · ·+ xnyn.

This form has matrix equal to the identity matrix In with respect to the standard basis of
Rn. Geometrically, it is equal to the normal scalar product τ(v,w) = |v||w| cos θ, where θ is
the angle between the vectors v and w.
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Figure 1: 5x2 + 5y2 − 6xy = 2

3.3 Quadratic forms: introduction

A quadratic form on the standard vector spaceKn is a polynomial function of several variables
x1, . . . , xn in which each term has total degree two, such as 3x2 + 2xz + z2 − 4yz + xy. One
motivation comes to study them comes from the geometry of curves or surfaces defined by
quadratic equations. Consider, for example, the equation 5x2 + 5y2 − 6xy = 2 (see Fig. 1).

This represents an ellipse, in which the two principal axes are at an angle of π/4 with the
x- and y-axes. To study such curves in general, it is desirable to change variables (which
will turn out to be equivalent to a change of basis) so as to make the principal axes of the
ellipse coincide with the x- and y-axes. This is equivalent to eliminating the xy-term in the
equation. We can do this easily by completing the square.

In the example

5x2 + 5y2 − 6xy = 2⇒ 5(x− 3y/5)2 − 9y2/5 + 5y2 = 2⇒ 5(x− 3y/5)2 + 16y2/5 = 2

so if we change variables, and put x′ = x − 3y/5 and y′ = y, then the equation becomes
5x′2 + 16y′2/5 = 2 (see Fig. 2).

Here we have allowed an arbitrary basis change. We shall be studying this situation in
Subsection 3.5.

One disadvantage of doing this is that the shape of the curve has become distorted. If we wish
to preserve the shape, then we should restrict our basis changes to those that preserve distance
and angle. These are called orthogonal basis changes, and we shall be studying that situation
in Subsection 3.6. In the example, we can use the change of variables x′ = (x + y)/

√
2,

y′ = (x − y)/
√

2 (which represents a non-distorting rotation through an angle of π/4), and
the equation becomes x′2 + 4y′2 = 1. See Fig. 3.
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Figure 2: 5x′2 + 16y′2/5 = 2
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Figure 3: x′2 + 4y′2 = 1
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3.4 Quadratic forms: definitions

Definition. Let V be a vector space over the field K. A quadratic form on V is a function
q : V → K that is defined by q(v) = τ(v,v), where τ : V × V → K is a bilinear form.

As this is the official definition of a quadratic form we will use, we do not really need to
observe that it yields the same notion for the standard vector space Kn as the definition in
the previous section. However, it is a good exercise that an inquisitive reader should definitely
do. The key is to observe that the function xixj comes from the bilinear form τi,j such that
τi,j(ei, ej) = 1 and zero elsewhere.

In Proposition 3.4 we need to be able to divide by 2 in the field K. This means that we must
assume11 that 1 + 1 6= 0 in K. For example, we would like to avoid the field of two elements.
If you prefer to avoid worrying about such technicalities, then you can safely assume that K
is either Q, R or C.

Let us consider the following three sets. The first set Q(V,K) consists of all quadratic forms
on V . It is a subset of the set of all functions from V to K. The second set Bil(V × V,K)
consists of all bilinear forms on V . It is a subset of the set of all functions from V × V to K.
Finally, we need Sym(V ×V,K), the subset of Bil(V ×V,K) consisting of symmetric bilinear
forms.

There are two interesting functions connecting these sets. We have already defined a square
function Φ : Bil(V × V,K) → Q(V,K) by Φ(τ)(v) = τ(v,v). The second function Ψ :
Q(V,K)→ Bil(V × V,K) is a polarisation12 defined by Ψ(q)(u,v) = q(u + v)− q(u)− q(v).

Proposition 3.4 The following statements hold for all q ∈ Q(V,K) and τ ∈ Sym(V ×
V,K):

(i) Ψ(q) ∈ Sym(V × V,K),
(ii) Φ(Ψ(q)) = 2q,
(iii) Ψ(Φ(τ)) = 2τ ,
(iv) if 1+1 6= 0 ∈ K then there are natural13 bijections between Q(V,K) and Sym(V ×V,K).

Proof: Observe that q = Φ(τ) for some bilinear form τ . For u,v ∈ V , q(u + v) =
τ(u + v,u + v) = τ(u,u) + τ(v,v) + τ(u,v) + τ(v,u) = q(u) + q(v) + τ(u,v) + τ(v,u).
It follows that Ψ(q)(u,v) = τ(u,v) + τ(v,u) and that Ψ(q) is a symmetric bilinear form.
Besides it follows that Ψ(Φ(τ)) = 2τ if τ is symmetric.

Since q(αv) = α2q(v) for all α ∈ K, v ∈ V , Φ(Ψ(q))(v) = Ψ(q)(v,v) = q(2v) − q(v) −
q(v) = 2q(v). Finally, if we can divide by 2 then Φ and Ψ/2 defined by Ψ/2(q)(u,v) =
(q(u + v)− q(u)− q(v))/2 provide inverse bijection between symmetric bilinear forms on V
and quadratic forms on V . 2

Let e1, . . . , en be a basis of V . Recall that the coordinates of v with respect to this basis are
defined to be the field elements xi such that v =

∑n
i=1 xiei.

Let A = (αij) be the matrix of τ with respect to this basis. We will also call A the matrix
of q with respect to this basis. Then A is symmetric because τ is, and by Equation (2.1) of
Subsection 3.1, we have

11Fields with 1 + 1 = 0 are fields of characteristic 2. One can actually do quadratic and bilinear forms over
them but the theory is quite specific. It could be a good topic for a second year essay.

12Some authors call it linearisation.
13There is a precise mathematical way of defining natural using Category Theory but it is far beyond the

scope of this course. The only meaning we can endow this word with is that we do not make any choices for
this bijection.
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q(v) = vTAv =

n∑
i=1

n∑
j=1

xiαijxj =

n∑
i=1

αiix
2
i + 2

n∑
i=1

i−1∑
j=1

αijxixj . (3.1)

When n ≤ 3, we shall usually write x, y, z instead of x1, x2, x3. For example, if n = 2 and

A =

(
1 3
3 −2

)
, then q(v) = x2 − 2y2 + 6xy.

Conversely, if we are given a quadratic form as in the right hand side of Equation (3.1), then it
is easy to write down its matrix A. For example, if n = 3 and q(v) = 3x2+y2−2z2+4xy−xz,

then A =

 3 2 −1/2
2 1 0

−1/2 0 −2

.

3.5 Change of variable under the general linear group

Our general aim is to make a change of basis so as to eliminate the terms in q(v) that involve
xixj for i 6= j, leaving only terms of the form αiix

2
i . In this section, we will allow arbitrary

basis changes; in other words, we allow basis change matrices P from the general linear group
GL(n,K). It follows from Theorem 3.2 that when we make such a change, the matrix A of
q is replaced by PTAP .

As with other results in linear algebra, we can formulate theorems either in terms of abstract
concepts like quadratic forms, or simply as statements about matrices.

Theorem 3.5 Assume that 1 + 1 6= 0 ∈ K.

Let q be a quadratic form on V . Then there is a basis e′1, . . . , e
′
n of V such that q(v) =∑n

i=1 αi(x
′
i)
2, where the x′i are the coordinates of v with respect to e′1, . . . , e

′
n.

Equivalently, given any symmetric matrix A, there is an invertible matrix P such that PTAP
is a diagonal matrix; that is, A is congruent to a diagonal matrix.

Proof: This is by induction on n. There is nothing to prove when n = 1. As usual, let
A = (αij) be the matrix of q with respect to the initial basis e1, . . . , en.

Case 1. First suppose that α11 6= 0. As in the example in Subsection 3.3, we can complete
the square. We have

q(v) = α11x
2
1 + 2α12x1x2 + · · ·+ 2α1nx1xn + q0(v),

where q0 is a quadratic form involving only the coordinates x2, . . . , xn. So

q(v) = α11(x1 +
α12

α11
x2 + · · ·+ α1n

α11
xn)2 + q1(v),

where q1(v) is another quadratic form involving only x2, . . . , xn.

We now make the change of coordinates x′1 = x1 + α12
α11

x2 + · · ·+ α1n
α11

xn, x′i = xi for 2 ≤ i ≤ n.

Then we have q(v) = α1(x
′
1)

2 + q1(v), where α1 = α11 and q1(v) involves only x′2, . . . , x
′
n.

By inductive hypothesis (applied to the subspace of V spanned by e2, . . . , en), we can change
the coordinates of q1 from x′2, . . . , x

′
n to x′′2, . . . , x

′′
n, say, to bring it to the required form, and

then we get q(v) =
∑n

i=1 αi(x
′′
i )

2 (where x′′1 = x′1) as required.

Case 2. α11 = 0 but αii 6= 0 for some i > 1. In this case, we start by interchanging e1 with
ei (or equivalently x1 with xi), which takes us back to Case 1.

Case 3. αii = 0 for 1 ≤ i ≤ n. If αij = 0 for all i and j then there is nothing to prove, so
assume that αij 6= 0 for some i, j. Then we start by making a coordinate change xi = x′i+x′j ,
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xj = x′i− x′j , xk = x′k for k 6= i, j. This introduces terms 2αij((x
′
i)
2− (x′j)

2) into q, taking us
back to Case 2. 2

Notice that, in the first change of coordinates in Case 1 of the proof, we have


x′1
x′2
...
x′n

 =



1 α12
α11

α13
α11

. . . α1n
α11

0 1 0 . . . 0
0 0 1 . . . 0

. . .

. . .
0 0 0 . . . 1



x1
x2
...
xn

 or equivalently


x1
x2
...
xn

 =



1 −α12
α11

−α13
α11

. . . −α1n
α11

0 1 0 . . . 0
0 0 1 . . . 0

. . .

. . .
0 0 0 . . . 1



x′1
x′2
...
x′n

 .

In other words, v = Pv′, where

P =


1 −α12

α11
−α13
α11

. . . −α1n
α11

0 1 0 . . . 0
0 0 1 . . . 0

. . .
0 0 0 . . . 1

 ,

so by Proposition 1.1, P is the basis change matrix with original basis {ei} and new basis
{e′i}.

Example. Let n = 3 and q(v) = xy + 3yz − 5xz, so A =

 0 1/2 −5/2
1/2 0 3/2
−5/2 3/2 0

.

Since we are using x, y, z for our variables, we can use x1, y1, z1 (rather than x′, y′, z′) for the
variables with respect to a new basis, which will make things typographically simpler!

We are in Case 3 of the proof above, and so we start with a coordinate change x = x1 + y1,

y = x1−y1, z = z1, which corresponds to the basis change matrix P1 =

1 1 0
1 −1 0
0 0 1

. Then

we get q(v) = x21 − y21 − 2x1z1 − 8y1z1.

We are now in Case 1 of the proof above, and the next basis change, from completing the
square, is x2 = x1 − z1, y2 = y1, z2 = z1, or equivalently, x1 = x2 + z2, y1 = y2, z1 = z2, and

then the associated basis change matrix is P2 =

1 0 1
0 1 0
0 0 1

, and q(v) = x22−y22−8y2z2−z22 .

We now proceed by induction on the 2-coordinate form in y2, z2, and completing the square
again leads to the basis change x3 = x2, y3 = y2 + 4z2, z3 = z2, which corresponds to the

basis change matrix P3 =

1 0 0
0 1 −4
0 0 1

, and q(v) = x23 − y23 + 15z23 .

The total basis change in moving from the original basis with coordinates x, y, z to the final
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basis with coordinates x3, y3, z3 is

P = P1P2P3 =

1 1 −3
1 −1 5
0 0 1

 ,

and you can check that PTAP =

1 0 0
0 −1 0
0 0 15

, as expected.

Since P is an invertible matrix, PT is also invertible (its inverse is (P−1)T), and so the
matrices PTAP and A are equivalent, and hence have the same rank. (This was proved in
MA106.) The rank of the quadratic form q is defined to be the rank of its matrix A. So we
have just shown that the rank of q is independent of the choice of basis used for the matrix A.
If PTAP is diagonal, then its rank is equal to the number of non-zero terms on the diagonal.

Notice that both statements of Theorem 3.5 fail in characteristic 2. Let K be the field of two
elements. The quadratic form q(x, y) = xy cannot be diagonalised. Similarly, the symmetric

matrix

(
0 1
1 0

)
is not congruent to a diagonal matrix. Do it as an exercise: there are 6

possible change of variable (you need to choose two among three possible variables x, y and
x+ y) and you can observe directly what happens with each change of variables.

In the case K = C, after reducing q to the form q(v) =
∑n

i=1 αiix
2
i , we can permute the

coordinates if necessary to get αii 6= 0 for 1 ≤ i ≤ r and αii = 0 for r + 1 ≤ i ≤ n, where
r = rank(q). We can then make a further coordinates change x′i =

√
αiixi (1 ≤ i ≤ r), giving

q(v) =
∑r

i=1(x
′
i)
2. Hence we have proved:

Proposition 3.6 A quadratic form q over C has the form q(v) =
∑r

i=1 x
2
i with respect to a

suitable basis, where r = rank(q).

Equivalently, given a symmetric matrix A ∈ Cn,n, there is an invertible matrix P ∈ Cn,n such
that PTAP = B, where B = (βij) is a diagonal matrix with βii = 1 for 1 ≤ i ≤ r, βii = 0 for
r + 1 ≤ i ≤ n, and r = rank(A).

When K = R, we cannot take square roots of negative numbers, but we can replace each
positive αi by 1 and each negative αi by −1 to get:

Proposition 3.7 (Sylvester’s Theorem) A quadratic form q over R has the form q(v) =∑t
i=1 x

2
i −

∑u
i=1 x

2
t+i with respect to a suitable basis, where t+ u = rank(q).

Equivalently, given a symmetric matrix A ∈ Rn,n, there is an invertible matrix P ∈ Rn,n such
that PTAP = B, where B = (βij) is a diagonal matrix with βii = 1 for 1 ≤ i ≤ t, βii = −1
for t+ 1 ≤ i ≤ t+ u, and βii = 0 for t+ u+ 1 ≤ i ≤ n, and t+ u = rank(A).

We shall now prove that the numbers t and u of positive and negative terms are invariants
of q. The difference t − u between the numbers of positive and negative terms is called the
signature of q.

Theorem 3.8 (Sylvester’s Law of Intertia) Suppose that q is a quadratic form over the
vector space V over R, and that e1, . . . , en and e′1, . . . , e

′
n are two bases of V with associated

coordinates xi and x′i, such that

q(v) =

t∑
i=1

x2i −
u∑
i=1

x2t+i =

t′∑
i=1

(x′i)
2 −

u′∑
i=1

(xt′+i)
2.

Then t = t′ and u = u′.
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Proof: We know that t + u = t′ + u′ = rank(q), so it is enough to prove that t = t′.
Suppose not, and suppose that t > t′. Let V1 = {v ∈ V | xt+1 = xt+2 = . . . = xn = 0},
and let V2 = {v ∈ V | x′1 = x′2 = . . . = x′t′ = 0}. Then V1 and V2 are subspaces of V with
dim(V1) = t and dim(V2) = n− t′. It was proved in MA106 that

dim(V1 + V2) = dim(V1) + dim(V2)− dim(V1 ∩ V2).

However, dim(V1 + V2) ≤ dim(V ) = n, and so t > t′ implies that dim(V1) + dim(V2) > n.
Hence dim(V1 ∩ V2) > 0, and there is a non-zero vector v ∈ V1 ∩ V2. But it is easily seen
from the expressions for q(v) in the statement of the theorem that 0 6= v ∈ V1 ⇒ q(v) > 0,
whereas v ∈ V2 ⇒ q(v) ≤ 0, which is a contradiction, and completes the proof. 2

3.6 Change of variable under the orthogonal group

In this subsection, we assume throughout that K = R.

Definition. A quadratic form q on V is said to be positive definite if q(v) > 0 for all
0 6= v ∈ V .

It is clear that this is the case if and only if t = n and u = 0 in Proposition 3.7; that is, if
q has rank and signature n. In this case, Proposition 3.7 says that there is a basis {ei} of
V with respect to which q(v) =

∑n
i=1 x

2
i or, equivalently, such that the matrix A of q is the

identity matrix In.

The associated symmetric bilinear form τ is also called positive definite when q is. If we use
a basis such that A = In, then τ is just the standard scalar (or inner) product on V .

Definition. A vector space V over R together with a positive definite symmetric bilinear
form τ is called a Euclidean space.

We shall assume from now on that V is a Euclidean space, and that the basis e1, . . . , en has
been chosen so that the matrix of τ is In. Since τ is the standard scalar product, we shall
write v ·w instead of τ(v,w).

Note that v ·w = vTw where, as usual, v and w are the column vectors associated with v
and w.

For v ∈ V , define |v| =
√

v · v. Then |v| is the length of v. Hence the length, and also the
cosine v ·w/(|v||w|) of the angle between two vectors can be defined in terms of the scalar
product.

Definition. A linear operator T : V → V is said to be orthogonal if it preserves the scalar
product on V . That is, if T (v) · T (w) = v ·w for all v,w ∈ V .

Since length and angle can be defined in terms of the scalar product, an orthogonal linear
operator preserves distance and angle, so geometrically it is a rigid map. In R2, for example,
an orthogonal operator is a rotation about the origin or a reflection about a line through the
origin.

If A is the matrix of T , then T (v) = Av, so T (v) · T (w) = vTATAw, and hence T is
orthogonal if and only if ATA = In, or equivalently if AT = A−1.

Definition. An n× n matrix is called orthogonal if ATA = In.

So we have proved:

Proposition 3.9 A linear operator T : V → V is orthogonal if and only if its matrix A
(with respect to a basis such that the matrix of the bilinear form τ is In) is orthogonal.
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Incidentally, the fact that ATA = In tells us that A and hence T is invertible, and so we have
also proved:

Proposition 3.10 An orthogonal linear operator is invertible.

Let c1, c2, . . . , cn be the columns of the matrix A. As we observed in Subsection 1.1, ci is
equal to the column vector representing T (ei). In other words, if T (ei) = fi then fi = ci.
Since the (i, j)-th entry of ATA is cTi cj = fi · fj , we see that T and A are orthogonal if and
only if14

fi · fi = δi,j , 1 ≤ i, j ≤ n. (∗)

Definition. A basis f1, . . . , fn of V that satisfies (∗) is called orthonormal.

By Proposition 3.10, an orthogonal linear operator is invertible, so T (ei) (1 ≤ i ≤ n) form a
basis of V , and we have:

Proposition 3.11 A linear operator T is orthogonal if and only if T (e1), . . . , T (en) is an
orthonormal basis of V .

Example For any θ ∈ R, let A =

(
cos θ − sin θ
sin θ cos θ

)
. (This represents a counter-clockwise

rotation through an angle θ.) Then it is easily checked that ATA = AAT = I2. Notice that
the columns of A are mutually orthogonal vectors of length 1, and the same applies to the
rows of A.

The following theorem tells us that we can always complete an orthonormal set of vectors to
an orthonormal basis.

Theorem 3.12 (Gram-Schmidt) Let V be a Euclidean space of dimension n, and suppose
that, for some r with 0 ≤ r ≤ n, f1, . . . , fr are vectors in V that satisfy the equations (∗) for
1 ≤ i, j ≤ r. Then f1, . . . , fr can be extended to an orthonormal basis f1, . . . , fn of V .

Proof: We prove first that f1, . . . , fr are linearly independent. Suppose that
∑r

i=1 xifi = 0
for some x1, . . . , xr ∈ R. Then, for each j with 1 ≤ j ≤ r, the scalar product of the left hand
side of this equation with fj is

∑r
i=1 xifj · fi = xj , by (∗). Since fj · 0 = 0, this implies that

xj = 0 for all j, so the fi are linearly independent.

The proof of the theorem will be by induction on n− r. We can start the induction with the
case n − r = 0, when r = n, and there is nothing to prove. So assume that n − r > 0; i.e.
that r < n. By a result from MA106, we can extend any linearly independent set of vectors
to a basis of V , so there is a basis f1, . . . , fr,gr+1, . . . ,gn of V containing the fi. The trick is
to define

f ′r+1 = gr+1 −
r∑
i=1

(fi · gr+1)fi.

If we take the scalar product of this equation by fj for some 0 ≤ j ≤ r, then we get

fj · f ′r+1 = fj · gr+1 −
r∑
i=1

(fi · gr+1)(fj · fi)

and then, by (∗), fj · fi is non-zero only when j = i, so the sum on the right hand side
simplifies to fj · gr+1, and the whole equation simplifies to fj · f ′r+1 = fj · gr+1 − fj · gr+1 = 0.

14We are using Kronecker’s delta symbol in the next formula. It is just the identity matrix Im = (δi,j) of
sufficiently large size. In layman’s terms, δi,i = 1 and δi,j = 0 if i 6= j.
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The vector f ′r+1 is non-zero by linear independence of the basis, and if we define fr+1 =
f ′r+1/|f ′r+1|, then we still have fj · fr+1 = 0 for 1 ≤ j ≤ r, and we also have fr+1.fr+1 = 1.
Hence f1, . . . , fr+1 satisfy the equations (∗), and the result follows by inductive hypothesis. 2

Recall from MA106 that if T is a linear operator with matrix A, and v is a non-zero vector
such that T (v) = λv (or equivalently Av = λv), then λ is called an eigenvalue and v an
associated eigenvector of T and A. It was proved in MA106 that the eigenvalues are the roots
of the characteristic equation det(A− xIn) = 0 of A.

Proposition 3.13 Let A be a real symmetric matrix. Then A has an eigenvalue in R, and
all complex eigenvalues of A lie in R.

Proof: (To simplify the notation, we will write just v for a column vector v in this proof.)

The characteristic equation det(A− xIn) = 0 is a polynomial equation of degree n in x, and
since C is an algebraically closed field, it certainly has a root λ ∈ C, which is an eigenvalue
for A if we regard A as a matrix over C. We shall prove that any such λ lies in R, which will
prove the proposition.

For a column vector v or matrix B over C, we denote by v or B the result of replacing all
entries of v or B by their complex conjugates. Since the entries of A lie in R, we have A = A.

Let v be a complex eigenvector associated with λ. Then

Av = λv (1)

so, taking complex conjugates and using A = A, we get

Av = λv. (2)

Transposing (1) and using AT = A gives

vTA = λvT, (3)

so by (2) and (3) we have
λvTv = vTAv = λvTv.

But if v = (α1, α2, . . . , αn)T, then vTv = α1α1 + · · ·+αnαn, which is a non-zero real number
(eigenvectors are non-zero by definition). Thus λ = λ, so λ ∈ R. 2

Before coming to the main theorem of this section, we recall the notation A⊕B for matrices,
which we introduced in Subsection 2.5. It is straightforward to check that (A1⊕B1) (A2⊕B2)
=(A1A2 ⊕B1B2), provided that A1 and A2 are matrices with the same dimensions.

Theorem 3.14 Let q be a quadratic form defined on a Euclidean space V . Then there is an
orthonormal basis e′1, . . . , e

′
n of V such that q(v) =

∑n
i=1 αi(x

′
i)
2, where x′i are the coordinates

of v with respect to e′1, . . . , e
′
n. Furthermore, the numbers αi are uniquely determined by q.

Equivalently, given any symmetric matrix A, there is an orthogonal matrix P such that PTAP
is a diagonal matrix. Since P T = P−1, this is saying that A is simultaneously similar and
congruent to a diagonal matrix.

Proof: We start with a general remark about orthogonal basis changes. The matrix q
represents a quadratic form on V with respect to the initial orthonormal basis e1, . . . , en of
V , but it also represents a linear operator T : V → V with respect to the same basis. When
we make an orthogonal basis change with original basis e1, . . . , en and a new orthonormal
basis f1, . . . , fn with the basis change matrix P , then P is orthogonal, so PT = P−1 and
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hence PTAP = P−1AP . Hence, by Theorems 1.2 and 3.2, the matrix PTAP simultaneously
represents both the linear operator T and the quadratic form q with respect to the new basis.

Recall from MA106 that two n × n matrices are called similar if there exists an invertible
n × n matrix P with B = P−1AP . In particular, if P is orthogonal, then A and PTAP
are similar. It was proved in MA106 that similar matrices have the same eigenvalues. But
the αi are precisely the eigenvalues of the diagonalised matrix PTAP , and so the αi are the
eigenvalues of the original matrix A, and hence are uniquely determined by A and q. This
proves the uniqueness part of the theorem.

The equivalence of the two statements in the theorem follows from Proposition 3.11 and
Theorem 3.2. Their proof will by induction on n = dim(V ). There is nothing to prove when
n = 1. By Proposition 3.13, A and its associated linear operator T have a real eigenvalue
α1. Let v be a corresponding eigenvector (of T ). Then f1 = v/|v| is also an eigenvector (i.e.
T f1 = α1f1), and f1 · f1 = 1. By Theorem 3.12, there is an orthonormal basis f1, . . . , fn of
V containing f1. Let B be the matrix of q with respect to this basis, so B = PTAP with
P orthogonal. By the remark above, B is also the matrix of T with respect to f1, . . . , fn,
and because T f1 = α1f1, the first column of B is (α1, 0, . . . , 0)T. But B is the matrix of
the quadratic form q, so it is symmetric, and hence the first row of B is (α1, 0, . . . , 0), and
therefore B = PTAP = P−1AP = (α1) ⊕ A1, where A1 is an (n − 1) × (n − 1) matrix and
(α1) is a 1× 1 matrix.

Furthermore, B symmetric implies A1 symmetric, and by inductive assumption there is an
(n− 1)× (n− 1) orthogonal matrix Q1 with QT

1A1Q1 diagonal. Let Q = (1)⊕Q1. Then Q
is also orthogonal (check!) and we have (PQ)TA(PQ) = QT(PTAP )Q = (α1)⊕QT

1A1Q1 is
diagonal. But PQ is the product of two orthogonal matrices and so is itself orthogonal. This
completes the proof. 2

Although it is not used in the proof of the theorem above, the following proposition is useful
when calculating examples. It helps us to write down more vectors in the final orthonormal
basis immediately, without having to use Theorem 3.12 repeatedly.

Proposition 3.15 Let A be a real symmetric matrix, and let λ1, λ2 be two distinct eigenval-
ues of A, with corresponding eigenvectors v1, v2. Then v1 · v2 = 0.

Proof: (As in Proposition 3.13, we will write v rather than v for a column vector in this
proof. So v1 · v2 is the same as vT

1 v2.) We have

Av1 = λ1v1 (1) and Av2 = λ2v2 (2).

Transposing (1) and using A = AT gives vT
1 A = λ1v

T
1 , and so

vT
1 Av2 = λ1v

T
1 v2 (3) and similarly vT

2 Av1 = λ2v
T
2 v1 (4).

Transposing (4) gives vT
1 Av2 = λ2v

T
1 v2 and subtracting (3) from this gives (λ2−λ1)vT1 v2 = 0.

Since λ2 − λ1 6= 0 by assumption, we have vT1 v2 = 0. 2

Example 1. Let n = 2 and q(v) = x2 + y2 + 6xy, so A =

(
1 3
3 1

)
. Then

det(A− xI2) = (1− x)2 − 9 = x2 − 2x− 8 = (x− 4)(x+ 2),

so the eigenvalues of A are 4 and −2. Solving Av = λv for λ = 4 and −2, we find cor-
responding eigenvectors (1 1)T and (1 −1)T. Proposition 3.15 tells us that these vectors
are orthogonal to each other (which we can of course check directly!), so if we divide them
by their lengths to give vectors of length 1, giving ( 1√

2
1√
2
)T and ( 1√

2
−1√
2
)T then we get an
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orthonormal basis consisting of eigenvectors of A, which is what we want. The corresponding

basis change matrix P has these vectors as columns, so P =

(
1√
2

1√
2

1√
2
−1√
2

)
, and we can check

that PTP = I2 (hence P is orthogonal) and that PTAP =

(
4 0
0 −2

)
.

Example 2. Let n = 3 and

q(v) = 3x2 + 6y2 + 3z2 − 4xy − 4yz + 2xz,

so A =

 3 −2 1
−2 6 −2

1 −2 3

 .

Then, expanding by the first row,

det(A− xI3) = (3− x)(6− x)(3− x)− 4(3− x)− 4(3− x) + 4 + 4− (6− x)

= −x3 + 12x2 − 36x+ 32 = (2− x)(x− 8)(x− 2),

so the eigenvalues are 2 (repeated) and 8. For the eigenvalue 8, if we solve Av = 8v then we
find a solution v = (1 −2 1)T. Since 2 is a repeated eigenvalue, we need two corresponding
eigenvectors, which must be orthogonal to each other. The equations Av = 2v all reduce
to x − 2y + z = 0, and so any vector (x, y, z)T satisfying this equation is an eigenvector for
λ = 2. By Proposition 3.15 these eigenvectors will all be orthogonal to the eigenvector for
λ = 8, but we will have to choose them orthogonal to each other. We can choose the first one
arbitrarily, so let’s choose (1 0 −1)T. We now need another solution that is orthogonal to
this. In other words, we want x, y and z not all zero satisfying x− 2y+ z = 0 and x− z = 0,
and x = y = z = 1 is a solution. So we now have a basis (1 −2 1)T, (1 0 −1)T, (1 1 1)T of
three mutually orthogonal eigenvectors. To get an orthonormal basis, we just need to divide
by their lengths, which are, respectively,

√
6,
√

2, and
√

3, and then the basis change matrix
P has these vectors as columns, so

P =


1√
6

1√
2

1√
3

− 2√
6

0 1√
3

1√
6
− 1√

2
1√
3

 .

It can then be checked that PTP = I3 and that PTAP is the diagonal matrix with entries
8, 2, 2.

3.7 Applications of quadratic forms to geometry

3.7.1 Reduction of the general second degree equation

The general equation of the second degree in n variables x1, . . . , xn is

n∑
i=1

αix
2
i +

n∑
i=1

i−1∑
j=1

αijxixj +
n∑
i=1

βixi + γ = 0.

This defines a quadric hypersurface15 in n-dimensional Euclidean space. To study the pos-
sible shapes of the curves and surfaces defined, we first simplify this equation by applying
coordinate changes resulting from isometries of Rn.

15also called quadric surface if n = 3 or quadric curve if n = 3.
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By Theorem 3.14, we can apply an orthogonal basis change (that is, an isometry of Rn that
fixes the origin) which has the effect of eliminating the terms αijxixj in the above sum.

Now, whenever αi 6= 0, we can replace xi by xi − βi/(2αi), and thereby eliminate the term
βixi from the equation. This transformation is just a translation, which is also an isometry.

If αi = 0, then we cannot eliminate the term βixi. Let us permute the coordinates such that
αi 6= 0 for 1 ≤ i ≤ r, and βi 6= 0 for r+ 1 ≤ i ≤ r+ s. Then if s > 1, by using Theorem 3.12,
we can find an orthogonal transformation that leaves xi unchanged for 1 ≤ i ≤ r and replaces∑s

i=1 βr+jxr+j by βxr+1 (where β is the length of
∑s

i=1 βr+jxr+j), and then we have only a
single non-zero βi; namely βr+1 = β.

Finally, if there is a non-zero βr+1 = β, then we can perform the translation that replaces
xr+1 by xr+1 − γ/β, and thereby eliminate γ.

We have now reduced to one of two possible types of equation:

r∑
i=1

αix
2
i + γ = 0 and

r∑
i=1

αix
2
i + βxr+1 = 0.

In fact, by dividing through by γ or β, we can assume that γ = 0 or 1 in the first equation,
and that β = 1 in the second. In both cases, we shall assume that r 6= 0, because otherwise
we have a linear equation. The curve defined by the first equation is called a central quadric
because it has central symmetry; i.e. if a vector v satisfies the equation, then so does −v.

We shall now consider the types of curves and surfaces that can arise in the familiar cases
n = 2 and n = 3. These different types correspond to whether the αi are positive, negative
or zero, and whether γ = 0 or 1.

We shall use x, y, z instead of x1, x2, x3, and α, β, γ instead of α1, α2, α3. We shall assume
also that α, β, γ are all strictly positive, and write −α, etc., for the negative case.

3.7.2 The case n = 2

When n = 2 we have the following possibilities.

(i) αx2 = 0. This just defines the line x = 0 (the y-axis).

(ii) αx2 = 1. This defines the two parallel lines x = ± 1√
α

.

(iii) −αx2 = 1. This is the empty curve!

(iv) αx2 + βy2 = 0. The single point (0, 0).

(v) αx2 − βy2 = 0. This defines two straight lines y = ±
√

α
β x, which intersect at (0, 0).

(vi) αx2 + βy2 = 1. An ellipse.

(vii) αx2 − βy2 = 1. A hyperbola.

(viii) −αx2 − βy2 = 1. The empty curve again.

(ix) αx2 − y = 0. A parabola.

3.7.3 The case n = 3

When n = 3, we still get the nine possibilities (i) – (ix) that we had in the case n = 2, but
now they must be regarded as equations in the three variables x, y, z that happen not to
involve z.
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So, in Case (i), we now get the plane x = 0, in case (ii) we get two parallel planes x = ±1/
√
α,

in Case (iv) we get the line x = y = 0 (the z-axis), in case (v) two intersecting planes
y = ±

√
α/βx, and in Cases (vi), (vii) and (ix), we get, respectively, elliptical, hyperbolic

and parabolic cylinders.

The remaining cases involve all of x, y and z. We omit −αx2−βy2−γz2 = 1, which is empty.

(x) αx2 + βy2 + γz2 = 0. The single point (0, 0, 0).

(xi) αx2 + βy2 − γz2 = 0. See Fig. 4.

This is an elliptical cone. The cross sections parallel to the xy-plane are ellipses of the form
αx2+βy2 = c, whereas the cross sections parallel to the other coordinate planes are generally
hyperbolas. Notice also that if a particular point (a, b, c) is on the surface, then so is t(a, b, c)
for any t ∈ R. In other words, the surface contains the straight line through the origin and
any of its points. Such lines are called generators. When each point of a 3-dimensional surface
lies on one or more generators, it is possible to make a model of the surface with straight
lengths of wire or string.

(xii) αx2 + βy2 + γz2 = 1. An ellipsoid. See Fig. 5.

(xiii) αx2 + βy2 − γz2 = 1. A hyperboloid. See Fig. 6.

There are two types of 3-dimensional hyperboloids. This one is connected, and is known as
a hyperboloid of one sheet. Although it is not immediately obvious, each point of this surface
lies on exactly two generators; that is, lines that lie entirely on the surface. For each λ ∈ R,
the line defined by the pair of equations

√
αx−√γ z = λ(1−

√
β y); λ(

√
αx+

√
γ z) = 1 +

√
β y.

lies entirely on the surface; to see this, just multiply the two equations together. The same
applies to the lines defined by the pairs of equations√

β y −√γ z = µ(1−
√
αx); µ(

√
β y +

√
γ z) = 1 +

√
αx.

It can be shown that each point on the surface lies on exactly one of the lines in each if these
two families.

(xiv) αx2 − βy2 − γz2 = 1. A hyperboloid. See Fig. 7.

This one has two connected components and is called a hyperboloid of two sheets. It does not
have generators. Besides it is easy to observe that it is disconnected. Substitute x = 0 into
its equation. The resulting equation −βy2 − γz2 = 1 has no solutions. This means that the
hyperboloid does not intersect the plane x = 0. A closer inspection confirms that the two
parts of the hyperboloid lie one both sides of the plane: intersect the hyperboloid with the
line y = z = 0 to see two points on both sides.

(xv) αx2 + βy2 − z = 0. An elliptical paraboloid. See Fig. 8.

(xvi) αx2 − βy2 − z = 0. A hyperbolic paraboloid. See Fig. 9.

As in the case of the hyperboloid of one sheet, there are two generators passing through each
point of this surface, one from each of the following two families of lines:

λ(
√
αx−

√
β) y = z;

√
αx+

√
β y = λ.

µ(
√
αx+

√
β) y = z;

√
αx−

√
β y = µ.

3.8 Unitary, hermitian and normal matrices

The results in Subsections 3.1-3.6 apply vector spaces over the real numbers R. A naive
reformulation of some of the results to complex numbers fails. For instance, the vector
v = (i, 1)T ∈ C2 is isotropic, i.e. it has vTv = i2 + 12 = 0, which creates various difficulties.
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To build the theory for vector spaces over C we have to replace bilinear forms with sesquilin-
ear16 form, that is, maps τ : W × V → C such that

(i) τ(α1w1 + α2w2,v) = ᾱ1τ(w1,v) + ᾱ2τ(w2,v) and
(ii) τ(w, α1v1 + α2v2) = α1τ(w,v1) + α2τ(w,v2)

for all w,w1,w2 ∈ W , v,v1,v2 ∈ V , and α1, α2 ∈ C. As usual, z̄ denotes the complex
conjugate of z.

Sesquilinear forms can be represented by matrices A ∈ Cm,n as in Subsection 3.1. Let
A∗ = ĀT be the conjugate matrix of A, that is, (αij)

∗ = αji. The representation comes by
choosing a basis and writing αij = τ(fi, ej). Similarly to equation (2.1), we get

τ(w,v) =
m∑
i=1

n∑
j=1

ȳi τ(fi, ej)xj =
m∑
i=1

n∑
j=1

ȳi αij xj = w∗Av

For instance, the standard inner product on Cn becomes v ·w = v∗w rather than vTw. Note
that, for v ∈ Rn, v∗ = vT, so this definition is compatible with the one for real vectors. The
length |v| of a vector is given by |v|2 = v · v = v∗v, which is always a non-negative real
number.

We are going to formulate several propositions that generalise results of the previous sections
to hermitian matrices. The proofs are very similar and left for you to fill them up as an
exercise. The first two propositions are generalisation of Theorems 3.1 and 3.2.

Proposition 3.16 Let A be the matrix of the sesquilinear map τ : W × V → C with respect
to the bases e1, . . . , en and f1, . . . , fm of V and W , and let B be its matrix with respect to the
bases e′1, . . . , e

′
n and f ′1, . . . , f

′
m of V and W . If P and Q are the basis change matrices then

B = Q∗AP .

Proposition 3.17 Let A be the matrix of the sesquilinear form τ on V with respect to the
basis e1, . . . , en of V , and let B be its matrix with respect to the basis e′1, . . . , e

′
n of V . If P

is the basis change matrix then B = P ∗AP .

Definition. A matrix A ∈ Cn,n is called hermitian if A = A∗. A sesquilinear form τ on V is
called hermitian if τ(w,v) = τ(v,w) for all v,w ∈ V .

These are the complex analogues of symmetric matrices and symmetric bilinear forms. The
following proposition is an analogue of Proposition 3.3.

Proposition 3.18 A sesquilinear form τ is hermitian if and only if its matrix is hermitian.

Hermitian matrices A and B are congruent if there exists an invertible matrix P with B =
P ∗AP . A Hermitian quadratic form is a function q : V → C given by q(v) = τ(v,v)
for some sesquilinear form τ . The following is a hermitian version of Sylvester’s Theorem
(Proposition 3.7) and Inertia Law (Theorem 3.8) together.

Proposition 3.19 A hermitian quadratic form q has the form q(v) =
∑t

i=1 |xi|2−
∑u

i=1 |xt+i|2
with respect to a suitable basis, where t+ u = rank(q).

Equivalently, given a hermitian matrix A ∈ Cn,n, there is an invertible matrix P ∈ Cn,n such
that P ∗AP = B, where B = (βij) is a diagonal matrix with βii = 1 for 1 ≤ i ≤ t, βii = −1
for t+ 1 ≤ i ≤ t+ u, and βii = 0 for t+ u+ 1 ≤ i ≤ n, and t+ u = rank(A).

The numbers t and u are uniquely determined by q (or A).

16from Latin one and a half
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Similarly to the real case, the difference t−u is called the signature of q (or A). We say that
a hermitian matrix (or a hermitian form) is positive definite if its signature is equal to the
dimension of the space. By Proposition 3.19 a positive definite hermitian form looks like the
standard inner product on Cn in some choice of a basis. A hermitian vector space is a vector
space over C equipped with a hermitian positive definite form.

Definition. A linear operator T : V → V on a hermitian vector space (V, τ) is said to be
unitary if it preserves the form τ . That is, if τ(T (v), T (w)) = τ(v,w) for all v,w ∈ V .

Definition. A matrix A ∈ Cn,n is called unitary if A∗A = In.

A basis e1, . . . , en of a hermitian space (V, τ) is orthonormal if τ(ei, ei) = 1 and τ(ei, ej) = 0
for all i 6= j. The following is an analogue of Proposition 3.9.

Proposition 3.20 A linear operator T : V → V is unitary if and only if its matrix A with
respect to an orthonormal basis is unitary.

The Gram-Schmidt process works perfectly well in hermitian setting, so Theorem 3.12 turns
into the following statement.

Proposition 3.21 Let (V, τ) be a hermitian space of dimension n, and suppose that, for
some r with 0 ≤ r ≤ n, f1, . . . , fr are vectors in V that satisfy τ(ei, ei) = δi,j for 1 ≤ i, j ≤ r.
Then f1, . . . , fr can be extended to an orthonormal basis f1, . . . , fn of V .

Proposition 3.21 ensures existence of orthonormal bases in hermitian spaces. Proposition 3.13
and Theorem 3.14 have analogues as well.

Proposition 3.22 Let A be a complex hermitian matrix. Then A has an eigenvalue in R,
and all complex eigenvalues of A lie in R.

Proposition 3.23 Let q be a hermitian quadratic form defined on a hermitian space V .
Then there is an orthonormal basis e′1, . . . , e

′
n of V such that q(v) =

∑n
i=1 αi|x′i|2, where x′i

are the coordinates of v with respect to e′1, . . . , e
′
n. Furthermore, the numbers αi are real and

uniquely determined by q.

Equivalently, given any hermitian matrix A, there is a unitary matrix P such that P ∗AP is
a real diagonal matrix.

Notice the crucial difference between Theorem 3.14 and Proposition 3.23. In the former
we start with a real matrix to end up with a real diagonal matrix. In the latter we start
with a complex matrix but still we end up with a real diagonal matrix. The point is that
Theorem 3.14 admits a useful generalisation to a wider class of matrices.

Definition. A matrix A ∈ Cn,n is called normal if AA∗ = A∗A.

In particular, all Hermitian and all unitary matrices are normal. Consequently, all real
symmetric and real orthogonal matrices are normal.

Lemma 3.24 If A ∈ Cn,n is normal and P ∈ Cn,n is unitary, then P ∗AP is normal.

Proof: If B = P ∗AP = B then using (BC)∗ = C∗B∗ we compute that

BB∗ = (P ∗AP )(P ∗AP )∗ = P ∗APP ∗A∗P = P ∗AA∗P = P ∗A∗AP = (P ∗A∗P )(P ∗AP ) = B∗B

as required. 2
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The following theorem is extremely useful as it is a general criterion for diagonalisability of
matrices.

Theorem 3.25 A matrix A ∈ Cn,n is normal if and only if there exists a unitary matrix
P ∈ Cn,n such that P ∗AP is diagonal17.

Proof: The “if part” follows from Lemma 3.24 as diagonal matrices are normal.

For the “only if part” we proceed by induction on n. If n = 1, there is nothing to prove.
Let us assume we have proved the statement for all dimensions less than n. The matrix A
admits an eigenvector v ∈ Cn with eigenvalue λ. Let W be the vector subspace of all vectors
x satisfying Ax = λx. If W = Cn then A is a scalar matrix and we are done. Otherwise, we
have a nontrivial18 decomposition Cn = W⊕W⊥ where W⊥ = {v ∈ Cn | ∀w ∈W v∗·w = 0}.
Let us notice that A∗W ⊆ W because AA∗x = A∗Ax = A∗λx = λ(A∗x) for any x ∈ W . It
follows that AW⊥ ⊆ W⊥ since (Ay)∗x = y∗(A∗x) ∈ y∗W = 0 so (Ay)∗x = 0 for all x ∈ W ,
y ∈W⊥. Similarly, A∗W⊥ ⊆W⊥.

Now choose orthonormal bases of W and W⊥. Together they form a new orthonormal
basis of Cn. The change of basis matrix P is unitary, hence by Lemma 3.24 the matrix

P ∗AP =

(
B 0
0 C

)
is normal. It follows that the matrices B and C are normal of smaller

size and we can use the inductive hypothesis to complete the proof. 2

Theorem 3.25 is an extremely useful criterion for diagonalisability of matrices. To find P in
practice, we use similar methods to those used in the real case.

Example. Let A be the matrix A =

(
6 2+2i

2−2i 4

)
. Then

cA(x) = (6− x)(4− x)− (2+2i)(2−2i) = x2 − 10x+ 16 = (x− 2)(x− 8),

so the eigenvalues of A are 2 and 8. (We saw in Proposition 3.22 that the eigenvalues of
any Hermitian matrix are real.) The corresponding eigenvectors are v1 = (1+i,−2)T and
v2 = (1+i, 1)T . We find that |v1|2 = v∗1v1 = 6 and |v2|2 = 3, so we divide by their lengths
to get an orthonormal basis v1/|v1|, v2/|v2| of C2. Then the matrix

P =

(
1+i√

6
1+i√

3
−2√
6

1√
3

)

having this basis as columns is unitary and satisfies P ∗AP =

(
2 0
0 8

)
.

3.9 Applications to quantum mechanics (non-examinable)

With all the linear algebra we know it is a little step aside to understand basics of quantum
mechanics. We discuss Schrödinger’s picture19 of quantum mechanics and derive (mathemat-
ically) Heisenberg’s uncertainty principle.

The main ingredient of quantum mechanics is a hermitian vector space (V,<,>). There are
physical arguments showing that real Euclidean vector spaces are no good and that V must
be infinite-dimensional. Here we just take their conclusions at face value. The states of the
system are lines in V . We denote by [v] the line Cv spanned by v ∈ V . We use normalised
vectors, i.e., v such that < v,v >= 1 to present states as this makes formulae slightly easier.

17with complex entries
18i.e., neither W nor W⊥ is zero.
19The alternative is Heisenberg’s picture but we have no time to discuss it here.
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It is impossible to observe the state of the quantum system but we can try to observe some
physical quantities such as momentum, energy, spin, etc. Such physical quantities become
observables, i.e., hermitian linear operators Φ : V → V . Hermitian in this context means
that < x,Φy >=< Φx, y > for all x, y ∈ V . Sweeping a subtle mathematical point under the
carpet20, we assume that Φ is diagonalisable with eigenvectors e1, e2, e3, . . . and eigenvalues
φ1, φ2, . . .. Proof of Proposition 3.22 goes through in the infinite dimensional case, so we
conclude that all φi belong to R. Back to Physics, if we measure Φ on a state [v] with
normalised v =

∑
n αnen then the measurement will return φn as a result with probability

|αn|2

One observable is energy H : V → V , often called hamiltonian. It is central to the theory
because it determines the time evolution [v(t)] of the system by Schrödinger’s equation:

dv(t)

dt
=

1

i~
Hv(t)

where ~ ≈ 10−34 Joule per second21 is the reduced Planck constant. We know how to solve
this equation: v(t) = etH/i~v(0).

As a concrete example, let us look at the quantum oscillator. The full energy of the classical
harmonic oscillator mass m and frequency ω is

h =
p2

2m
+

1

2
mω2x2

where x is the position and p = mx′ is the momentum. To quantise it, we have to play
with this expression. The vector subspace of the space of all smooth functions C∞(R,C)
admits a convenient subspace V = {f(x)e−x

2/2 | f(x) ∈ C[x]}, which we make hermitian by
< φ(x), ψ(x) >=

∫∞
−∞ φ̄(x)ψ(x)dx. Quantum momentum and quantum position are linear

operators (observables) on this space:

P (f(x)) = −i~f ′(x), X(f(x)) = f(x) · x.

The quantum Hamiltonian is a second order differential operator operator given by the same
equation

H =
P 2

2m
+

1

2
mω2X2 = − ~2

2m

d2

dx2
+

1

2
mω2x2.

As mathematicians, we can assume that m = 1 and ω = 1, so that H(f) = (fx2 − f ′′)/2.
The eigenvectors of H are Hermite functions

Ψn(x) = (−1)nex
2/2(e−x

2
)(n) , n = 0, 1, 2 . . .

with eigenvalues n + 1/2 which are discrete energy levels of the quantum oscillator. Notice
that < Ψk,Ψn >= δk,n2nn!

√
π, so they are orthogonal but not orthonormal. The states [Ψn]

are pure states: they do not change with time and always give n+ 1/2 as energy. If we take
a system in a state [v] where

v =
∑
n

αn
1

π42n/2n!
Ψn

20If V were finite-dimensional we could have used Proposition 3.23. But V is infinite dimensional! To ensure
diagonalisability V must be complete with respect to the hermitian norm. Such spaces are called Hilbert
spaces. Diagonalisability is still subtle as eigenvectors do not span the whole V but only a dense subspace.
Furthermore, if V admits no dense countably dimensional subspace, further difficulties arise. . . Pandora box
of functional analysis is wide open, so let us try to keep it shut.

21Notice the physical dimensions: H is energy, t is time, i dimensionless, ~ equalises the dimensions in the
both sides irrespectively of what v is.
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is normalised then the measurement of energy will return n + 1/2 with probability |αn|2
Notice that the measurement breaks the system!! It changes it to the state [Ψn] and all
future measurements will return the same energy!

Alternatively, it is possible to model the quantum oscillator on the vector space W = C[x] of
polynomials. One has to use the natural linear bijection

α : W → V, α(f(x)) = f(x)e−x
2/2

and transfer all the formulae to W . The metric becomes < f, g >=< α(f), α(g) >=∫∞
−∞ f̄(x)g(x)e−x

2
dx, the formulae for P and X changes accordingly, and at the end one

arrives at Hermite polynomials α−1(Ψn(x)) = (−1)nex
2
(e−x

2
)(n) instead of Hermite func-

tions.

Let us go back to an abstract system with two observables P and Q. It is pointless to measure
Q after measuring P as the system is broken. But can we measure them simultaneously?
The answer is given by Heisenberg’s uncertainty principle. Mathematically, it is a corollary
of Schwarz’s inequality:

||v||2 · ||w||2 = < v,v >< w,w > ≥ | < v,w > |2.
Let e1, e2, e3, . . . be eigenvectors for P an let p1, p2, . . . be the corresponding eigenvalues.
The probability that pj is returned after measuring on [v] with v =

∑
n αnen depends on the

multiplicity of the eigenvalue:

Prob(pj is returned) =
∑
pk=pj

|αk|2.

Hence, we should have the expected value

E(P,v) =
∑
k

pk|αk|2 =
∑
k

< αkek, pkαkek >=< v, P (v) > .

To compute the expected quadratic error we use the shifted observable Pv = P − E(P,v)I:

D(P,v) =

√
E(Pv

2,v) =
√
< v, Pv(Pv(v)) > =

√
< Pv(v), Pv(v) > = ||Pv(v)||

where we use the fact that P and Pv are hermitian. Notice that D(P,v) has a physical
meaning of uncertainty of measurement of P . Notice also that the operator PQ − QP is
no longer hermitian in general but we can still talk about its expected value. Here goes
Heisenberg’s principle.

Theorem 3.26

D(P,v) · D(Q,v) ≥ 1

2
|E(PQ−QP,v)|

Proof: In the right hand side, E(PQ − QP,v) = E(PvQv − QvPv,v) =< v, PvQv(v) >
− < v, QvPv(v) >=< Pv(v), Qv(v) > − < Qv(v), Pv(v) >. Remembering that the form is
hermitian,

E(PQ−QP,v) =< Pv(v), Qv(v) > −< Pv(v), Qv(v) > = 2 · Im(< Pv(v), Qv(v) >) ,

twice the imaginary part. So the right hand side is estimated by Schwarz’s inequality:

Im(< Pv(v), Qv(v) >) ≤ | < Pv(v), Qv(v) > | ≤ ||Pv(v)|| · ||Qv(v)|| .

2

Two cases of particular physical interest are commuting observables, i.e. PQ = QP and conju-
gate observables, i.e. PQ−QP = i~I. Commuting observable can be measured simultaneously
with any degree of certainty. Conjugate observables obey Heisenberg’s uncertainty:

D(P,v) · D(Q,v) ≥ ~
2
.
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4 Finitely Generated Abelian Groups

4.1 Definitions

Groups were introduced in the first year in Foundations, and will be studied in detail next
term in Algebra II: Groups and Rings. In this course, we are only interested in abelian (=
commutative) groups, which are defined as follows.

Definition. An abelian group is a set G together with a binary operation, which we write
as addition, and which satisfies the following properties:

(i) (Closure) for all g, h ∈ G, g + h ∈ G;
(ii) (Associativity) for all g, h, k ∈ G, (g + h) + k = g + (h+ k);
(iii) there exists an element 0G ∈ G such that:

(a) (Identity) for all g ∈ G, g + 0G = g; and
(b) (Inverse) for all g ∈ G there exists −g ∈ G such that g + (−g) = 0G;

(iv) (Commutativity) for all g, h ∈ G, g + h = h+ g.

Usually we just write 0 rather than 0G. We only write 0G if we need to distinguish between
the zero elements of different groups.

The commutativity axiom (iv) is not part of the definition of a general group, and for general
(non-abelian) groups, it is more usual to use multiplicative rather than additive notation. All
groups in this course should be assumed to be abelian, although many of the definitions in
this section apply equally well to general groups.

Examples. 1. The integers Z.

2. Fix a positive integer n > 0 and let

Zn = {0, 1, 2, . . . , n−1} = {x ∈ Z | 0 ≤ x < n }.

where addition is computed modulo n. So, for example, when n = 9, we have 2 + 5 = 7,
3 + 8 = 2, 6 + 7 = 4, etc. Note that the inverse −x of x ∈ Zn is equal to n− x (if x 6= 0) in
this example.

3. Examples from linear algebra. Let K be a field.
(i) The elements of K form an abelian group under addition.
(ii) The non-zero elements of K form an abelian group K× under multiplication.
(iii) The vectors in any vector space form an abelian group under addition.

Proposition 4.1 (The cancellation law) Let G be any group, and let g, h, k ∈ G. Then
g + h = g + k ⇒ h = k.

Proof: Add −g to both sides of the equation and use the Associativity and Identity axioms.
2

For any group G, g ∈ G, and integer n > 0, we define ng to be g + g + · · · + g, with n
occurrences of g in the sum. So, for example, 1g = g, 2g = g + g, 3g = g + g + g, etc.
We extend this notation to all n ∈ Z by defining 0g = 0 and (−n)g = −(ng) for −n < 0.
Overall, this defines a scalar action Z × G → G which allows as to think of abelian groups
as “vector spaces over Z” (or using precise terminology Z-modules - algebraic modules will
play a significant role in Rings and Modules in year 3).

Definition. A group G is called cyclic if there exists an element x ∈ G such that every
element of G is of the form mx for some m ∈ Z.
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The element x in the definition is called a generator of G. Note that Z and Zn are cyclic with
generator x = 1.

Definition. A bijection φ : G → H between two (abelian) groups is called an isomorphism
if φ(g + h) = φ(g) + φ(h) for all g, h ∈ G, and the groups G and H are called isomorphic is
there is an isomorphism between them.

The notation G ∼= H means that G is isomorphic to H; isomorphic groups are often thought
of as being essentially the same group, but with elements having different names.

Note (exercise) that any isomorphism must satisfy φ(0G) = 0H and φ(−g) = −φ(g) for all
g ∈ G.

Proposition 4.2 Any cyclic group G is isomorphic either to Z or to Zn for some n > 0.

Proof: Let G be cyclic with generator x. So G = {mx | m ∈ Z }. Suppose first that the
elements mx for m ∈ Z are all distinct. Then the map φ : Z → G defined by φ(m) = mx is
a bijection, and it is clearly an isomorphism.

Otherwise, we have lx = mx for some l < m, and so (m−l)x = 0 with m− l > 0. Let n be
the least integer with n > 0 and nx = 0. Then the elements 0x = 0, 1x, 2x, . . . , (n−1)x of G
are all distinct, because otherwise we could find a smaller n. Furthermore, for any mx ∈ G,
we can write m = rn + s for some r, s ∈ Z with 0 ≤ s < n. Then mx = (rn + s)x = sx, so
G = { 0, 1x, 2x, . . . , (n−1)x }, and the map φ : Zn → G defined by φ(m) = mx for 0 ≤ m < n
is a bijection, which is easily seen to be an isomorphism. 2

Definition. For an element g ∈ G, the least integer n > 0 with ng = 0, if it exists, is called
the order |g| of g. If there is no such n, then g has infinite order and we write |g| =∞.

Exercise. If φ : G→ H is an isomorphism, then |g| = |φ(g)| for all g ∈ G.

Definition. A group G is generated or spanned by a subset X of G if every g ∈ G can be
written as a finite sum

∑k
i=1mixi, with mi ∈ Z and xi ∈ X. It is finitely generated if it has

a finite generating set X = {x1, . . . , xn}.
So a group is cyclic if and only if it has a generating set X with |X| = 1.

In general, if G is generated by X, then we write G = 〈X〉 or G = 〈x1, . . . , xn〉 when
X = {x1, . . . , xn} is finite.

Definition. The direct sum of groups G1, . . . , Gn is defined to be the set
{ (g1, g2, . . . , gn) | gi ∈ Gi } with component-wise addition

(g1, g2, . . . , gn) + (h1, h2, . . . , hn) = (g1+h1, g2+h2, . . . , gn+hn).

This is a group with identity element (0, 0, . . . , 0) and −(g1, g2, . . . , gn) = (−g1,−g2, . . . ,−gn).

In general (non-abelian) group theory this is more often known as the direct product of
groups.

The main result of this section, known as the fundamental theorem of finitely generated abelian
groups, is that every finitely generated abelian group is isomorphic to a direct sum of cyclic
groups. (This is not true in general for abelian groups, such as the additive group Q of
rational numbers, which are not finitely generated.)

4.2 Subgroups, cosets and quotient groups

Definition. A subset H of a group G is called a subgroup of G if it forms a group under the
same operation as that of G.
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Lemma 4.3 If H is a subgroup of G, then the identity element 0H of H is equal to the
identity element 0G of G.

Proof: Using the identity axioms for H and G, 0H + 0H = 0H = 0H + 0G. Now by the
cancellation law, 0H = 0G. 2

The definition of a subgroup is semantic in its nature. While it precisely pinpoints what a
subgroup is, it is quite cumbersome to use. The following proposition gives a usable criterion.

Proposition 4.4 Let H be a subset of a group G. The following statements are equiva-
lent.

(i) H is a subgroup of G.
(ii) (a) H is nonempty; and

(b) h1, h2 ∈ H ⇒ h1 + h2 ∈ H; and
(c) h ∈ H ⇒ −h ∈ H.

(iii) (a) H is nonempty; and
(b) h1, h2 ∈ H ⇒ h1 − h2 ∈ H.

Proof: If H is a subgroup of G then it is nonempty as it contains 0H . Moreover, h1 − h2 =
h1 + (−h2) ∈ H if so are h1 and h2. Thus, (i) implies (iii).

To show that (iii) implies (ii) we pick x ∈ H. Then 0 = x− x ∈ H. Now −h = 0− h ∈ H for
any h ∈ H. Finally, h1 + h2 = h1 − (−h2) ∈ H for all h1, h2 ∈ H.

To show that (ii) implies (i) we need to verify the four group axioms in H. Two of these,
‘Closure’, and ‘Inverse’, are the conditions (b) and (c). The other two axioms are ‘Associativ-
ity’ and ‘Identity’. Associativity holds because it holds in G, and H is a subset of G. Since
we are assuming that H is nonempty, there exists h ∈ H, and then −h ∈ H by (c), and
h+ (−h) = 0 ∈ H by (b), and so ‘Identity’ holds, and H is a subgroup. 2

Examples. 1. There are two standard subgroups of any group G: the whole group G itself,
and the trivial subgroup {0} consisting of the identity alone. Subgroups other than G are
called proper subgroups, and subgroups other than {0} are called non-trivial subgroups.

2. If g is any element of any group G, then the set of all integer multiples {mg | m ∈ Z }
forms a subgroup of G called the cyclic subgroup generated by g.

Let us look at a few specific examples. If G = Z, then 5Z, which consists of all multiples of
5, is the cyclic subgroup generated by 5. Of course, we can replace 5 by any integer here, but
note that the cyclic groups generated by 5 and −5 are the same.

If G = 〈g〉 is a finite cyclic group of order n and m is a positive integer dividing n, then
the cyclic subgroup generated by mg has order n/m and consists of the elements kmg for
0 ≤ k < n/m.

Exercise. What is the order or the cyclic subgroup generated by mg for general m (where
we drop the assumption that m|n)?

Exercise. Show that the groups of non-zero complex numbers C× under the operation of
multiplication has finite cyclic subgroups of all possible orders.

Definition. Let g ∈ G. Then the coset H + g is the subset {h+ g | h ∈ H } of G.

(Note: Since our groups are abelian, we have H + g = g + H, but in general group theory
the right and left cosets Hg and gH can be different.)

Examples. 3. G = Z, H = 5Z. There are just 5 distinct cosets H = H + 0 = { 5n | n ∈ Z },
H + 1 = { 5n+ 1 | n ∈ Z }, H + 2, H + 3, H + 4. Note that H + i = H + j whenever i ≡ j
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(mod 5).

4. G = Z6, H = {0, 3}. There are 3 distinct cosets, H = H + 3 = {0, 3}, H + 1 = H + 4 =
{1, 4}, and H + 2 = H + 5 = {2, 5},
5. G = C×, the group of non-zero complex numbers under multiplication, S1 = {z, |z| = 1},
the unit circle. The cosets are circles. There are uncountably many distinct cosets, one for
each positive real number (radius of a circle).

Proposition 4.5 The following are equivalent for g, k ∈ G:

(i) k ∈ H + g;
(ii) H + g = H + k;
(iii) k − g ∈ H.

Proof: Clearly H + g = H + k ⇒ k ∈ H + g, so (ii)⇒ (i).

If k ∈ H + g, then k = h+ g for some fixed h ∈ H, so g = k − h. Let f ∈ H + g. Then, for
some h1 ∈ H, we have f = h1 +g = h1 +k−h ∈ H+k, so Hg ⊆ Hk. Similarly, if f ∈ H+k,
then for some h1 ∈ H, we have f = h1 + k = h1 + h+ g ∈ H + g, so H + k ⊆ H + g. Thus
H + g = H + k, and we have proved that (i)⇒ (ii).

If k ∈ H + g, then, as above, k = h+ g, so k − g = h ∈ H and (i)⇒ (iii).

Finally, if k − g ∈ H, then putting h = k − g, we have h + g = k, so k ∈ H + g, proving
(iii)⇒ (i). 2

Corollary 4.6 Two right cosets H + g1 and H + g2 of H in G are either equal or disjoint.

Proof: If H + g1 and H + g2 are not disjoint, then there exists an element k ∈ (H + g1) ∩
(H + g2), but then H + g1 = H + k = H + g2 by the proposition. 2

Corollary 4.7 The cosets of H in G partition G.

Proposition 4.8 If H is finite, then all right cosets have exactly |H| elements.

Proof: Since h1 + g = h2 + g ⇒ h1 = h2 by the cancellation law, it follows that the map
φ : H → H + g defined by φ(h) = h+ g is a bijection, and the result follows. 2

Corollary 4.7 and Proposition 4.8 together imply:

Theorem 4.9 (Lagrange’s Theorem) Let G be a finite (abelian) group and H a subgroup
of G. Then the order of H divides the order of G.

Definition. The number of distinct right cosets of H in G is called the index of H in G and
is written as |G : H|.
If G is finite, then we clearly have |G : H| = |G|/|H|. But, from the example G = Z, H = 5Z
above, we see that |G : H| can be finite even when G and H are infinite.

Proposition 4.10 Let G be a finite (abelian) group. Then for any g ∈ G, the order |g| of g
divides the order |G| of G.

Proof: Let |g| = n. We saw in Example 2 above that the integer multiples {mg | m ∈
Z } of g form a subgroup H of G. By minimality of n, the distinct elements of H are
{0, g, 2g, . . . , (n−1)g}, so |H| = n and the result follows from Lagrange’s Theorem. 2

As an application, we can now immediately classify all finite (abelian) groups whose order is
prime.
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Proposition 4.11 Let G be a (abelian) group having prime order p. Then G is cyclic; that
is, G ∼= Zp.

Proof: Let g ∈ G with 0 6= g. Then |g| > 1, but |g| divides p by Proposition 4.10, so |g| = p.
But then G must consist entirely of the integer multiples mg (0 ≤ m < p) of g, so G is cyclic.
2

Definition. If A and B are subsets of a group G, then we define their sum A+B = { a+ b |
a ∈ A, b ∈ B }.

Lemma 4.12 If H is a subgroup of the abelian group G and H + g, H + h are cosets of H
in G, then (H + g) + (H + h) = H + (g + h).

Proof: Since G is abelian, this follows directly from commutativity and associativity. 2

Theorem 4.13 Let H be a subgroup of an abelian group G. Then the set G/H of cosets
H + g of H in G forms a group under addition of subsets.

Proof: We have just seen that (H + g) + (H + h) = H + (g + h), so we have closure, and
associativity follows easily from associativity of G. Since (H + 0) + (H + g) = H + g for all
g ∈ G, H = H + 0 is an identity element, and since (H − g) + (H + g) = H − g + g = H,
H − g is an inverse to H + g for all cosets H + g. Thus the four group axioms are satisfied
and G/H is a group. 2

Definition. The group G/H is called the quotient group (or the factor group) of G by H.

Notice that if G is finite, then |G/H| = |G : H| = |G|/|H|. So, although the quotient group
seems a rather complicated object at first sight, it is actually a smaller group than G.

Examples. 1. Let G = Z and H = mZ for some m > 0. Then there are exactly m distinct
cosets, H, H + 1, . . . , H + (m− 1). If we add together k copies of H + 1, then we get H + k.
So G/H is cyclic of order m and with generator H + 1. So by Proposition 4.2, Z/mZ ∼= Zm.

2. G = R and H = Z. The quotient group G/H is isomorphic to the circle subgroup
S1 of the multiplicative group C×. One writes an explicit isomorphism φ : G/H → S1 by
φ(x+ Z) = e2πxi.

3. G = Q and H = Z. The quotient group G/H features in one of the previous exams. It
has been required to show that this group is infinite, not finitely generated and that every
element of G/H has finite order.

4. The quotient groups play important role in Analysis: they are used to define Lebesgue
spaces. Let p ≥ 1 be a real number, U ⊆ R an interval. Consider the vector space V of all
measurable functions f : U → R such that

∫
U |f(x)|pdx < ∞. It follows from Minkowski’s

inequality that this is a vector space and consequently an abelian group. It contains a vector
subspace W of negligible functions, that is, f(x) satisfying

∫
U |f(x)|pdx = 0. The quotient

group V/W is actually a vector space called Lebesgue’s space and denoted Lp(U,R).

4.3 Homomorphisms and the first isomorphism theorem

Definition. Let G and H be groups. A homomorphism φ from G to H is a map φ : G→ H
such that φ(g1 + g2) = φ(g1) + φ(g2) for all g1, g2 ∈ G.

Homomorphisms correspond to linear transformations between vector spaces.

Note that an isomorphism is just a bijective homomorphism. There are two other types of
‘morphism’ that are worth mentioning at this stage.
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A homomorphism φ is injective if it is an injection; that is, if φ(g1) = φ(g2) ⇒ g1 = g2.
A homomorphism φ is surjective if it is a surjection; that is, if im(φ) = H. Sometimes, a
surjective homomorphism is called epimorphism while an injective homomorphism is called
monomorphism but we will not use this terminology in these lectures.

Lemma 4.14 Let φ : G→ H be a homomorphism. Then φ(0G) = 0H and φ(g) = −φ(g) for
all g ∈ G.

Proof: Exercise. (Similar to results for linear transformations.) 2

Example. Let G be any group, and let n ∈ Z. Then φ : G→ G defined by φ(g) = ng for all
g ∈ G is a homomorphism.

Kernels and images are defined as for linear transformations of vector spaces.

Definition. Let φ : G → H be a homomorphism. Then the kernel ker(φ) of φ is defined to
be the set of elements of G that map onto 0H ; that is,

ker(φ) = { g | g ∈ G, φ(g) = 0H }.

Note that by Lemma 4.14 above, ker(φ) always contains 0G.

Proposition 4.15 Let φ : G → H be a homomorphism. Then φ is injective if and only if
ker(φ) = {0G}.

Proof: Since 0G ∈ ker(φ), if φ is injective then we must have ker(φ) = {0G}. Conversely,
suppose that ker(φ) = {0G}, and let g1, g2 ∈ G with φ(g1) = φ(g2). Then 0H = φ(g1) −
φ(g2) = φ(g1− g2) (by Lemma 4.14), so g1− g2 ∈ ker(φ) and hence g1− g2 = 0G and g1 = g2.
So φ is injective. 2

Theorem 4.16 (i) Let φ : G→ H be a homomorphism. Then ker(φ) is a subgroup of G and
im(φ) is a subgroup of H.
(ii) Let H be a subgroup of a group G. Then the map φ : G→ G/H defined by φ(g) = H + g
is a surjective homomorphism with kernel H.

Proof: (i) is straightforward using Proposition 4.4. For (ii), it is easy to check that φ is
surjective, and φ(g) = 0G/H ⇔ H + g = H + 0G ⇔ g ∈ H, so ker(φ) = H. 2

The following lemma explains a connection between quotients and homomorphisms. It clar-
ifies the trickiest point in the proof of the forthcoming First Isomorphism Theorem.

Lemma 4.17 Let φ : G→ H be a homomorphism with a kernel K, A a subgroup of G. The
homomorphism φ determines a homomorphism φ : G/A → H via φ(A + g) = φ(g) for all
g ∈ G if and only if A ⊆ K.

Proof: We need to check that the map φ is well-defined, i.e. whenever A+ g = A+ h with
g 6= h, we need to ensure that φ(g) = φ(h). In this case g = a+ h for some a ∈ A. Hence, φ
is well-defined if and only if φ(g) = φ(a) + φ(h) = φ(h) for all g, h ∈ G, a ∈ A if and only if
φ(a) = 0 for all a ∈ A if and only if A ⊆ K.

Observe also that, once φ is well-defined, it is trivially a homomorphism, since so is φ:

φ(A+ h) + φ(A+ g) = φ(h) + φ(g) = φ(h+ g) = φ(A+ h+ g) = φ((A+ h) + (A+ g)).

2
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If one denotes the set of all homomorphism from G to H by hom(G,H) there is an elegant
way to reformulate Lemma 4.17. The composition with the quotient map ψ : G → G/A
defines a bijection

hom(G/A,H)→ {α ∈ hom(G,H) | α(A) = {0}}, φ 7→ φ ◦ ψ.

Theorem 4.18 (First Isomorphism Theorem) Let φ : G→ H be a homomorphism with
kernel K. Then G/K ∼= im(φ). More precisely, there is an isomorphism φ : G/K → im(φ)
defined by φ(K + g) = φ(g) for all g ∈ G.

Proof: The map φ is a well-defined homomorphism by Lemma 4.17. Clearly, im(φ) = im(φ).
Finally,

φ(K + g) = 0H ⇐⇒ φ(g) = 0H ⇐⇒ g ∈ K ⇐⇒ K + g = K + 0 = 0G/K .

By Proposition 4.15, φ is injective. Thus φ : G/K → im(φ) is an isomorphism. 2

One can associate two quotient groups to a homomorphism φ : G → H. The cokernel of φ
is Coker(φ) = H/im(φ) and the coimage of φ is Coim(φ) = G/ ker(φ). In short, the first
isomorphism theorem states that the natural homomorphism from the coimage to the image
is an isomorphism.

We shall be using this theorem later, when we prove the main theorem on finitely generated
abelian group in Subsection 4.7. The crucial observation is that any finitely generated abelian
group is the cokernel of a homomorphism between two finitely generated free abelian groups,
which we will discuss in the next section.

4.4 Free abelian groups

Definition. The direct sum Zn of n copies of Z is known as a (finitely generated) free abelian
group of rank n.

More generally, a finitely generated abelian group is called free abelian if it is isomorphic to
Zn for some n ≥ 0.

(The free abelian group Z0 of rank 0 is defined to be the trivial group {0} containing the
single element 0.)

The groups Zn have many properties in common with vector spaces such as Rn, but we must
expect some differences, because Z is not a field.

We can define the standard basis of Zn exactly as for Rn; that is, x1,x2, . . . ,xn, where xi
has 1 in its i-th component and 0 in the other components. This has the same properties as
a basis of a vector space; i.e. it is linearly independent and spans Zn.

Definition. Elements x1, . . . , xn of an abelian group G are called linearly independent if, for
α1, . . . , αn ∈ Z, α1x1 + · · ·+ αnxn = 0G implies α1 = α2 = · · · = αn = 0Z.

Definition. Elements x1, . . . , xn form a free basis of the abelian group G if and only if they
are linearly independent and generate (span) G.

Now consider elements x1, . . . , xn of an abelian group G. It is possible to extend the as-
signment φ(xi) = xi to a group homomorphism φ : Zn → G. As a function we define
φ((a1, a2, . . . , an)T ) =

∑n
i=1 aixi. We leave the proof of the following result as an exercise.

Proposition 4.19 (i) The function φ is a group homomorphism.
(ii) Elements xi are linearly independent if and only if φ is injective.
(iii) Elements xi span G if and only if φ is surjective.
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(iv) Elements xi form a basis of G if and only if φ is an isomorphism.

Note that this proposition makes a perfect sense for vector spaces. Also note that the last
statement implies that x1, . . . , xn is a free basis of G if and only if every element g ∈ G has
a unique expression g = α1x1 + · · ·+ αnxn with αi ∈ Z, very much like for vector spaces.

Before Proposition 4.19 we were trying to extend the assignment φ(xi) = xi to a group
homomorphism φ : Zn → G. Note that the extension we wrote is unique. This is the key to
the next corollary. The details of the proof are left to the reader.

Corollary 4.20 (Universal property of the free abelian group) Let G be a free group
with basis x1, . . . , xn. Let H be a group and a1, . . . , an ∈ H. Then there exists a unique group
homomorphism φ : G→ H such that φ(xi) = ai for all i.

As for finite dimensional vector spaces, it turns out that any two free bases of a free abelian
group have the same size, but this has to be proved. It will follow directly from the next
theorem.

Let x1,x2, . . . ,xn be the standard free basis of Zn, and let y1, . . . ,ym be another free basis.
As in Linear Algebra, we can define the associated change of basis matrix P (with original
basis {xi} and new basis {yi}), where the columns of P are yT

i ; that is, they express yi in

terms of xi. For example, if n = m = 2, y1 = (2 7), y2 = (1 4), then P =

(
2 1
7 4

)
. In

general, P = (ρij) is an n×m matrix with yj =
∑n

i=1 ρijxi for 1 ≤ j ≤ m.

Theorem 4.21 Let y1, . . . ,ym ∈ Zn with yj =
∑n

i=1 ρijxi for 1 ≤ j ≤ m. Then the
following are equivalent:

(i) y1, . . . ,ym is a free basis of Zn;
(ii) n = m and P is an invertible matrix such that P−1 has entries in Z;
(iii) n = m and det(P ) = ±1.

(A matrix P ∈ Zn,n with det(P ) = ±1 is called unimodular.)

Proof: (i) ⇒ (ii). If y1, . . . ,ym is a free basis of Zn then it spans Zn, so there is an m× n
matrix T = (τij) with xk =

∑m
j=1 τjkyj for 1 ≤ k ≤ n. Hence

xk =
m∑
j=1

τjkyj =
m∑
j=1

τjk

n∑
i=1

ρijxi =
n∑
i=1

(
m∑
j=1

ρijτjk)xi,

and, since x1, . . . ,xn is a free basis, this implies that
∑m

j=1 ρijτjk = 1 when i = k and 0 when
i 6= k. In other words PT = In, and similarly TP = Im, so P and T are inverse matrices.
But we can think of P and T as inverse matrices over the field Q, so it follows from First
Year Linear Algebra that m = n, and T = P−1 has entries in Z.

(ii)⇒ (i). If T = P−1 has entries in Z then, again thinking of them as matrices over the field
Q, rank(P ) = n, so the columns of P are linearly independent over Q and hence also over Z.
Since the columns of P are just the column vectors representing y1, . . . ,ym, this tells us that
y1, . . . ,ym are linearly independent.

Using PT = In, for 1 ≤ k ≤ n we have

m∑
j=1

τjkyj =

m∑
j=1

τjk

n∑
i=1

ρijxi =

n∑
i=1

(

m∑
j=1

ρijτjk)xi = xk,
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because
∑m

j=1 ρijτjk is equal to 1 when i = k and 0 when i 6= k. Since x1, . . . ,xn spans Zn,
and we can express each xk as a linear combination of y1, . . . ,ym, it follows that y1, . . . ,ym
span Zn and hence form a free basis of Zn.

(ii) ⇒ (iii). If T = P−1 has entries in Z, then det(PT ) = det(P ) det(T ) = det(In) = 1, and
since det(P ),det(T ) ∈ Z, this implies det(P ) = ±1.

(iii) ⇒ (ii). From First year Linear Algebra, P−1 = 1
det(P )adj(P ), so det(P ) = ±1 implies

that P−1 has entries in Z. 2

Examples. If n = 2 and y1 = (2 7), y2 = (1 4), then det(P ) = 8− 7 = 1, so y1,y2 is a free
basis of Z2.

But, if y1 = (1 0), y2 = (0 2), then det(P ) = 2, so y1,y2 is not a free basis of Z2. Recall
that in Linear Algebra over a field, any set of n linearly independent vectors in a vector space
V of dimension n form a basis of V . This example shows that this result is not true in Zn,
because y1 and y2 are linearly independent but do not span Z2.

But as in Linear Algebra, for v ∈ Zn, if x(= vT) and y are the column vectors representing v
using free bases x1, . . . ,xn and y1, . . . ,yn , respectively, then we have x = Py, so y = P−1x.

4.5 Unimodular elementary row and column operations and the Smith
normal form for integral matrices

We interrupt our discussion of finitely generated abelian groups at this stage to investigate
how the row and column reduction process of Linear Algebra can be adapted to matrices
over Z. Recall from MA106 that we can use elementary row and column operations to reduce
an m × n matrix of rank r over a field K to a matrix B = (βij) with βii = 1 for 1 ≤ i ≤ r
and βij = 0 otherwise. We called this the Smith Normal Form of the matrix. We can do
something similar over Z, but the non-zero elements βii will not necessarily all be equal to 1.

The reason that we disallowed λ = 0 for the row and column operations (R3) and (C3)
(multiply a row or column by a scalar λ) was that we wanted all of our elementary operations
to be reversible. When performed over Z, (R1), (C1), (R2) and (C2) are reversible, but (R3)
and (C3) are reversible only when λ = ±1. So, if A is an m×n matrix over Z, then we define
the three types of unimodular elementary row operations as follows:

(UR1): Replace some row ri of A by ri + trj , where j 6= i and t ∈ Z;

(UR2): Interchange two rows of A;

(UR3): Replace some row ri of A by −ri.

The unimodular column operations (UC1), (UC2), (UC3) are defined similarly. Recall from
MA106 that performing elementary row or column operations on a matrix A corresponds
to multiplying A on the left or right, respectively, by an elementary matrix. These elemen-
tary matrices all have determinant ±1 (1 for (UR1) and −1 for (UR2) and (UR3)), so are
unimodular matrices over Z.

Theorem 4.22 (Smith Normal Form) Let A be an m × n matrix over Z with rank r.
Then, by using a sequence of unimodular elementary row and column operations, we can
reduce A to a matrix B = (βij) with βii = di for 1 ≤ i ≤ r and βij = 0 otherwise, and where
the integers di satisfy di > 0 for 1 ≤ i ≤ r, and di|di+1 for 1 ≤ i < r. Subject to these
conditions, the di are uniquely determined by the matrix A.

Proof: We shall not prove the uniqueness part here. The fact that the number of non-zero
βii is the rank of A follows from the fact that unimodular row and column operations do not
change the rank. We use induction on m + n. The base case is m = n = 1, where there is
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nothing to prove. Also if A is the zero matrix then there is nothing to prove, so assume not.

Let d be the smallest entry with d > 0 in any matrix C = (γij) that we can obtain from A
by using unimodular elementary row and column operations. By using (R2) and (C2), we
can move d to position (1, 1) and hence assume that γ11 = d. If d does not divide γ1j for
some j > 0, then we can write γ1j = qd+ r with q, r ∈ Z and 0 < r < d, and then replacing
the j-th column cj of C by cj − qc1 results in the entry r in position (1, j), contrary to the
choice of d. Hence d|γ1j for 2 ≤ j ≤ n and similarly d|γi1 for 2 ≤ i ≤ m.

Now, if γ1j = qd, then replacing cj of C by cj − qc1 results in entry 0 position (1, j). So
we can assume that γ1j = 0 for 2 ≤ j ≤ n and γi1 = 0 for 2 ≤ i ≤ m. If m = 1 or n = 1,
then we are done. Otherwise, we have C = (d) ⊕ C ′ for some (m − 1) × (n − 1) matrix C ′.
By inductive hypothesis, the result of the theorem applies to C ′, so by applying unimodular
row and column operations to C which do not involve the first row or column, we can reduce
C to D = (δij), which satisfies δ11 = d, δii = di > 0 for 2 ≤ i ≤ r, and δij = 0 otherwise,
where di|di+1 for 2 ≤ i < r. To complete the proof, we still have to show that d|d2. If not,
then adding row 2 to row 1 results in d2 in position (1,2) not divisible by d, and we obtain a
contradiction as before. 2

In the following two examples we determine the Smith Normal Forms of the matrix A.

Example 1. Let A be the matrix A =

(
42 21
−35 −14

)
.

The general strategy is to reduce the size of entries in the first row and column, until the
(1,1)-entry divides all other entries in the first row and column. Then we can clear all of
these other entries.

Matrix Operation Matrix Operation(
42 21
−35 −14

)
c1 → c1 − 2c2

(
0 21
−7 −14

)
r2 → −r2
r1 ↔ r2(

7 14
0 21

)
c2 → c2 − 2c1

(
7 0
0 21

)

Example 2. Let A be the matrix A =


−18 −18 −18 90

54 12 45 48
9 −6 6 63

18 6 15 12

.
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Matrix Operation Matrix Operation
−18 −18 −18 90

54 12 45 48
9 −6 6 63

18 6 15 12

 c1 → c1 − c3


0 −18 −18 90
9 12 45 48
3 −6 6 63
3 6 15 12

 r1 ↔ r4


3 6 15 12
9 12 45 48
3 −6 6 63
0 −18 −18 90

 r2 → r2 − 3r1
r3 → r3 − r1


3 6 15 12
0 −6 0 12
0 −12 −9 51
0 −18 −18 90

 c2 → c2 − 2c1
c3 → c3 − 5c1
c4 → c4 − 4c1

3 0 0 0
0 −6 0 12
0 −12 −9 51
0 −18 −18 90

 c2 → −c2
c2 → c2 + c3


3 0 0 0
0 6 0 12
0 3 −9 51
0 0 −18 90

 r2 ↔ r3


3 0 0 0
0 3 −9 51
0 6 0 12
0 0 −18 90

 r3 → r3 − 2r2


3 0 0 0
0 3 −9 51
0 0 18 −90
0 0 −18 90

 c3 → c3 + 3c2
c4 → c4 − 17c2


3 0 0 0
0 3 0 0
0 0 18 −90
0 0 −18 90

 c4 → c4 + 5c3
r4 → r4 + r3


3 0 0 0
0 3 0 0
0 0 18 0
0 0 0 0


Note: There is also a generalisation to integer matrices of the row reduced normal form from
Linear Algebra, where only row operations are allowed. This is known as the Hermite Normal
Form and is more complicated. It will appear on an exercise sheet.

4.6 Subgroups of free abelian groups

Proposition 4.23 Any subgroup of a finitely generated abelian group is finitely generated.

Proof: Let K < G with G an abelian group generated by x1, . . . , xn. We shall prove by
induction on n that K can be generated by at most n elements. If n = 1 then G is cyclic.
Write G = {nx|n ∈ Z}. Let m be the smallest positive number such that mx ∈ K. If such a
number does not exist then K = {0}. Otherwise, K ⊇ {nmx|n ∈ Z}. The opposite inclusion
follows using division with a remainder: write t = qm + r with 0 ≤ r < m. Then tx ∈ K if
and only if rx = (t −mq)x ∈ K if and only if r = 0 due to minimality of m. In both cases
K is cyclic.

Suppose n > 1, and let H be the subgroup of G generated by x1, . . . , xn−1. By induction,
K ∩H is generated by y1, . . . , ym−1, say, with m ≤ n. If K ≤ H, then K = K ∩H and we
are done, so suppose not.

Then there exist elements of the form h+ txn ∈ K with h ∈ H and t 6= 0. Since −(h+ txn) ∈
K, we can assume that t > 0. Choose such an element ym = h + txn ∈ K with t minimal
subject to t > 0. We claim that K is generated by y1, . . . , ym, which will complete the proof.
Let k ∈ K. Then k = h′ + uxn with h′ ∈ H and u ∈ Z. If t does not divide u then we can
write u = tq + r with q, r ∈ Z and 0 < r < t, and then k − qym = (h′ − qh) + rxn ∈ K,
contrary to the choice of t. So t|u and hence u = tq and k − qym ∈ K ∩H. But K ∩H is
generated by y1, . . . , ym−1, so we are done. 2
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Now let H be a subgroup of the free abelian group Zn, and suppose that H is generated by
v1, . . . ,vm. Then H can be represented by an n × m matrix A in which the columns are
vT1 , . . . ,v

T
m.

Example 3. If n = 3 and H is generated by v1 = (1 3 −1) and v2 = (2 0 1), then

A =

 1 2
3 0
−1 1

.

As we saw above, if we use a different free basis y1, . . . ,yn of Zn with basis change matrix
P , then each column vTj of A is replaced by P−1vTj , and hence A itself is replaced by P−1A.

So in Example 3, if we use the basis y1 = (0 −1 0), y2 = (1 0 1), y3 = (1 1 0) of Zn, then

P =

 0 1 1
−1 0 1

0 1 0

 , P−1 =

1 −1 −1
0 0 1
1 0 −1

 , P−1A =

−1 1
−1 1

2 1

 .

For example, the first column (−1 −1 2)T of P−1A represents −y1−y2+2y3 = (1 3 −1) = v1.

In particular, if we perform a unimodular elementary row operation on A, then the resulting
matrix represents the same subgroup H of Zn but using a different free basis of Zn.

We can clearly replace a generator vi of H by vi + rvj for r ∈ Z without changing the
subgroup H that is generated. We can also interchange two of the generators or replace one
of the generators vi by −vi without changing H. In other words, performing a unimodular
elementary column operation on A amounts to changing the generating set for H, so again
the resulting matrix still represents the same subgroup H of Zn.

Summing up, we have:

Proposition 4.24 Suppose that the subgroup H of Zn is represented by the matrix A ∈ Zn,m.
If the matrix B ∈ Zn,m is obtained by performing a sequence of unimodular row and column
operations on A, then B represents the same subgroup H of Zn using a (possibly) different
free basis of Zn.

In particular, by Theorem 4.22, we can transform A to a matrix B in Smith Normal Form.
Therefore, if B represents H with the free basis y1, . . . ,yn of Zn, then the r non-zero columns
of B correspond to the elements d1y1, d2y2, . . . , dryr of Zn. So we have:

Theorem 4.25 Let H be a subgroup of Zn. Then there exists a free basis y1, . . . ,yn of Zn
such that H = 〈 d1y1, d2y2, . . . , dryr 〉, where each di > 0 and di|di+1 for 1 ≤ i < r.

In Example 3, it is straightforward to calculate the Smith Normal Form of A, which is1 0
0 3
0 0

, so H = 〈y1, 3y2〉.

By keeping track of the unimodular row operations carried out, we can, if we need to, find
the free basis y1, . . . ,yn of Zn. Doing this in Example 3, we get:
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Matrix Operation New free basis 1 2
3 0
−1 1

 r2 → r2 − 3r1
r3 → r3 + r1

y1 = (1 3 −1), y2 = (0 1 0), y3 = (0 0 1)1 2
0 −6
0 3

 c2 → c2 − 2c1 y1 = (1 3 −1), y2 = (0 1 0), y3 = (0 0 1)1 0
0 −6
0 3

 r2 ↔ r3 y1 = (1 3 −1), y2 = (0 0 1), y3 = (0 1 0)1 0
0 3
0 −6

 r3 → r3 + 2r2 y1 = (1 3 −1), y2 = (0 −2 1), y3 = (0 1 0)1 0
0 3
0 0


4.7 General finitely generated abelian groups

Let G be a finitely generated abelian group. If G has n generators, Proposition 4.19 gives a
surjective homomorphism φ : Zn → G. From the First isomorphism Theorem (Theorem 4.18)
we deduce that G ∼= Zn/K, where K = ker(φ). So we have proved that every finitely
generated abelian group is isomorphic to a quotient group of a free abelian group.

From the definition of φ, we see that

K = { (α1, α2, . . . , αn) ∈ Zn | α1x1 + · · ·+ αnxn = 0G }.

By Theorem 4.23, this subgroup K is generated by finitely many elements v1, . . . ,vm of Zn.
The notation

〈x1, . . . ,xn | v1, . . . ,vm 〉

is often used to denote the quotient group Zn/K, so we have

G ∼= 〈x1, . . . ,xn | v1, . . . ,vm 〉.

Now we can apply Theorem 4.25 to this subgroup K, and deduce that there is a free basis
y1, . . . ,yn of Zn such that K = 〈 d1y1, . . . , dryr 〉 for some r ≤ n, where each di > 0 and
di|di+1 for 1 ≤ i < r.

So we also have
G ∼= 〈y1, . . . ,yn | d1y1, . . . , dryr 〉,

and G has generators y1, . . . , yn with diyi = 0 for 1 ≤ i ≤ r.

Proposition 4.26 The group

〈y1, . . . ,yn | d1y1, . . . , dryr 〉

is isomorphic to the direct sum of cyclic groups

Zd1 ⊕ Zd2 ⊕ · · · ⊕ Zdr ⊕ Zn−r.

Proof: This is another application of the First Isomorphism Theorem. Let H = Zd1⊕Zd2⊕
· · ·⊕Zdr⊕Zn−r, so H is generated by y1, . . . , yn, with y1 = (1, 0, . . . , 0), . . . , yn = (0, . . . , 0, 1).
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Let y1, . . . ,yn be the standard free basis of Zn. By Proposition 4.19, there is a surjective
homomorphism φ from Zn to H for which

φ(α1y1 + · · ·+ αnyn) = α1y1 + · · ·+ αnyn

for all α1, . . . , αn ∈ Z. By Theorem 4.18, we have H ∼= Zn/K, with

K = { (α1, α2, . . . , αn) ∈ Zn | α1y1 + · · ·+ αnyn = 0H }.

Now α1y1 + · · ·+ αnyn is the element (α1, α2, . . . , αn) of H, which is the zero element if and
only if αi is the zero element of Zdi for 1 ≤ i ≤ r and αi = 0 for r + 1 ≤ i ≤ n.

But αi is the zero element of Zdi if and only if di|αi, so we have

K = { (α1, α2, . . . , αr, 0, . . . , 0) ∈ Zn | di divides αi for 1 ≤ i ≤ r }

which is generated by the elements d1y1, . . . , dryr. Thus

H ∼= Zn/K = 〈y1, . . . ,yn | d1y1, . . . , dryr 〉

and we are done. 2

Putting all of these results together, we get the main theorem of this section.

Theorem 4.27 (Fundamental theorem of finitely generated abelian groups) If G is
a finitely generated abelian group, then G is isomorphic to a direct sum of cyclic groups. More
precisely, if G is generated by n elements, then there is an integer r with 0 ≤ r ≤ n, and
there are integers d1, . . . , dr with di > 0 and di|di+1 such that

G ∼= Zd1 ⊕ Zd2 ⊕ · · · ⊕ Zdr ⊕ Zn−r.

Thus G is isomorphic to a direct sum of r finite cyclic groups of orders d1, . . . , dr, and n− r
infinite cyclic groups.

There may be some factors Z1, the trivial group of order 1. These can be omitted from the
direct sum (except in the case when G ∼= Z1 is trivial). It can be deduced from the uniqueness
part of Theorem 4.22, which we did not prove, that the numbers in the sequence d1, d2, . . . , dr
that are greater than 1 are uniquely determined by G.

The integer n− r may be 0, which is the case if and only if G is finite. At the other extreme,
if all di = 1, then G is free abelian.

The group G corresponding to Example 1 in Section 4.5 is

〈x1,x2 | 42x1 − 35x2, 21x1 − 14x2 〉

and we have G ∼= Z7 ⊕ Z21, a group of order 7× 21 = 147.

The group defined by Example 2 in Section 4.5 is〈
x1,x2,x3,x4

∣∣∣∣∣ −18x1 + 54x2 + 9x3 + 18x4, −18x1 + 12x2 − 6x3 + 6x4,

−18x1 + 45x2 + 6x3 + 15x4, 90x1 + 48x2 + 63x3 + 12x4

〉
,

which is isomorphic to Z3 ⊕ Z3 ⊕ Z18 ⊕ Z, and is an infinite group with a (maximal) finite
subgroup of order 3× 3× 18 = 162,

The group defined by Example 3 in Section 4.6 is

〈x1,x2,x3 | x1 + 3x2 − x3, 2x1 + x3 〉,

and is isomorphic to Z1⊕Z3⊕Z ∼= Z3⊕Z, so it is infinite, with a finite subgroup of order 3.
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4.8 Finite abelian groups

In particular, for any finite abelian group G, we have G ∼= Zd1⊕Zd2⊕· · ·⊕Zdr , where di|di+1

for 1 ≤ i < r, and |G| = d1d2 · · · dr.
Suppose that d1, . . . , dr and e1, . . . , es are integers satisfying d1, e1 ≥ 2 and di|di+1 for 1 ≤
i < r and ei|ei+1 for 1 ≤ i < s. From the uniqueness part of Theorem 4.22 (which we did
not prove), it follows that the groups Zd1 ⊕ Zd2 ⊕ · · · ⊕ Zdr and Ze1 ⊕ Ze2 ⊕ · · · ⊕ Zes are
isomorphic if and only if r = s and di = ei for 1 ≤ i ≤ r.
So the isomorphism classes of finite abelian groups of order n > 0 are in one-one correspon-
dence with expressions n = d1d2 · · · dr for which di|di+1 for 1 ≤ i < r. This enables us to
classify isomorphism classes of finite abelian groups.

Examples. 1. n = 4. The decompositions are 4 and 2× 2, so G ∼= Z4 or Z2 ⊕ Z2.

2. n = 15. The only decomposition is 15, so G ∼= Z15 is necessarily cyclic.

3. n = 36. Decompositions are 36, 2× 18, 3× 12 and 6× 6, so G ∼= Z36, Z2 ⊕ Z18, Z3 ⊕ Z12

and Z6 ⊕ Z6.

Although we have not proved in general that groups of the same order but with different
decompositions of the type above are not isomorphic, this can always be done in specific
examples by looking at the orders of elements.

We saw in an exercise above that if φ : G → H is an isomorphism, then |g| = |φ(g)| for all
g ∈ G. It follows that isomorphic groups have the same number of elements of each order.

Note also that, if g = (g1, g2, . . . , gn) is an element of a direct sum of n groups, then |g| is the
least common multiple of the orders |gi| of the components of g.

Among the four groups of order 36, G1 = Z36, G2 = Z2⊕Z18, G3 = Z3⊕Z12 and G4 = Z6⊕Z6,
we see that only G1 contains elements of order 36. Hence G1 cannot be isomorphic to G2,
G3 or G4. Of the three groups G2, G3 and G4, only G2 contains elements of order 18, so G2

cannot be isomorphic to G3 or G4. Finally, G3 has elements of order 12 but G4 does not, so
G3 and G4 are not isomorphic, and we have now shown that no two of the four groups are
isomorphic to each other.

As a slightly harder example, Z2 ⊕Z2 ⊕Z4 is not isomorphic to Z4 ⊕Z4, because the former
has 7 elements of order 2, whereas the latter has only 3.

4.9 Tensor products

Given two abelian groups A and B, one can form a new abelian group A ⊗ B, their tensor
product - do not confuse it with the direct product! We denote by F the free abelian group
with the elements of the direct product A×B as a basis:

F = 〈A×B | ∅ 〉.
Elements of F are formal finite Z-linear combinations

∑
i ni(ai, bi), ni ∈ Z, ai ∈ A, bi ∈ B.

Let F0 be the subgroup of F generated by the following elements

(a+ a′, b)− (a, b)− (a′, b) n(a, b)− (na, b)

(a, b+ b′)− (a, b)− (a, b′) n(a, b)− (a, nb)
(1)

for all possible n ∈ Z, a, a′ ∈ A, b, b′ ∈ B. The tensor product is the quotient group

A⊗B = F/F0 = 〈A×B | relations in (1) 〉.
We have to get used to this definition that may seem strange at a first glance. First, it is
easy to materialise certain elements of A⊗B. Elementary tensors are

a⊗ b = (a, b) + F0
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for various a ∈ A, b ∈ B. However, it is important to realise that not all tensors are
elementary. Generators for F0 become relations on elementary tensors,

(a+ a′)⊗ b = a⊗ b+ a′ ⊗ b, n(a⊗ b) = (na)⊗ b,
a⊗ (b+ b′) = a⊗ b+ a⊗ b′, n(a⊗ b) = a⊗ (nb),

so a general element of A⊗B is a sum of elementary tensors
∑

i ai⊗ bi, but usually it is not
an elementary tensor itself.

Exercise. Show that a⊗ 0 = 0⊗ b = 0 for all a ∈ A, b ∈ B.

If the set {ai} spans A and the set {bj} spans B, then the set {ai⊗bj} spans A⊗B. Indeed,
given

∑
k ak ⊗ bk ∈ A⊗B, we can express all ak =

∑
i nkiai, and all bk =

∑
jmkjbj . Then∑

k

ak ⊗ bk =
∑
k

(
∑
i

nkiai)⊗ (
∑
j

mkjbj) =
∑
k,i,j

nkimkj ai ⊗ bj .

In fact, even a more subtle statement holds.

Exercise. Suppose that A,B are free abelian groups. Let ai be a free basis of A and let bj
be a basis of B. Show that the tensor product A⊗B is a free abelian group with a free basis
consisting of the elementary tensors ai ⊗ bj .

However, for general groups tensor products could behave in quite an unpredictable way. For
instance, Z2 ⊗ Z3 = 0. Indeed,

1Z2 ⊗ 1Z3 = 3 · 1Z2 ⊗ 1Z3 = 1Z2 ⊗ 3 · 1Z3 = 0.

To help sorting out zero from nonzero elements in tensor products we need to understand a
connection between tensor products and bilinear maps. Let A, B, and C be abelian groups.

Definition. A function ω : A×B → C is a bilinear map if

ω(a+ a′, b) = ω(a, b) + ω(a′, b) nω(a, b) = ω(na, b)

ω(a, b+ b′) = ω(a, b) + ω(a, b′) nω(a, b) = ω(a, nb)

for all possible n ∈ Z, a, a′ ∈ A, b, b′ ∈ B. Let Bil(A×B,C) be the set of all bilinear maps
from A×B to C.

Lemma 4.28 (Universal property of tensor product) The function

θ : A×B → A⊗B, θ(a, b) = a⊗ b

is a bilinear map. This bilinear map is universal, that is the composition with θ defines a
bijection

hom(A⊗B,C)→ Bil(A×B,C), φ 7→ φ ◦ θ.

Proof: The function θ is a bilinear map: the four properties of a bilinear map easily follow
from the corresponding generators of F0. For instance, θ(a+a′, b) = θ(a, b) + θ(a′, b) because
(a+ a′, b)− (a, b)− (a′, b) ∈ F0.

Let Fun denote the set of functions between two sets. Recall that F denotes the free abelian
group with basis indexed by A×B. By the universal property of free abelian groups (Corol-
lary 4.20), we have a bijection

hom(F,C)→ Fun(A×B,C).

Bilinear maps correspond to functions vanishing on F0, or equivalently to linear maps from
F/F0 (Lemma 4.17). 2
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In the following section we will need a criterion for elements of R⊗S1 to be nonzero. The circle
group S1 is a group under multiplication, creating certain confusion for tensor products. To
avoid this confusion we identify the multiplicative group S1 with the additive group R/2πZ
via the natural isomorphism exi 7→ x+ 2πZ.

Proposition 4.29 Let a⊗ (x+ 2πZ) ∈ R⊗R/2πZ where a, x ∈ R. Then a⊗ (x+ 2πZ) = 0
if and only if a = 0 or x ∈ πQ.

Proof: If a = 0, then a⊗ (x+ 2πZ) = 0. If a 6= 0 and x = n
mπ with m,n ∈ Z, then

a⊗ (x+ 2πZ) = 2m
a

2m
⊗ (x+ 2πZ) =

a

2m
⊗ 2m(x+ 2πZ) = a⊗ (2nπ + 2πZ) = a⊗ 0 = 0.

In the opposite direction, let us consider a⊗ (x+ 2πZ) with a 6= 0 and x/π 6∈ Q. It suffices to
construct a bilinear map φ : R× R/2πZ→ A to some group A such that φ(a, x+ 2πZ) 6= 0.
By Lemma 4.28 this gives a homomorphism φ̃ : R ⊗ R/2πZ → A with φ̃(a ⊗ (x + 2πZ)) =
φ(a, x+ 2πZ) 6= 0. Hence, a⊗ (x+ 2πZ) 6= 0.

Let us consider R as a vector space over Q. The subgroup πQ of R is a vector subspace,
hence the quotient group A = R/πQ is also a vector space over Q. Since 2πZ ⊂ πQ, we have
a homomorphism

β : R/2πZ→ R/πQ, β(z + 2πZ) = z + πQ.

Since x/π 6∈ Q, it follows that β(x + 2πZ) 6= 0. Choose a basis ei of R over Q such that
e1 = a. Let ei : R→ Q be the linear function22 computing the i-th coordinate in this basis:

ei(
∑
j

xjej) = xi.

The required bilinear map is defined using multiplication by a scalar in A = R/πQ by the rule
φ(b, z+2πZ) = e1(b)β(z+2πZ). Clearly, φ(a, x+2πZ) = e1(e1)β(x+2πZ) = 1 ·β(x+2πZ) =
x+ πQ 6= 0. 2

Exercise. Zn ⊗ Zm ∼= Zgcd(n,m).

4.10 Hilbert’s Third problem

All the hard work we have done is going to pay off now. We will understand a solution of
the third Hilbert problem. In 1900 Hilbert formulated 23 problems that, in his view, would
influence Mathematics of the 20th century. The third problem was solved first, in the same
year 1900 by Dehn, which is quite remarkable as the problem was missing from Hilbert’s
lecture and appeared in print only in 1902, two years after its solution.

In his third problem Hilbert asks whether two 3D polytopes of the same volume are scissor
congruent. Recall that M and N are congruent if there is a motion that moves M to N . The
polytopes M and N are scissor congruent if it is possible to cut M into pieces Mi (cutting
along planes) and N into pieces Ni such that individual pieces Mi and Ni are congruent for
each i.

Let us consider a “scissor group” generated by all n-dimensional polytopes P

Pn = 〈P |M −N, A−B − C 〉

with these relations for each pair M , N of congruent polytopes and each cut A = B ∪C of a
polytope by a hyperplane. For a polytope M , let us denote by [M ] ∈ Pn its class in the scissor

22commonly known as a covector
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group. Clearly, M and N are scissor congruent if and only if [M ] = [N ]. By Lemma 4.17,
n-dimensional volume is a homomorphism

νn : Pn → R, νn([M ]) = volume(M).

The 3rd Hilbert problem is whether ν3 is injective.

Theorem 4.30 ν2 is injective.

Proof: For a polygon M , there are triangles T1, T2, . . . , Tn such that [M ] = [T1] + [T2] +
· · ·+ [Tn]. It follows from triangulation of M illustrated on the next picture.

It suffices to show that if two triangles T and T ′ have the same area, then [T ] = [T ′]. Indeed,
using it, one can reshape triangles to T ′1, T

′
2, . . . , T

′
n so that they add up to a triangle T :

Then [M ] = [T1] + [T2] + · · ·+ [Tn] = [T ′1] + [T ′2] + · · ·+ [T ′n] = [T ] and we supposedly know
that two triangles of the same area are scissors equivalent. The following picture shows that
a triangle with base b and height h is equivalent to the rectangle with sides b and h/2.

In particular, any triangle is equivalent to a right-angled triangle. The last picture shows
that two right-angled triangles of the same area are scissors congruent.

C

P

B

A

Q

The equal area triangles are CAB and CPQ. This means that |CA||CB| = |CP ||CQ|. Hence,
|CA|/|CQ| = |CP |/|CB| and the triangles CPB and CAQ are similar. In particular, the
edges AQ and PB are parallel, thus the triangles APB and QPB share the same base and
height and, consequently, are scissors congruent. Finally,

[CAB] = [CPB] + [APB] = [CPB] + [QPB] = [CPQ]

as required. 2

Observe that νn is surjective, hence ν2 is an isomorphism and P2
∼= R. However, ν3 is not

injective, disproving the 3rd Hilbert problem.

Theorem 4.31 Let T be a regular tetrahedron, C a cube, both of unit volume. Then
[T ] 6= [C] ∈ P3.
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Proof: Let M be a polytope with the of edges I. For each edge i, let hi be its length hi,
αi ∈ R/2πZ the angle near this edge. The Dehn invariant of M is

δ(M) =
∑
i

hi ⊗ αi ∈ R⊗ R/2πZ.

Using Lemma 4.17, we conclude that δ is a well-defined homomorphism δ : P3 → R⊗R/2πZ.
Indeed, δ defines a homomorphism from the free group F generated by all polytopes. Keeping
in mind P3 = F/F0, we need to check that δ vanishes on generators of F0. Clearly, δ(M−N) =
0 if M and N are congruent. It is slightly more subtle to see that δ(A − B − C) = 0 if
A = B ∪ C is a cut. One can collect the terms in 4 types of groups, with the zero sum in
each group.

Survivor: an edge length h with angle α survives completely in B or C. This contributes
h⊗ α− h⊗ α = 0.

Edge cut: an edge length h with angle α is cut into edges of lengths hB in B and hC in C.
This contributes h⊗ α− hB ⊗ α− hC ⊗ α = (h− hB − hC)⊗ α = 0⊗ α = 0.

Angle cut: an edge length h with angle α has its angle cut into angles αB in B and αC in
C. This contributes h⊗ α− h⊗ αB − h⊗ αC = h⊗ (α− αB − αC) = h⊗ 0 = 0.

New edge: a new edge of length h is created. If its angle in B is α, then its angle in C is
π − α. This contributes −h⊗ α− h⊗ (π − α) = −h⊗ π = 0, by Proposition 4.29.

Finally, using Proposition 4.29,

δ([C]) = 12(1⊗ π

4
) = 12⊗ π

4
= 0, while δ([T ]) = 6

√
2

3
√

3
⊗ arccos

1

3
6= 0,

by Lemma 4.32. Hence, [C] 6= [T ]. 2

Lemma 4.32 arccos(1/3)/π 6∈ Q.

Proof: Let arccos(1/3) = qπ. We consider a sequence xn = cos(2nqπ). If q is rational, then
this sequence admits only finitely many values. On the other hand, x0 = 1/3 and

xn+1 = cos(2 · 2nqπ) = 2 cos2(2nqπ)− 1 = 2x2n − 1.

Computing several first terms,

x1 =
−7

9
, x2 =

17

81
, x3 =

−5983

38
, x4 =

28545857

316
, . . .

as can be easily shown the denominators grow indefinitely. Contradiction. 2

Now it is natural to ask what exactly the group P3 is. It was proved later (in 1965) that the
joint homomorphism (ν3, δ) : P3 → R⊕ (R⊗R/2πZ) is injective. It is not surjective and the
image can be explicitly described, but we won’t do it here.

4.11 Possible topics for the second year essays

If you would like to write an essay taking something further from this course, here are some
suggestions. Ask me if you want more information.

(i) Bilinear and quadratic forms over fields of characteristic 2 (i.e. where 1 + 1 = 0). You
can do hermitian forms too.

(ii) Grassmann algebras, determinants and tensors.
(iii) Matrix Exponents and Baker-Campbell-Hausdorff formula.
(iv) Abelian groups and public key cryptography (be careful not to repeat whatever is cov-

ered in Algebra 2).
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(v) Lattices (abelian groups with bilinear forms), the E8 lattice and the Leech lattice.
(vi) Abelian group law on an elliptic curve.
(vii) Groups Pn for other n, including a precise description of P3.

The End
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