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1 Introduction

Alongside the subject matter of this course is the overriding aim of introducing you to
university mathematics.

Mathematics is, above all, the subject where one thing follows from another. It is the
science of rigorous reasoning. In a first university course like this, in some ways it doesn’t
matter about what, or where we start; the point is to learn to get from A to B by rigorous
reasoning.

So one of the things we will emphasise most of all, in all of the first year courses, is
proving things.

Proof has received a bad press. It is said to be hard - and that’s true: it’s the hardest thing
there is, to prove a new mathematical theorem, and that is what research mathematicians
spend a lot of their time doing.

It is also thought to be rather pedantic - the mathematician is the person who, where
everyone else can see a brown cow, says “I see a cow, at least one side of which is brown”.
There are reasons for this, of course. For one thing, mathematics, alone among all fields
of knowledge, has the possibility of perfect rigour. Given this, why settle for less? There
is another reason, too. In circumstances where we have no sensory experience and little
intuition, proof may be our only access to knowledge. But before we get there, we have to
become fluent in the techniques of proof. Most first year students go through an initial period
in some subjects during which they have to learn to prove things which are already perfectly
obvious to them, and under these circumstances proof can seem like pointless pedantry. But
hopefully, at some time in your first year you will start to learn, and learn how to prove,
things which are not at all obvious. This happens quicker in Algebra than in Analysis and
Topology, because our only access to knowledge about Algebra is through reasoning, whereas
with Analysis and Topology we already know an enormous amount through our visual and
tactile experience, and it takes our power of reasoning longer to catch up.

Compare the following two theorems, the first topological, the second algebraic:

Theorem 1.1. The Jordan Curve Theorem A simple continuous closed plane curve separates
the plane into two regions.

Here “continuous” means that you can draw it without taking the pen off the paper,
“simple” means that it does not cross itself, and “closed” means that it ends back where it
began. Make a drawing or two. It’s “obviously true”, no?

Theorem 1.2. There are infinitely many prime numbers.

A prime number is a natural number (1, 2, 3, . . .) which is greater than 1 and cannot
be divided (exactly, without remainder) by any natural number except 1 and itself. The
numbers 2, 3, 5, 7 and 11 are prime, whereas 4 = 2× 2, 6 = 2× 3, 9 = 3× 3 and 12 = 3× 4
are not. Note that 1 is not a prime number, even though its only divisors are itself (and 1!):
if 1 were counted as prime, it would complicate many statements.

I would say that Theorem 1.2 is less obvious than Theorem 1.1. But in fact Theorem 1.2
will be the first theorem we prove in the course, whereas you won’t meet a proof of Theo-
rem 1.1 until a lot later. Theorem 1.1 becomes a little less obvious when you try making
precise what it means to “separate the plane into two regions”, or what it is for a curve
to “be continuous”. And less obvious still, when you think about the fact that it is not
necessarily true of a simple continuous closed curve on the surface of a torus.
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In some fields you have to be more patient than others, and sometimes the word “obvious”
just covers up the fact that you are not aware of the difficulties.

A second thing that is hard about proof is understanding other peoples’ proofs. To the
person who is writing the proof, what they are saying may have become clear, because they
have found the right way to think about it. They have found the light switch, to use a
metaphor of Andrew Wiles, and can see the furniture for what it is, while the rest of us are
groping around in the dark and aren’t even sure if this four-legged wooden object is the same
four legged wooden object we bumped into half an hour ago. My job, as a lecturer, is to try
to see things from your point of view as well as from my own, and to help you find your own
light switches - which may be in different places from mine. But this will also become your
job. You have to learn to write a clear account, taking into account where misunderstanding
can occur, and what may require explanation even though you find it obvious.

In fact, the word “obvious” covers up more mistakes in mathematics than any other. Try
to use it only where what is obvious is not the truth of the statement in question, but its
proof.

Mathematics is certainly a subject in which one can make mistakes. To recognise a
mistake, one must have a rigorous criterion for truth, and mathematics does. This possibility
of getting it wrong (of “being wrong”) is what puts many people off the subject, especially
at school, with its high premium on getting good marks1 . Mathematics has its unique form
of stressfulness.

But it is also the basis for two very undeniably good things: the possibility of agreement,
and the development of humility in the face of the facts, the recognition that one was
mistaken, and can now move on. As Ian Stewart puts it,

When two members of the Arts Faculty argue, they may find it impossible to
reach a resolution. When two mathematicians argue — and they do, often in
a highly emotional and aggressive way — suddenly one will stop, and say ‘I’m
sorry, you’re quite right, now I see my mistake.’ And they will go off and have
lunch together, the best of friends.2

I hope that during your mathematical degree at Warwick you enjoy the intellectual and
spiritual benefits of mathematics more than you suffer from its stressfulness.

Note on Exercises The exercises handed out each week are also interspersed through
the text here, partly in order to prompt you to do them at the best moment, when a new
concept or technique needs practice or a proof needs completing. There should be some easy
ones and some more difficult ones. Don’t be put off if you can’t do them all.

1.1 Other reading

It’s always a good idea to get more than one angle on a subject, so I encourage you to read
other books, especially if you have difficulty with any of the topics dealt with here. For a very
good introduction to a lot of first year algebra, and more besides, I recommend Algebra and
Geometry, by Alan Beardon, (Cambridge University Press, 2005). Another, slightly older,
introduction to university maths is Foundations of Mathematics by Ian Stewart and David
Tall, (Oxford University Press, 1977). The rather elderly textbook One-variable calculus with
an introduction to linear algebra, by Tom M. Apostol, (Blaisdell, 1967) has lots of superb

1which, for good or ill, we continue at Warwick. Other suggestions are welcome - seriously.
2in Letters to a Young Mathematician, Basic Books 2007
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exercises. In particular it has an excellent section on induction, from where I have taken
some exercises for the first sheet.

Apostol and Stewart and Tall are available in the university library. Near them on the
shelves are many other books on related topics, many of them at a similar level. It’s a good
idea to develop your independence by browsing in the library and looking for alternative
explanations, different takes on the subject, and further developments and exercises.

Richard Gregory’s classic book on perception, Eye and Brain, shows a drawing of an
experiment in which two kittens are placed in small baskets suspended from a beam which
can pivot horizontally about its midpoint. One of the baskets, which hangs just above the
floor, has holes for the kitten’s legs. The other basket, hanging at the same height, has no
holes. Both baskets are small enough that the kittens can look out and observe the room
around them. The kitten whose legs poke out can move its basket, and, in the process, the
beam and the other kitten, by walking on the floor. The apparatus is surrounded by objects
of interest to kittens. Both look around intently. As the walking kitten moves in response
to its curiosity, the beam rotates and the passenger kitten also has a chance to study its
surroundings. After some time, the two kittens are taken out of the baskets and released.
By means of simple tests, it is possible to determine how much each has learnt about its
environment. They show that the kitten which was in control has earned very much more
than the passenger.
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2 Natural numbers, Proof by Induction and the Fun-

damental Theorem of Arithmetic

The first mathematical objects we will discuss are the natural numbers N = {0, 1, 2, 3, . . .}
and the integers Z = {. . .,−2,−1, 0, 1, 2, 3, , . . .}. Some people say 0 is not a natural number.
Of course, this is a matter of preference and nothing more. I assume you are familiar with
the arithmetic operations +,−,× and ÷ (also written /). One property of these operations
that we will use repeatedly is

Division with remainder. If m,n are natural numbers with n > 0 then there exist
natural numbers q, r such that

m = qn+ r with 0 ≤ r < n. (1)

This is probably so ingrained in your experience that it is hard to answer the question
“Why is this so?”. But it’s worth asking, and trying to answer. We’ll come back to it.

Although in this sense any natural number (except 0) can divide another, we will only
say that one number divides another if it does so exactly, without remainder. More precisely,
n divides m if there exists a natural number q such that m = qn. Thus, 3 divides 24 and
5 doesn’t. We sometimes use the notation n | m to mean that n divides m, and n - m to
indicate that n does not divide m.

Proposition 2.1. Let a, b, c be natural numbers. If a | b and b | c then a | c.

Proof. That a | b and b | c means that there are natural numbers q1 and q2 such that
b = q1a and c = q2b. It follows that c = q1q2a, and since q1q2 ∈ N this gives a | c. 2

The sign 2 here means “end of proof”. Old texts use QED.
Proposition 2.1 is often referred to as the “transitivity of divisibility”.
Shortly we will prove Theorem 1.2, the infinity of the primes. However it turns out that

we need the following preparatory step:

Lemma 2.2. Every natural number greater than 1 is divisible by some prime number.

Proof. Let n be a natural number. If n is itself prime, then because n | n, the statement
of the lemma holds. If n is not prime, then it is a product n1 × n2, with n1 and n2 both
smaller than n. If n1 or n2 is prime, then we’ve won and we stop. If not, each can be written
as the product of two still smaller numbers;

n1 = n11n12, n2 = n21n22.

If any of n11, . . ., n22 is prime, then by the transitivity of divisibility (Proposition 2.1) it
divides n and we stop. Otherwise, the process goes on and on, with the factors getting
smaller and smaller. So it has to stop at some point - after fewer than n steps, indeed. The
only way it can stop is when one of the factors is prime, so this must happen at some point.
Once again, by transitivity this prime divides n.

In the following diagram the process stops after two iterations, p is a prime, and the
wavy line means “divides”. As p | n21, n21 | n2 and n2 | n, it follows by the transitivity of
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divisibility, that p | n.
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The proof just given is what one might call a discovery-type proof: its structure is very similar
to the procedure by which one might actually set about finding a prime number dividing a
given natural number n. But it’s a bit messy, and needs some cumbersome notation — n1

and n2 for the first pair of factors of n, n11, n12, n21 and n22 for their factors, n111, . . ., n222

for their factors, and so on. Is there a more elegant way of proving it? I leave this question
for later.

Now we prove Theorem 1.2, the infinity of the primes. The idea on which the proof is
based is very simple: if I take any collection of natural numbers, for example 3, 5, 6 and 12,
multiply them all together, and add 1, then the result is not divisible by any of the numbers
I started with. That’s because the remainder on division by any of them is 1: for example,
if I divide 1081 = 3× 5× 6× 12 + 1 by 5, I get

1081 = 5× (3× 6× 12) + 1 = 5× 216 + 1.

Proof of Theorem 1.2: Suppose that p1, . . ., pn is any list of prime numbers. We will
show that there is another prime number not in the list. This implies that how ever many
primes you might have found, there’s always another. In other words, the number of primes
is infinite (in finite means literally unending).

To prove the existence of another prime, consider the number p1 × p2 × · · · × pn + 1. By
the lemma, it is divisible by some prime number (possibly itself, if it happens to be prime).
As it is not divisible by any of p1, . . ., pn, because division by any of them leaves remainder
1, any prime that divides it comes from outside our list. Thus our list does not contain all
the primes. 2

This proof was apparently known to Euclid.

2.1 The Well-Ordering Principle

We now go on to something rather different. The following property of the natural numbers
is fundamental:

The Well-Ordering Principle (WOP). Every non-empty subset of N has a least ele-
ment.

Here we say that n is a least element of the set S ⊆ N if n ∈ S and n ≤ m for any m ∈ S.
Does a similar statement hold with Z in place of N? With Q in place of N? With the

non-negative rationals Q≥0 in place of N?
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Example 2.3. We use the Well-Ordering Principle to give a shorter and cleaner proof of
Lemma 2.2. Denote by S the set of natural numbers greater than 1 which are not divisible
by any prime. We have to show that S is empty, of course. If it is not empty, then by the
Well-Ordering Principle it has a least element, say n0. Now n0 > 1 and either n0 is prime,
or it is not.

If n0 is prime, then it certainly has a prime factor, namely itself. But this contradicts
the fact that n ∈ S while S only contains numbers with no prime factors.

So n0 is not prime, and hence we can write it as a product, n0 = n1n2, with both n1

and n2 smaller than n0 and bigger than 1. But then neither can be in S, (since n0 was the
smallest element of S) and so each is divisible by a prime. But any prime dividing either n1

or n2 will also divide n0. Once again, n0 is divisible by a prime, and we have a contradiction.
So in all cases, we derive an absurdity from the supposition that S has a least element n0.

Since S ⊂ N, if not empty it must have a least element. Therefore the only possibility is
that S is empty. 2

Exercise 2.1. The Well-Ordering Principle can be used to give an even shorter proof of
Lemma 2.2. Can you find one? Hint: take, as S, the set of all factors of n which are > 1.

The logical structure of the second proof of Lemma 2.2 is to imagine that the negation
of what we want to prove is true, and then to derive a contradiction from this supposition.
We are left with no alternative to the statement we want to prove. A proof with this logical
structure is known as a proof by contradiction. It’s something we use everyday: when faced
with a choice between two alternative statements, we believe the one that is more believable.
If one of the two alternatives we are presented with has unbelievable consequences, we reject
it and believe the other.

A successful Proof by Contradiction in mathematics offers you the alternative of believ-
ing either the statement you set out to prove, or something whose falsity is indisputable.
Typically, this falsehood will be of something like “the number n is and is not prime”, which
is false for obvious logical reasons. Or, later, when you’ve built up a body of solid mathemat-
ical knowledge, the falsehood might be something you know not to be true in view of that
knowledge, like “27 is a prime number”. We will use Proof by Contradiction many times.

The Well-Ordering Principle has the following obvious generalisation:

Fact. Any subset T of the integers Z which is bounded below, has a least element.

That T be bounded below means that there is some integer less than or equal to all
the members of T . Such an integer is called a lower bound for T . For example, the set
{−34,−33, . . .} is bounded below, by −34, or by −162 for that matter. The set T := {n ∈
Z : n2 < 79} is also bounded below. For example, −10 is a lower bound, since if n < −10
then n2 > 100, so that n /∈ T , and it therefore follows that all of the members of T must be
no less than −10.

Exercise 2.2. What is the least element of {n ∈ N : n2 < 79}? What is the least element
of {n ∈ N : n2 > 79}?

The Well-Ordering Principle is at the root of the Principle of Induction (or mathematical
induction), a method of proof you may well have met before. We state it first as a peculiarly
bland fact about subsets of N. Its import will become clear in a moment.
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Principle of Induction (POI). Suppose that T ⊆ N, and that

Property 1: 0 ∈ T , and

Property 2: For every natural number n ≥ 1, if n− 1 ∈ T then n ∈ T .

Then T = N.

Proof. This follows easily from the Well-Ordering Principle. Consider the complement3

S = Nr T of T in N. If S is not empty then by the WOP it has a least element, call it n0.
As we are told (Property 1 of T ) that 0 ∈ T , certainly 0 /∈ S, so n0 must be greater than 0,
so n0 ≥ 1. By definition of n0 as the smallest natural number not in T , n0− 1 must be in T .
But then by Property 2 of T , (n0 − 1) + 1 is in T also. That is, n0 ∈ T . This contradiction
(n0 /∈ T and n0 ∈ T ) is plainly false, so we are forced to return to our starting assumption,
that N \ T 6= ∅, and reject it. It can’t be true, as it has an unbelievable consequence. 2

How does the Principle of Induction give rise to a method of proof?

Example 2.4. You may well know the formula

1 + 2 + · · ·+ n =
1

2
n(n+ 1). (2)

Here is a proof that it is true for all n ∈ N, using the POI.
For each integer n, either the equality (2) holds, or it does not. Let T be the set of those

n for which it is true:
T = {n ∈ N : equality (2) holds}.

We want to show that T is all of N. First of all, (2) holds4 for n = 0, so T has Property 1.
Now we check that it has Property 2. If (2) is true for n− 1, then using the truth of (2)

for n− 1, we get

1 + · · ·+ n = 1 + · · ·+ (n− 1) + n (3)

=
1

2
(n− 1)n+ n. (4)

This is equal to
1

2

(
(n− 1)n+ 2n

)
=

1

2
n(n+ 1).

So if (2) holds for n − 1 then it holds for n. Thus, T has Property 2 as well, and therefore
by the POI, T is all of N. In other words, (2) holds for all n ∈ N. 2

The Principle of Induction is often stated like this: let P (n) be a series of statements,
one for each natural number n. (The equality (2) is an example.) If

Property 1’: P (0) holds, and

Property 2’: Whenever P (n) holds then P (n+ 1) holds also,

3If A is a set and B a subset of A then the complement of B in A, written ArB, is the set {x ∈ A : x /∈ B}.
4When n = 0 the sum on the left is empty so has value 0. If you don’t like this, start with n = 1.
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then P (n) holds for all n ∈ N.
The previous version implies this version—just take, as T , the set of n for which P (n)

holds. This second version is how we usually use induction when proving something. If it
is more understandable than the first version, this is probably because it is more obviously
useful. The first version, though simpler, may be harder to understand because it is not at
all clear what use it is or why we are interested in it.

Example 2.5. We use induction to prove that for all n ≥ 1,

13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2.

First we check that it is true for n = 1 (the initial step of the induction). This is trivial - on
the left hand side we have 13 and on the right 12.

Next we check that if it is true for n, then it is true for n + 1. This is the heart of the
proof, and is usually known as the induction step. To prove that P (n) implies P (n+ 1), we
assume P (n) and show that P (n + 1) follows. Careful! Assuming P (n) is not the the same
as assuming that P (n) is true for all n. What we are doing is showing that if, for some value
n, P (n) holds, then necessarily P (n+ 1) holds also.

To proceed: we have to show that if

13 + · · ·+ n3 = (1 + · · ·+ n)2 (5)

then
13 + · · ·+ (n+ 1)3 = (1 + · · ·+ (n+ 1))2. (6)

In practice, we try to transform one side of (6) into the other, making use of (5) at some
point along the way. It’s not always clear which side to begin with. In this example, I think
it’s easiest like this:

(1+ · · ·(n+1))2 =
(
(1+ · · ·+n)+ (n+1)

)2
= (1+ · · ·+n)2 +2(1 + · · ·+n)(n+1) +(n+1)2.

By the equality proved in the previous example, (1 + · · · + n) = 1
2
n(n + 1), so the middle

term on the right is n(n+ 1)2. So the whole right hand side is

(1 + · · ·+ n)2 + n(n+ 1)2 + (n+ 1)2 = (1 + · · ·+ n)2 + (n+ 1)3.

Using the induction hypothesis (5), the first term here is equal to 13 + · · ·+ n3. So we have
shown that if (5) holds, then (6) holds. Together with the initial step, this completes the
proof.

Exercise 2.3. Use induction to prove the following formulae:

1.

12 + 22 + · · ·+ n2 =
1

6
n(n+ 1)(2n+ 1) (7)

2.
1 + 3 + 5 + 7 + · · ·+ (2n+ 1) = (n+ 1)2 (8)

Exercise 2.4. (i) Prove for all n ∈ N, 10n − 1 is divisible by 9.
(ii) There is a well-known rule that a natural number is divisible by 3 if and only if the

sum of the digits in its decimal representation is divisible by 3. Part (i) of this exercise is the
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first step in a proof of this fact. Can you complete the proof? Hint: the point is to compare
the two numbers

k0 + k1 × 10 + k2 × 102 + · · ·+ kn × 10n

and
k0 + k1 + · · ·+ kn.

(iii) Is a rule like the rule in (ii) true for divisibility by 9?

Exercise 2.5. (Taken from Apostol, Calculus, Volume 1)
(i) Note that

1 = 1

1− 4 = −(1 + 2)

1− 4 + 9 = 1 + 2 + 3

1− 4 + 9− 16 = −(1 + 2 + 3 + 4).

Guess the general law and prove it by induction.
(ii) Note that

1− 1
2

= 1
2

(1− 1
2
) (1− 1

3
) = 1

3

(1− 1
2
) (1− 1

3
) (1− 1

4
) = 1

4

Guess the general law and prove it by induction.
(iii) Guess a general law which simplifies the product(

1− 1

4

)(
1− 1

9

)(
1− 1

16

)
· · ·
(
1− 1

n2

)
and prove it by induction.

Induction works fine once you have the formula or statement you wish to prove, but relies
on some other means of obtaining it in the first place. There’s nothing wrong with intelligent
guesswork, but sometimes a more scientific procedure is needed. Here is a method for finding
formulae for the sum of the first n cubes, fourth powers, etc. It is cumulative, in the sense
that to find a formula for the first n cubes, you need to know formulae for the first n first
powers and the first n squares, and then to find the formula for the first n fourth powers you
need to know the formulae for first, second and third powers, etc. etc.

The starting point for the formula for the first n cubes is that

(k − 1)4 = k4 − 4k3 + 6k2 − 4k + 1,

from which it follows that

k4 − (k − 1)4 = 4k3 − 6k2 + 4k − 1.

We write this out n times:

n4 − (n− 1)4 = 4n3 − 6n2 + 4n −1
(n− 1)4 − ((n− 1)− 1)4 = 4(n− 1)3 − 6(n− 1)2 + 4(n− 1) −1
· · · · · · · · · · · · · · · · · · · · · ·
k4 − (k − 1)4 = 4k3 − 6k2 + 4k −1
· · · · · · · · · · · · · · · · · · · · · ·
14 − 04 = 4(1)3 − 6(1)2 + 4 · 1 −1

(9)
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Now add together all these equations to get one big equation: the sum of all the left hand
sides is equal to the sum of all the right hand sides. On the left hand side there is a “telescopic
cancellation”: the first term on each line (except the first) cancels with the second term on
the line before, and we are left with just n4. On the right hand side, there is no cancellation.
Instead, we are left with

4
n∑
k=1

k3 − 6
n∑
k=1

k2 + 4
n∑
k=1

k − n.

Equating right and left sides and rearranging, we get

n∑
k=1

k3 =
1

4

(
n4 + 6

n∑
k=1

k2 − 4
n∑
k=1

k + n
)
.

If we input the formulae for
∑n

k=1 k and
∑n

k=1 k
2 that we already have, we arrive at a formula

for
∑n

k=1 k
3.

Exercise 2.6. 1. Complete this process to find an explicit formula for
∑n

k=1 k
3.

2. Check your answer by induction.

3. Use a similar method to find a formula for
∑n

k=1 k
4.

4. Check it by induction.

At the start of this section I stated the rule for division with remainder and asked you
to prove it.

Proposition 2.6. If m and n are natural numbers with n > 0, there exist natural numbers
q, and r, with 0 ≤ r < n, such that m = qn+ r.

Proof. Consider the set {r ∈ N : r = m − qn for some q ∈ N}. Call this set R (for
“Remainders”). By the Well-Ordering Principle, R has a least element, r0, equal to m− q0n
for some q0 ∈ N. We want to show that r0 < n, for then we will have m = q0n + r0 with
0 ≤ r0 < n, as required.

Suppose, to the contrary, that r0 ≥ n. Then r0 − n is still in N, and, as it is equal to
m − (q0 + 1)n, is in R. This contradicts the definition of r0 as the least element of R. We
are forced to conclude that r0 < n. 2

10



2.2 The Fundamental Theorem of Arithmetic

Here is yet another slightly different Principle of Induction:

Principle of Induction II. Suppose that T ⊆ N and that

1. 0 ∈ T , and

2. for every natural number n, if 0, 1, . . ., n− 1 are all in T , then n ∈ T .

Then T is all of N.

Proof. Almost the same as the proof of the previous POI. As before, if T is not all of N,
i.e. if N \ T 6= ∅, let n0 be the least member of N \ T . Then 0, . . ., n0 − 1 must all be in T ;
so by Property 2, n0 ∈ T . 2

We will use this shortly to prove some crucial facts about factorisation.

Remark 2.7. The Principle of Induction has many minor variants; for example, in place of
Property 1, we might have the statement

Property 1’ 3 ∈ T
From this, and the same Property 2 as before, we deduce that T contains all the natural

numbers greater than or equal to 3.

Theorem 2.8. (The “Fundamental Theorem of Arithmetic”).
(i) Every natural number greater than 1 can be written as a product of prime numbers.
(ii) Such a factorisation is unique, except for the order of the terms.

I clarify the meaning of (ii): a factorisation of a natural number n consists of an expression
n = p1. . .ps where each pi is a prime number. Note that s = 1 is allowed, when n is itself
prime (a “product” of one prime). Uniqueness of the prime factorisation of n, up to the
order of its terms, means that if n = p1. . .ps and also n = q1. . .qt, then s = t and the list
q1, . . ., qs can be obtained from the list p1, . . ., ps by re-ordering.
Proof. Existence of the factorisation: We use induction, in fact POI II. The statement is
trivially true for the first number we come to, 2, since 2 is prime. In fact (and this will be
important in a moment), it is trivially true for every prime number.

Now we have to show that the set of natural numbers which can be written as a product
of primes has property 2 of the POI. This is called “making the induction step”. Suppose
that every natural number between 2 and n has a factorisation as a product of primes. We
have to show that from this it follows that n+ 1 does too. There are two possibilities: n+ 1
is prime, or it is not.

• If n+ 1 is prime, then it does have a factorisation as a product of primes (one prime!).

• If n+ 1 is not prime, then n+ 1 = qr where q and r are both natural numbers greater
than 1 and less than n + 1. Hence 2 ≤ q, r ≤ n. So q is a product of primes, and so
is r, by the induction hypothesis; putting these two factorisations together, we get an
expression for n+ 1 as a product of primes.

In either case, we have seen that if the numbers 2, . . ., n can each be written as a product
of primes, then so can n + 1. Thus the set of natural numbers which can be written as a
product of primes has property 2. As it has property 1 (but with the natural number 2 in
place of the natural number 0), by POI II, it must be all of {n ∈ N : n ≥ 2}.
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Notice that we have used POI II here; POI I would not do the job. Knowing that n
has a factorisation as a product of primes does not enable us to express n + 1 as a
product of primes — we needed to use the fact that any two non-trivial factors of a
non-prime n + 1 could be written as a product of primes, and so we needed to know
that any two natural numbers less than n+ 1 had this property.

Uniqueness of the factorisation Again we use POI II. Property 1 certainly holds: 2 has a
unique prime factorisation; indeed, any product of two or more primes must be greater than
2. Now we show that Property 2 also holds. Suppose that each of the numbers 2, . . ., n has
a unique prime factorisation. We must show that so does n+ 1. Suppose

n+ 1 = p1. . .ps = q1. . .qt (10)

where each of the pi and qj is prime. By reordering each side, we may assume that p1 ≤
p2 ≤ · · · ≤ ps and q1 ≤ q2 ≤ · · ·qt. We consider two cases:

• p1 = q1, and

• p1 6= q1

In the first case, dividing the equality p1· · ·ps = q1· · ·qt by p1, we deduce that p2· · ·ps =
q2. . .qt. As p1 > 1, p2· · ·pt < n + 1 and so must have a unique prime factorisation, by our
supposition. Therefore s = t and, since we have written the primes in increasing order,
p2 = q2, . . . , ps = qs. Since also p1 = q1, the two factorisations of n + 1 coincide, and n + 1
has a unique prime factorisation.

In the second case, suppose p1 < q1. Then

p1(p2· · ·ps − q2· · ·qt) = p1p2· · ·ps − p1q2· · ·qt
= q1· · ·qt − p1q2· · ·qt
= (q1 − p1)q2· · ·qt

(11)

Let r1. . .ru be a prime factorisation of q1 − p1; putting this together with the prime factori-
sation q2. . .qt gives a prime factorisation of the right hand side of (11) and therefore of its
left hand side, p1(p2. . .ps− q2. . .qt). As this number is less than n+ 1, its prime factorisation
is unique (up to order), by our inductive assumption. It is clear (from the left side) that
p1 is one of its prime factors; hence p1 must be either a prime factor of q1 − p1 (that is,
one of the rj) or equal to one of q2, . . ., qt. But p1 is not equal to any of the qj, because
p1 < q1 ≤ q2 ≤ · · · ≤ qt. So it must be one of the rj, a prime factor of q1 − p1. But this
means that p1 divides q1, which is absurd since q1 is a prime and 1 < p1 < q1. This absurdity
leads us to conclude that p1 cannot be less than q1.

The same argument, with the roles of the p’s and q’s reversed, shows that it is also
impossible to have p1 > q1. The proof is complete. 2

The Fundamental Theorem of Arithmetic allows us to speak of “the prime factorisation of
n” and “the prime factors of n” without ambiguity.

Corollary 2.9. If the prime number p divides the product of natural numbers m and n, then
p | m or p | n.

Proof. By putting together a prime factorisation of m and a prime factorisation of n, we
get a prime factorisation of mn. The prime factors of mn are therefore the prime factors of
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m together with the prime factors of n. As p is one of them, it must be among the prime
factors of m or the prime factors of n. 2

Lemma 2.10. If `, m and n are positive natural numbers and m | n, then the highest power
of ` to divide m is less than or equal to the highest power of ` to divide n.

Proof. If `k | m and m | n then `k | n, by transitivity of division. 2

We will shortly use this result in the case where ` is prime.

Definition 2.11. Let m and n be positive natural numbers. The highest common factor
of m and n (denoted hcf(m,n)) is the largest number to divide both m and n. (A common
alternative name is the Greatest Common Divisor, written gcd(m,n).) The lowest
common multiple of m and n (denoted lcm(m,n)) is the least positive number divisible by
both m and n.

That there should exist a lowest common multiple follows immediately from the Well-
Ordering Principle: it is the least element of the set S of positive numbers divisible by both
m and n, which is non-empty since it contains mn. The existence of a highest common
factor does not require the Well Ordering Principle, since the sets of divisors of m and n are
finite (and both contain 1).

It is convenient to extend the definitions of hcf and lcm to all of N by setting hcf(n, 0) =
hcf(0, n) = n and lcm(n, 0) = lcm(0, n) = 0 for all n ≥ 0. (In the next chapter we’ll extend
them again to allow negative m,n.)

There are easy5 procedures for finding the hcf and lcm of two natural numbers, using
their prime factorisations. First an example:

720 = 24 × 32 × 5 and 350 = 2× 52 × 7

hcf(720, 350) = 2× 5, and lcm(720, 350) = 24 × 32 × 52 × 7.

In preparation for an explanation and a universal formula, we rewrite this as

720 = 24 × 32 × 51 × 70

350 = 21 × 30 × 52 × 71

hcf(720, 350) = 21 × 30 × 51 × 70

lcm(720, 350) = 24 × 32 × 52 × 71

Proposition 2.12. If

m = 2i2 × 3i3 × 5i5 × · · · × p
ipr
r

n = 2j2 × 3j3 × 5j5 × · · · × p
jpr
r

(with exponents ≥ 0), then

hcf(m,n) = 2min{i2,j2} × 3min{i3,j3} × 5min{i5,j5} × · · · × p
min{ipr ,jpr}
r ,

lcm(m,n) = 2max{i2,j2} × 3max{i3,j3} × 5max{i5,j5} × · · · × p
max{ipr ,jpr}
r .

5But deceptively easy, since finding the prime factorisations of large numbers is not easy! Later we will
see another method for finding hcf and lcm which do not require factorisation.
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Proof. If q divides both m and n then by Lemma 2.10 the power of each prime p in the
prime factorisation of q is less than or equal to both ip and jp. Hence it is less than or equal
to min{ip, jp}. The highest common factor is thus obtained by taking precisely this power.
A similar argument proves the statement for lcm(m,n). 2

Corollary 2.13.
hcf(m,n)× lcm(m,n) = m× n.

Proof. For any two integers i, j

min{i, j}+ max{i, j} = i+ j.

When i = ip and j = jp, the left hand side is the exponent of the prime p in hcf(m,n) ×
lcm(m,n) and the right hand side is the exponent of p in m× n. 2

Proposition 2.14. If g is any common factor of m and n then g divides hcf(m,n).

Proof. This follows directly from Proposition 2.12. 2

Exercise 2.7. There is a version of Proposition 2.14 for lcms. Can you guess it? Can you
prove it?

2.3 The Euclidean Algorithm

There is another procedure for finding hcfs and lcms, known as the Euclidean Algorithm. It
is based on the following lemma:

Lemma 2.15. If m = qn+ r, then hcf(n,m) = hcf(n, r).

Proof. If d divides both n and m then it follows from the equation m = qn+ r that d also
divides r. Hence,

d | m & d | n =⇒ d | n & d | r

Conversely, if d | n and d | r then d also divides m. Hence

d | m & d | n ⇐⇒ d | r & d | n

In other words

{d ∈ N : d | m & d | n} = {d ∈ N : d | n & d | r}

So the greatest elements of the two sets are equal. 2

Example 2.16. (i) We find hcf(365, 748). Long division gives

748 = 2× 365 + 18

so
hcf(365, 748) = hcf(365, 18).
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Long division now gives
365 = 20× 18 + 5,

so
hcf(365, 748) = hcf(365, 18) = hcf(18, 5).

At this point we can probably recognise that the hcf is 1. But let us go on anyway.

18 = 3× 5 + 3 =⇒ hcf(365, 748) = hcf(18, 5) = hcf(5, 3).

5 = 1× 3 + 2 =⇒ hcf(365, 748) = hcf(3, 2)

3 = 1× 2 + 1 =⇒ hcf(365, 748) = hcf(2, 1)

2 = 2× 1 + 0 =⇒ hcf(365, 748) = hcf(2, 1) = 1.

The hcf is the last non-zero remainder in this process.
(ii) We find hcf(365, 750).

750 = 2× 365 + 20 =⇒ hcf(365, 750) = hcf(365, 20)
365 = 18× 20 + 5 =⇒ hcf(365, 750) = hcf(20, 5)

Now something different happens:

20 = 4× 5 + 0.

What do we conclude from this? Simply that 5 | 20, and thus that hcf(20, 5) = 5. So
hcf(365, 750) = hcf(20, 5) = 5. Again, the hcf is the last non-zero remainder in this process.
This is always true; given the chain of equalities

hcf(n,m) = · · · = hcf(rk, rk+1),

the fact that
rk = qrk+1 + 0

(i.e. rk+1 is the last non-zero remainder) means that hcf(rk, rk+1) = rk+1, and so hcf(m,n) =
rk+1.

The Euclidean Algorithm is a vastly more efficient method of finding hcfs than the factori-
sation method when the numbers concerned are large. You should only use the factorisation
method when the numbers are small enough for their prime factorisations to be obvious.

Exercise 2.8. Find the hcf and lcm of

1. 106 + 144 and 103

2. 106 + 144 and 103 − 12

3. 90090 and 2200.
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3 Integers and Modular Arithmetic

The set of integers, Z, consists of the natural numbers together with their negatives and the
number 0:

Z = {. . .,−3,−2,−1, 0, 1, 2, 3, . . ., }.

If m and n are integers, just as with natural numbers we say that n divides m if there
exists q ∈ Z such that m = qn. The notions of hcf and lcm can be generalised from N to
Z without much difficulty, though we have to be a little careful. For example, if we allow
negative multiples, then there is no longer a lowest common multiple of two integers. For
example, −10 is a common multiple of 2 and 5; but so are −100 and −1000. We can avoid
the difficulty by setting

hcf(m,n) = hcf(|m|, |n|) and lcm(m,n) = lcm(|m|, |n|)

for m,n ∈ Z. So (for non-zero m,n) lcm(m,n) is the lowest positive common multiple of m
and n.

3.1 Subgroups of Z
The following special subsets of Z will play a major role in what follows.

Definition 3.1. A subset of Z is called a subgroup6 if it is nonempty, and the sum and
difference of any two of its members is also a member.

Obvious examples include Z itself, the set of even integers, which we denote by 2Z, the
set of integers divisible by 3, 3Z, and in general the set of integers divisible by n (for a fixed
n) which is denoted nZ. In fact we’ll soon show (Proposition 3.2) that these are the only
examples. First note that from the definition it easily follows that for any subgroup S:

• 0 ∈ S;

• if a ∈ S then also −a ∈ S;

• if a ∈ S then every multiple of a is in S, i.e. aZ ⊆ S.

Proposition 3.2. If S ⊆ Z is a subgroup, then there is a natural number g such that
S = gZ = {gn : n ∈ Z}.

Proof. If S = {0}, we simply take g = 0. Otherwise, S contains at least one strictly
positive number (since a ∈ S⇐⇒−a ∈ S). Let S+ be the set of strictly positive members of
S, and let g be the smallest member of S+ (which exists by the WOP). I claim that S = gZ.

Proving this involves proving the inclusions gZ ⊆ Z and S ⊆ gZ. The first is easy: as S
is closed under addition, it contains all positive (integer) multiples of g, and as it is closed
under subtraction it contains 0 and all negative integer multiples of g also.

To prove the opposite inclusion, suppose that n ∈ S. Then unless n = 0 (in which case
n = 0× g ∈ gZ), either n or −n is in S+.

Suppose that n ∈ S+. We can write n = qg + r with q ≥ 0 and 0 ≤ r < g; since g ∈ S,
so is qg, and as S is closed under the operation of subtraction, it follows that r ∈ S. If r > 0

6In this course we will not study groups though they will occasionally be mentioned. You are not expected
to know what they are, and don’t need to, to understand the definition of “subgroup” of Z given here.

16



then r is actually in S+. But g is the smallest member of S+ and r < g, so this cannot
happen, r cannot be greater than 0, so r = 0. Hence n = qg ∈ gZ.

If −n ∈ S+, then by the argument of the previous paragraph there is some q ∈ N such
that −n = qg. Then n = (−q)g, and again lies in gZ.

This completes the proof that S ⊆ gZ, and thus that S = gZ. 2

We use the letter g in this theorem because g “generates” gZ: starting just with g, by means
of the operations of addition and subtraction, we get the whole subgroup gZ.

We can express Proposition 3.2 by saying that there is a “1-1 correspondence” between
subgroups of Z and the natural numbers:

{subgroups of Z} ←→ N (12)

The natural number g ∈ N generates the subgroup gZ, and different g’s generate different
subgroups. Moreover, by Proposition 3.2 every subgroup of Z is a gZ for a unique g ∈ N.
Each subgroup of Z corresponds to a unique natural number, and vice versa.

There is an interesting relation between divisibility of natural numbers and inclusion of
the subgroups of Z that they generate:

Proposition 3.3. For any two integers m and n, m divides n if and only if mZ ⊇ nZ.

Proof. If m|n, then m also divides any multiple of n, so7 mZ ⊇ nZ. Conversely, if
mZ ⊇ nZ, then in particular n ∈ mZ, and so m|n. 2

So the 1-1 correspondence (12) can be viewed as a translation from the language of natural
numbers and divisibility to the language of subgroups of Z and inclusion. Every statement
about divisibility of natural numbers can be translated into a statement about inclusion of
subgroups of Z, and vice versa. Suppose we represent the statement m|n by positioning n
somewhere above m and drawing a line between them, as in

15

3

~~~~~~~~
5

@@@@@@@@

(“3 divides 15 and 5 divides 15”). This statement translates to

15ZmM

||yyyyyyyy q�

""EEEEEEEE

3Z 5Z

(“15Z is contained in 3Z and 15Z is contained in 5Z”.)

Exercise 3.1. Draw diagrams representing all the divisibility relations between the numbers
1, 2, 4, 3, 6, 12, and all the inclusion relations between the subgroups Z, 2Z, 4Z, 3Z, 6Z, 12Z.

Notice that our 1-1 correspondence reverses the order: bigger natural numbers generate
smaller subgroups. More precisely, if n is bigger than m in the special sense that m|n, then
nZ is smaller than mZ in the special sense that nZ ⊆ mZ.

The following proposition follows directly from the definition of subgroup (without using
Proposition 3.2).

7A ⊇ B means the same as B ⊆ A; see the Notation table on the inside front cover.
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Proposition 3.4. (i) If G1 and G2 are subgroups of Z, then so is their intersection G1∩G2,
and so is the set

{m+ n : m ∈ G1, n ∈ G2},

(which we denote by G1 +G2).

(ii) G1 ∩G2 contains every subgroup contained in both G1 and G2;
G1 +G2 is contained in every subgroup containing both G1 and G2.

(less precisely:

G1 ∩G2 is the largest subgroup contained in G1 and G2;
G1 +G2 is the smallest subgroup containing both G1 and G2.)

Proof. (i) Both statements are straightforward. The proof for G1 ∩ G2 is simply that if
m ∈ G1∩G2 and n ∈ G1∩G2 then m,n ∈ G1 and m,n ∈ G2, so as G1 and G2 are subgroups,
m + n,m − n ∈ G1 and m + n,m − n ∈ G2. But this means that m + n and m − n are in
the intersection G1 ∩G2, so that G1 ∩G2 is a subgroup.

For G1+G2, suppose that m1+n1 and m2+n2 are elements of G1+G2, with m1,m2 ∈ G1

and n1, n2 ∈ G2. Then

(m1 + n1) + (m2 + n2) = (m1 +m2) + (n1 + n2)

(here the brackets are just to make reading the expressions easier; they do not change
anything). Since G1 is a subgroup, m1 +m2 ∈ G1, and since G2 is a subgroup, n1 +n2 ∈ G2.
Hence (m1 +m2) + (n1 + n2) ∈ G1 +G2.

(ii) It’s obvious that G1 ∩ G2 is the largest subgroup contained in both G1 and G2 —
it’s the largest subset contained in both. It’s no less obvious that G1 ∩ G2 contains every
subgroup contained in both G1 and G2. The proof for G1 +G2 is less obvious, but still uses
just one idea. It is this: any subgroup containing G1 and G2 must contain the sum of any
two of its members, by definition of subgroup. So in particular it must contain every sum of
the form g1 + g2, where g1 ∈ G1 and g2 ∈ G2. Hence it must contain G1 + G2. Since every
subgroup containing G1 and G2 must contain G1 + G2, G1 + G2 is the smallest subgroup
containing both G1 and G2. 2

The next theorem links this notion of subgroup to hcf and lcm:

Theorem 3.5. Let m,n ∈ Z. Then

1. mZ + nZ = hZ, where h = hcf(m,n).

2. mZ ∩ nZ = `Z where ` = lcm(m,n).

Proof.
(1) By Proposition 3.2 mZ+nZ is equal to gZ for some natural number g. This g must be

a common factor of m and n, since gZ ⊇ mZ and gZ ⊇ nZ. But which common factor? The
answer is obvious: by Proposition 3.4, mZ + nZ is contained in every subgroup containing
mZ and nZ, so its generator must be the common factor of m and n which is divisible by
every other common factor. This is, of course, the highest common factor. A less precise
way of saying this is that mZ+nZ is the smallest subgroup containing both mZ and nZ, so
it is generated by the biggest common factor of m and n.
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(2) Once again, mZ ∩ nZ is equal to gZ for some g, which is now a common multiple
of m and n. Which common multiple? Since mZ ∩ nZ contains every subgroup contained
in both mZ and nZ, its generator must be the common multiple which divides every other
common multiple. That is, it is the least common multiple. 2

Corollary 3.6. For any pair m and n of integers, there exist integers a and b (not necessarily
positive) such that

hcf(m,n) = am+ bn.

Proof. By Proposition 3.3, mZ + nZ = hZ where h = hcf(m,n). Hence in particular
h ∈ mZ + nZ. But this means just that there are integers a and b such that h = am+ bn.2

Note that this Corollary is a pure existence statement: it gives us no idea as to how we
might find the integers a, b. We’ll see how to do that using the Euclidean Algorithm below.

Definition 3.7. The integers m and n are coprime if hcf(m,n) = 1.

As a particular case of Theorem 3.5 we have

Corollary 3.8. The integers m and n are coprime if and only if there exist integers a and
b such that am+ bn = 1.

Proof. One implication, that if m and n are coprime then there exist a, b such that am+
bn = 1, is simply a special case of Corollary 3.6. The opposite implication also holds,
however: for if k is a common factor of m and n then any number that can be written
am + bn must be divisible by k. If 1 can be written in this way then every common factor
of a and b must divide 1, so no common factor of a and b can be greater than 1. 2

3.2 The Extended Euclidean Algorithm

The Euclidean Algorithm is an efficient method not only to compute hcf(m,n) and also find
integers a and b such that am + bn = hcf(m,n). To find a and b, we follow the Euclidean
algorithm, (as in Lemma 2.15), but in reverse. Here is an example: take m = 365, n = 750
(Example 2.16(ii)). We know that hcf(365, 750) = 5. So we must find integers a and b such
that a × 365 + b × 748 = 5. To economise space, write h = hcf(750, 365). The Euclidean
algorithm goes:

Step Division Conclusion
1 750 = 2× 365 + 20 ; h = hcf(365, 20)
2 365 = 18× 20 + 5 ; h = hcf(20, 5)
3 20 = 4× 5 ; h = 5

Step 3 can be read as saying
h = 1× 5.

Now use Step 2 to replace 5 by 365− 18× 20. We get

h = 365− 18× 20.

Now use Step 1 to replace 20 by 750− 2× 365; we get

h = 365− 18× (750− 2× 365) = 37× 365− 18× 750.

So a = 37, b = −18.
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Exercise 3.2. Find a and b when m and n are

1. 365 and 748 (cf Example 2.16(i))

2. 365 and 760

3. 106 + 144 and 103 (cf Exercise 2.8)

4. 90, 090 and 2, 200. (cf Exercise 2.8).

Exercise 3.3. Are the integers a and b such that am+ bn = hcf(m,n) unique?

3.3 Modular Arithmetic

Both the number systems we have looked at so far (N and Z) have been infinite, and the
same is true of the systems of rational, real and complex numbers which will take up the
next two Chapters. But there are finite number systems which are also very useful (and
interesting).

We start with a positive8 integer n, which will be called the modulus. Given n, we take
the finite set

{0, 1, . . ., n− 1}

(which has n elements) and define a new kind of addition and multiplication on it called
“addition modulo n” and “multiplication modulo n”. These are given by the rules

r +n s = remainder of (ordinary sum) r + s after division by n

r ×n s = remainder of (ordinary product) r × s after division by n

which we could write more concisely as

r +n s = r + s (mod n), r ×n s = r × s (mod n).

For example, addition and multiplication modulo 4 are given in the following tables:

+4 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

×4 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

The operations +n and ×n on the set {0, 1, . . . , n− 1} are examples of binary operations.
Here is the formal definition:

Definition 3.9. Let X be a set. A binary operation on X is a rule which, to each ordered
pair of elements of X, associates a single element of X.

Binary operations are usually (but not always, see the exercise below) denoted by a symbol
such as ∗ between the two operands, so the result of applying ∗ to the pair (x, y) is then
written x ∗ y. Addition, multiplication and subtraction in Z are all examples of binary
operations on Z. (In the case of multiplication, we sometimes use a symbol such as · or ∗,

8usually n ≥ 2 since the case n = 1 leads to a rather trivial arithmetic.
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so the product of x and y may be written x · y or x ∗ y, but usually no symbol at all is used
and we just write xy.) Division is not a binary operation on Z, because m/n is necessarily
in Z for every pair (m,n) of elements of Z; neither is it one on R, since the second operand
is not allowed to be 0, but it does give a binary operation on R∗, the set of nonzero reals.

We will see more examples later in the course, and there have been other examples
already:

Exercise 3.4. Two binary operations on N are described on page 13 of the lecture notes.
What are they?

We will not discuss general binary operations in general here: mathematics students will
see more of them in MA136 (Introduction to Abstract Algebra) and beyond. For now we’ll
stick to addition and multiplication. These both have two important properties: they are
commutative and associative:

Definition 3.10. A binary operation ∗ on X is

• commutative if x ∗ y = y ∗ x for all x, y ∈ X;

• associative if x ∗ (y ∗ z) = (x ∗ y) ∗ z for all x, y, x ∈ X;

Obviously addition and multiplication of numbers are both commutative and associative—
but be warned that there are important non-commutative forms of multiplication which you
will encounter, such as matrix multiplication!

The operations of addition and multiplication modulo n have both these properties:

Proposition 3.11. Addition and multiplication modulo n are associative.

Proof. Both a +n (b +n c) and (a +n b) +n c are equal to the remainder of a + b + c on
division by n. To see this, observe first that if p, q ∈ N and p = q + kn for some k then
a+n p = a+n q. This is easy to see. It follows in particular that a+n (b+n c) = a+n (b+ c),
which is equal, by definition, to the remainder of a + b + c after dividing by n. The same
argument shows that (a+n b) +n c is equal to the remainder of a+ b+ c on division by n.

The argument for multiplication is similar: both a×n (b×n c) and (a×n b)×n c are equal
to the remainder of abc on division by n. I leave this for you to show. 2

We need to give a name for the structure consisting of the finite set {0, . . . , n − 1}
with the two operations +n and ×n. For reasons which will be explained later, we call
this structure Z/n (pronounced “Zed mod n”) or Z/nZ (pronounced “Zed mod n zed”).
Some people denote it by Zn, but this symbol has a completely different meaning to some
mathematicians when n is prime, so the notation Z/n is preferable.

The additive structure of Z/n is extremely simple. The element 0 behaves as you would
expect: adding it to any other element does not change it. We can also “subtract modulo n”
simply by setting a −n b = a − b (mod n), the remainder on dividing a − b modulo n.
Explicitly, if 0 ≤ a, b ≤ n− 1 then a−n b = a− b if a ≥ b and a−n b = a− b+ n if a < b. As
a special case, taking a = 0 gives “negatives mod n”: for 0 < b < n we have −nb = n− b.
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We’ve already seen a table of addition in Z/4. Here are tables for Z/5 and Z/6:

+5 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

+6 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

Notice that every number in Z/n appears once in each row and once in each column, and
that the entries “cycle” round one step to the left, going from each row to the next. Z/n
is an example of a “cyclic group9 of order n”. The reason for the word “cyclic” is because
of the way that by repeatedly adding 1, one cycles through all the elements, with period n.
This suggests displaying the elements of Z/n in a circle:

n−2

n−1

n−4
n−3

6

5 4
3

2

1

0

Visual representation of Z/n

Adding 1 takes you one step anticlockwise (which is usually taken to be the “positive”
direction), with n − 1 stepping up to 0, and subtracting 1 takes you one step clockwise (in
the “negative” direction”.

Arithmetic Modulo n again, from a different viewpoint

Here is a different take on arithmetic modulo n. Declare two numbers m1,m2 ∈ Z to be
“the same or congruent modulo n” if they leave the same remainder on division by n. The
symbol10 used to denote this “modulo n” form of equality is ≡; so in other words,

m1 ≡ m2 (mod n) if m1 −m2 ∈ nZ.

The remainder after dividing m by n is always between 0 and n − 1. It follows that
every integer is congruent mod n to exactly one of 0, 1, . . ., n− 1.

Doing computations modulo n is easy! Here are some examples (we’ll justify these later).

9In this course we will not give a general definition of what a “group” is, but many of you will learn that
later this term in MA136.

10the congruence symbol ≡ was invented by Gauss in 1800; it deliberately looks rather like an equal sign =.
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Example 3.12. 1. We work out 56 (mod 7). We have 5 ≡ −2 (mod 7), so

56 ≡ (−2)6 (mod 7)

≡ 64 (mod 7)

≡ 1 (mod 7).

2. Similarly,
55 ≡ (−2)5 (mod 7)

≡ −32 (mod 7)

≡ 3 (mod 7).

3. Working modulo 15:
1215 ≡ (−3)15 (mod 15)

≡ ((−3)3)5 (mod 15)

≡ (−27)5 (mod 15)

≡ 35 (mod 15)

≡ 9× 27 (mod 15)

≡ (−6)× (−3) (mod 15)

≡ 18 (mod 15)

≡ 3 (mod 15).

Exercise 3.5. Compute (i) 54 (mod 7); (ii) 811 (mod 5); (iii) 987 (mod 50);
(iv) 1116 (mod 17); (v) 1316 (mod 17).

These calculations are rather exhilarating, but are they right? For example, what justifies
the first step in Example 3.12 (1)? That is, is it correct that

5 ≡ −2 (mod 7) =⇒ 56 ≡ (−2)6 (mod 7)? (13)

To make the question clearer, let me paraphrase it. It says: if 5 and −2 have in common
that they leave the same remainder after division by 7, then do 56 and (−2)6 also have this
in common? A stupid example might help to dislodge any residual certainty that the answer
is obviously Yes: the numbers 5 and 14 also have something in common, namely that when
written in English they begin with the same letter. Does this imply that their 6’th powers
begin with the same letter? Although the implication in (13) is written in official looking
mathematical notation, so that it doesn’t look silly, we should not regard its truth as in any
way obvious.

This is why we need the following lemma, which provides a firm basis for all of the
preceding calculations.

Lemma 3.13.

a1 ≡ b1 (mod n)
a2 ≡ b2 (mod n)

}
=⇒

{
a1 + a2 ≡ b1 + b2 (mod n)
a1a2 ≡ b1b2 (mod n).

Proof. If a1 − b1 = k1n and a2 − b2 = k2n then

a1a2 − b1b2 = a1a2 − a1b2 + a1b2 − b1b2
= a1(a2 − b2) + b2(a1 − b1)
= (a1k2 + b2k1)n,
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so a1a2 ≡ b1b2 (mod n). The argument for the sum is similar (and easier). 2

The lemma says that we can safely carry out the kind of simplification we used in calculating,
say, 56 (mod 7). Applying the lemma to the question I asked above, we have

5 ≡ −2 (mod 7) =⇒ 5× 5 ≡ (−2)× (−2) (mod 7) =⇒
=⇒ 5× 5× 5 ≡ (−2)× (−2)× (−2) (mod 7) =⇒ · · ·
=⇒ 56 ≡ (−2)6 (mod 7).

Notation: Denote by [m] the set of all the integers congruent to m modulo n. Thus,

[1] = {1, n+ 1, 2n+ 1, 1− n, 1− 2n, . . .}

[n+ 2] = {2, 2 + n, 2 + 2n, 2− n, 2− 2n, . . .}

and by the same token
[n− 3] = [−3] = [−(3 + n)] = · · ·

because each denotes the set

{−3, n− 3,−(n+ 3), 2n− 3,−(2n+ 3), . . .}.

For example, modulo 2 we have precisely two sets of this form, namely

[0] = {0,±2,±4, . . . } = the set of all even integers

and
[1] = {±1,±3,±5, . . . } = the set of all odd integers.

This allows us to cast the finite number system Z/n in a somewhat different light. Instead
of viewing its members as the integers in the range 0, . . . , n−1, instead we view its members
as the sets

[0], [1], [2], . . ., [n− 1]

and combine them under addition and multiplication by the following rule:

[a] + [b] = [a+ b] [a]× [b] = [a× b]. (14)

The rule looks very, very simple, but its apparent simplicity covers up a deeper issue. The
problem is this:

If [a1] = [b1] and [a2] = [b2], then [a1 +a2] had better equal [b1 + b2], and [a1a2] had
better equal [b1b2], otherwise rule (14) doesn’t make any sense.

The point is that in definition (14) both right-hand sides depend on a choice of integer a to
represent the class [a] (and similarly for b). This problem has been taken care of, however!
In the new notation, Lemma 3.13 says precisely this:

[a1] = [b1]
[a2] = [b2]

}
=⇒

{
[a1 + a2] = [b1 + b2]
[a1a2] = [b1b2].

So our rule (14) does make sense. The set

{[0], [1], . . ., [n− 1]}
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with addition and multiplication as defined by (14) works exactly the same way as the set
{0, 1, . . ., n− 1} with the operations +n and ×n defined on page 20; we’ve just modified our
way of thinking. This new way of thinking has far-reaching generalisations, but I say no
more about this here.

We’ll come back to congruence and the classes [a] in Chapter 6 when we’ll see that
congruence is an example of an equivalence relation.

We end this section by stating, but not proving, a theorem due to Fermat, and known11.
as his Little Theorem.

Theorem 3.14. If p is a prime number then for every integer a not divisible by p,

ap−1 ≡ 1 (mod p).

11Not to be confused with his famous Last Theorem! This one is much easier to prove

25



4 Rational and Real Numbers

4.1 Rational numbers

Just as the natural numbers arise naturally as counting numbers, we can motivate the
introduction of both rational and real numbers by the need to have enough numbers to
measure lengths. Beginning with any unit of length, we can measure smaller lengths by
subdividing our unit into n equal parts. Each part is denoted 1

n
. By assembling different

numbers of these subunits, we get a great range of different quantities. We denote the length
obtained by placing m of them together m

n
. It is clear that k

kn
= 1

n
, since n lots of k

kn
equals

one unit, just as do n lots of 1
n
. More generally, we have km

kn
= m

n
. It follows from this that

the lengths m1

n1
and m2

n2
are equal if and only if

m1n2 = n1m2. (15)

For m1

n1
= m1n2

n1n2
and m2

n2
= m2n1

n1n2
, so the two are equal if and only if (15) holds. Motivated

by this, the set of rational numbers, Q, is thus defined, as an abstract “number system”, to
be the set of quotients m

n
, where m and n are integers with n 6= 0 and two such quotients

m1

n1
and m2

n2
are equal if and only if (15) holds. Addition is defined in the only way possible

consistent with having
m1

n
± m2

n
=
m1 ±m2

n
,

namely
m1

n1

± m2

n2

=
m1n2

n1n2

± m2n1

n1n2

=
m1n2 ±m2n1

n1n2

.

Similar considerations lead to the familiar definition of multiplication and division:

m1

n1

× m2

n2

=
m1m2

n1n2

and
m1

n1

÷ m2

n2

=
m1n2

n1m2

,

where for division we require m2 6= 0 (i.e. m2/n2 6= 0) so that n1m2 6= 0.
With these operations we have a number system Q in which we can add, subtract,

multiply and divide any two numbers (with the single restriction that division by 0 is not
allowed), and these operations satisfy all the usual algebraic laws. Such a number system is
called a field (see the end of this chapter (Page 31), and also page 34, for a little more about
fields).

One feature of the way we represent rational numbers as quotients m/n is that the
representation is not unique: 3/2 = 6/4 = 51/34 = . . . . Among all the (infinitely many!)
ways of writing any rational number, there is one which is simplest:

Proposition 4.1. Among all expressions for a given rational number q, there is a unique
expression (up to sign) in which the numerator and denominator are coprime. We call this
the minimal expression for q or the minimal form of q.

By “unique up to sign” I mean that if m
n

is a minimal expression for q, then so is −m−n , but
there are no others. Often we will want to make the minimal expression unique by insisting
that the denominator be positive: the minimal forms of −6/4 are −3/2 and 3/− 2, of which
we prefer −3/2.
Proof. Existence: if q = m/n, divide each of m and n by hcf(m,n). Clearly m/ hcf(m,n)
and n/ hcf(m,n) are coprime, and

q =
m

n
=
m/ hcf(m,n)

n/ hcf(m,n)
.
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Uniqueness: If m
n

= m1

n1
= m2

n2
with hcf(m1, n1) = hcf(m2, n2) = 1, then using the criterion

for equality of rationals (15) we get m1n2 = n1m2. This equation in particular implies that

m1|n1m2 (16)

and that
m2|n2m1. (17)

As hcf(m1, n1) = 1, (16) implies that m1|m2. For none of the prime factors of m1 divides
n1, so every prime factor of m1 must divide m2.

As hcf(m2, n2) = 1, (17) implies that m2|m1, by the same argument.
The last two lines imply that m1 = ±m2, and thus, given that m1n2 = n1m2, that

n1 = ±n2 also. 2

We can do a lot with rational numbers, but not everything! They are not sufficient to
give us solutions to all equations, even quadratic equations:

Proposition 4.2. There is no rational number q such that q2 = 2.

Proof. Suppose that (m
n

)2
= 2, (18)

where m,n ∈ Z. We may assume that m and n are positive. Multiplying both sides of (18)
by n2 we get

m2 = 2n2. (19)

Replacing both m and n by their prime factorisations we see that the number m2 on the
left of (19) has an even number of prime factors, while the number 2n2 on the right has
an odd number. This contradicts the uniqueness of prime factorisations (Theorem 2.8); the
contradiction shows that there can exist no such m and n. 2

Proposition 4.3. If n ∈ N is not a perfect square, then there is no rational number q ∈ Q
such that q2 = n.

Proof. Pretty much the same as the proof of Proposition 4.2. I leave it as an exercise to
work out the details. 2

4.2 Real numbers

Proposition 4.2 is often stated as “
√

2 is irrational”. This presupposes that there is some sort
of number whose square is 2, it just is not a rational number. That is true: the rationals Q
can be enlarged, or “completed”, to for the (much) larger system R of real numbers in
which every positive integer has a square root.

We will not give a construction of the real number system here, since it is quite hard and
requires some Analysis. Instead we will give some motivation for the construction, before
moving on to how to actually represent real numbers, using decimal expansions.
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Remark 4.4. Brief historical discussion, for motivation As already stated, Proposi-
tion 4.2 is often stated in the form “

√
2 is not rational”. But what makes us think that there

is such a number as
√

2, i.e. a number whose square is 2? For the Greeks, the reason was
Pythagoras’s Theorem. They believed that once a unit of length is chosen, then it should
be possible to assign to every line segment a number, its length. Pythagoras’s Theorem told
them that in the diagram below, 12 + 12 = x2, in other words x2 = 2.

1

1
x

This was a problem, because up until that moment the only numbers they had discovered
(invented?) were the rationals, and they knew that no rational can be a square root of
2. In a geometrical context the rationals make a lot of sense: given a unit of length, you
can get a huge range of other lengths by subdividing your unit into as many equal parts
as you like, and placing some of them together. Greek geometers at first expected that by
taking suitable multiples of fine enough subdivisions they would be able to measure every
length. Pythagoras’s theorem showed them that this was wrong. Of course, in practice it
works pretty well - to within the accuracy of any given measuring device. One will never get
physical evidence that there are irrational lengths.

If we place ourselves at the crossroads the Greeks found themselves at, it seems we have
two alternatives. Either we give up our idea that every line segment has a length, or we make
up some new numbers to fill the gaps the rationals leave. Mathematicians have in general
chosen the second alternative. But which gaps should we fill? For example: should we fill
the gap

10` = 2 (20)

(i.e. ` = log10 2)? This also occurs as a length, in the sense that if we draw the graph of
y = 10x then ` is the length of the segment shown on the x-axis in the diagram below.

3

1

2

y=10x

l

x

y

Should we fill the gap
x2 = −1? (21)
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Should we fill the gaps left by the solutions of polynomial equations like x2 = 2, or, more
generally,

xn + qn−1x
n−1 + · · ·+ q1x+ q0 = 0 (22)

where the coefficients q0, . . ., qn−1 are rational numbers? The answer adopted by modern
mathematics is to define the set of real numbers, R, to be ‘the smallest complete number
system containing the rationals’. This means in one sense that we throw into R solutions to
every equation where we can approximate those solutions, as close as we wish, by rational
numbers. In particular, we fill the gap (20) and some of the gaps (22) but not the gap
(21) (you cannot find a sequence of rationals whose squares approach −1, since the square
of every rational number is greater than or equal to 0). As you will see at some point in
Analysis, the real numbers are precisely the numbers that can be obtained as the limits of
convergent sequences of rational numbers. In fact, this is exactly how we all first encounter
them. When we are told that √

2 = 1.414213562. . .

what is really meant is that
√

2 is the limit of the sequence of rational numbers

1,
14

10
,

141

100
,

1414

1, 000
,

14142

10, 000
, . . .

If you disagree with this interpretation of decimals, can you give a more convincing one?

4.3 Decimal expansions and irrationality

A real number that is not rational is called irrational. As we will see in a later section,
although there are infinitely many of each kind of real number, there are, in a precise sense,
many more irrationals than rationals.

So an irrational number is one which, though not rational (i.e. expressible as a quotient
or ration of two integers), can be approximated arbitrarily closely by rationals. But then
how do we write down such a number? Not many have simple expressions such as

√
2. But

they all have decimal expansions, which do precisely what is required! Every decimal
expansion encodes a convergent sequence of rational numbers (as with the example of

√
2

above) and hence a real number.
The decimal

mkmk−1 · · ·m1m0 · n1 n2 . . . nt . . . (23)

(in which all of the mi’s and nj’s are between 0 and 9) denotes the real number

(mk × 10k) + · · ·+ (m1 × 10) +m0 +
n1

10
+

n2

100
+ · · ·+ nt

10t
+ · · · (24)

Notice that there are only finitely many non-zero mi’s, but there may be infinitely many
non-zero nj’s.

Theorem 4.5. The number (24) is rational if and only if the sequence

mk, mk−1, . . ., m0, n1, n2, . . ., nt, . . .

is eventually12) periodic.

12“Eventually periodic” means that after some point the sequence becomes periodic.
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Proof. The proof has two parts, corresponding to the two implications. We can restrict
our attention to positive numbers x (why?).

First suppose that x has a periodic expansion, say of period d, so to the right of the
decimal point the digits n1, n2, . . . , nd repeat. Then the decimal expansion of y = 10dx has
exactly the same digits to the right of the decimal point as x (since multiplying by 10 shifts
the decimal point by one place, so multiplying by 10d shifts it by d places). That means that
y − x has 0 to the right of the decimal point, and is therefore an integer. Thus

(10d − 1)x = y − x = n ∈ Z,

so x = n/(10d − 1) which is rational.
Next, if the decimal expansion of x is only eventually periodic, say that the periodicity

only starts after e decimal places and then has period d. Then 10ex and 10d+ex have the
same decimal part, so differ by an integer n, and hence x = n/(10d+e−10e) which is rational.

Now for the other direction. Given a positive rational x = m/n, if we can find d > 0 and
e ≥ 0 such that (10d+e − 10e)x ∈ Z then it will follow, as in the previous paragraph, that
the decimal expansion of x has period d starting after e digits. Why should such d, e exist?

Consider the sequence of integers

m, 10m, 100m, 1000m, . . . , 10km, . . .

and for each integer in the sequence, take its remainder on division by n. Since the sequence
is infinite, but there are only finitely many different remainders possible, there must be
repeats in the sequence of remainders! That means that there must be two values of k, say
k1 ≥ 0 and k2 > k1 such that

10k1m ≡ 10k2m (mod n).

Writing e = k1 and d = k2 − k1, we have e ≥ 0 and d > 0, and

(10d+e − 10e)x = (10k2 − 10k1)(m/n) ∈ Z,

as required, finishing the proof. 2

Some examples may help you follow the general argument:

Example 4.6. 1. Express 0.1234 as a rational number. (Here the line over the digits 34
indicates that these two digits repeat, so x = 0.1234343434 . . . ).

We have 100x = 12.34 and 10000x = 1234.34, which have the same decimal part.
Subtract to get 9900x = 1234− 12 = 1222, so x = 1222/9900 = 611/4950.

2. Find the decimal expansion of x = 3/7.

You can use long division for this if you prefer. Following the steps of the proof (which
is really long division in disguise), we take m = 3 and n = 7, and then list the numbers
10km (mod n) in sequence until we see a repeat:

3, 30 ≡ 2, 20 ≡ 6, 60 ≡ 4, 40 ≡ 5, 50 ≡ 1, 10 ≡ 3, . . .

where at each step we multiply by 10 and reduce modulo 7. The upshot is that 3·106 ≡ 3
(mod 7). Now 106 − 1 = 999999 = 7 · 142857, so (106 − 1)x = 3 · 142857 = 428571,
which means that x = 0.428571.
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Exercise 4.1. Find decimal expansions for the rational numbers

2

7
,

3

11
,

1

6
,

1

37

Exercise 4.2. Express as rational numbers the decimals

0 · 23, 0 · 234, and 0 · 123.

Exercise 4.3. (i) Can you find an upper bound for the length of the cycle in the decimal
expansion of the rational number m

n
(where m and n are coprime natural numbers)? (ii) Can

you find an upper bound for the denominator of a rational number if the decimal representing
it becomes periodic with period ` after an initial decimal segment of length k? Try with k = 0
first.

Further study of the real number system would lead us into Analysis, which is not the
subject of this course. Instead, we end this chapter with a summary of where we are, and
where we will be going next.

4.4 Summary

So far we have studied the four “number systems” N, Z, Q and R. Obviously each contains
its predecessor. It is interesting to compare the jump we make when we go from each one to
the next. In N there are two operations, + and ×. There is an “additive neutral element”
0, with the property that adding it to any number leaves that number unchanged, and there
is a “multiplicative neutral element” 1, with the property that multiplying any number by
it leaves that number unchanged. In going from N to Z we throw in the negatives of the
members of N. These are more formally known as the “additive inverses” of the members
of N: adding to any number its additive inverse gives the additive neutral element 0. The
“multiplicative inverse” of a number is what you must multiply it by to get the neutral
element for multiplication, 1. In Z, most numbers do not have multiplicative inverses, and
we go from Z to Q by throwing in the multiplicative inverses of the non-zero elements of
Z. Actually we throw in a lot more too, since we want to have a number system which
contains the sum and product of any two of its members. The set of rational numbers Q
is in many ways a very satisfactory number system, with its two operations + and ×, and
containing, as it does, the additive and multiplicative inverses of all of its members (except
for a multiplicative inverse of 0). It is an example of a field. Other examples of fields are
the real numbers R and the complex numbers C, which we obtain from R by throwing in a
solution to the equation

x2 = −1,

together with everything else that results from addition and multiplication of this element
with the members of R. The complex numbers will be the topic of the next chapter. There
are other examples of fields arising from modular arithmetic.

Exercise 4.4 (Optional). Can you say for which n > 0 the structure Z/n is a field? Re-
member that every nonzero element must be invertible.

Exercise 4.5 (Optional). Actually, in our discussion of filling gaps in Q, we implicitly
mentioned at least one other field, intermediate between Q and C but not containing all of
R. Can you guess what it might be? Can you show that the sum and product of any two of
its members are still members? In the case of the field I’m thinking of, this is rather hard.
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5 Complex Numbers

5.1 What are Complex Numbers?

A complex number is represented by a+ bi where a and b are real numbers and i is a symbol
that satisfies i2 = −1. We add and multiply complex numbers as you would expect; every
time we see an i2 we replace it by −1.

Example 5.1. Let α and β be the complex numbers α = 2 + 3i and β = −7 + 4i. Addition
is straightforward:

α + β = −5 + 7i, α− β = 9− i.

Multiplication involves the usual expansion of brackets and then replacing i2 by −1:

αβ = (2 + 3i)(−7 + 4i)

= −14− 13i+ 12i2 usual expansion of brackets

= −14− 13i+ 12(−1) replace i2 by −1

= −26− 13i

The set of complex numbers is denoted by C. In set notation we can write

C = {a+ bi : a, b ∈ R}.

Definition 5.2. Let α be a complex number and write α = a + bi where a and b are real
numbers. We call a the real part of α and b the imaginary part of α. We write <(α) = a
and =(α) = b.

Example 5.3. <(2− 4i) = 2 and =(2− 4i) = −4.

The Complex Plane

The complex number a+ bi is represented by the point (a, b) in the coordinate plane. The x-
axis is called the real axis and the y-axis is called the imaginary axis. When used to represent
complex numbers in this way, the coordinate plane is called ‘The Argand diagram’, or ‘the
complex plane’. See Figure 1.

Addition can be described geometrically (i.e. on the complex plane) by completing the
parallelogram. If z and w are complex numbers, then the points representing 0 (the origin),
z, w and z + w form a parallelogram; see Figure 2.

Some Formal Definitions

Equality of complex numbers is straightforward.

Definition 5.4. Two complex numbers are equal if and only if their real parts are equal and
their imaginary parts are equal. Another way of saying this is: if α = a+ b i and β = c+ d i
are complex numbers (with a, b, c, d real) then α = β if and only if a = b and c = d.

We saw examples of addition and multiplication above, but let us write the definition of
addition and multiplication more formally.
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Real Axis

Imaginary Axis

a0

bi a+bi

Figure 1: The Complex Plane (or The Argand Diagram).

Real Axis0

Imaginary Axis

z

z+w

w

Figure 2: If z and w are complex numbers, then the points on the complex plane representing
0 (the origin), z, w and z + w form a parallelogram.

Definition 5.5. Suppose α = a + bi and β = c + di are complex numbers, where a, b, c, d
are real numbers. We define the sum α + β by

α + β = (a+ c) + (b+ d)i

and the product αβ by
αβ = (ac− bd) + (ad+ bc)i.

Notice that real numbers are also complex numbers. Indeed if a is a real number, we can
think of it as the complex number a + 0.i. A complex number of the form bi (i.e. 0 + bi),
with b real, is called an imaginary number. Thus real numbers and imaginary numbers are
special types of complex numbers.

Example 5.6. Suppose r is a positive real number. We denote by
√
r the positive square-root

of r. Notice that
(±
√
ri)2 = −r.
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We see that positive real numbers have two real square-roots, whereas negative real numbers
have two imaginary square-roots.

Exercise 5.1. Which number is both real and imaginary?

Fields

Like the set Q of rational numbers and the set R of real numbers, the set C of complex
numbers is an example of the mathematical structure called a field. All this means is
that on each of these sets or number systems, all four of the basic arithmetic operations
(additions and subtraction, multiplication and division except by zero) may be carried out
without going outside the system; moreover, the usual properties of these operations (called
the commutative, distributive and associative laws) all hold. These facts should be proved,
and it is not at all hard to do so for the field of complex numbers (assuming that you already
know all the properties for the field of real numbers), but we will not do that here.

Nevertheless, a few remarks are in order: neither Z nor N are fields, since in neither
case can we (for example) divide 2 by 3 within the system, so while addition and multipli-
cation are always possible in these systems, division is not (and in the case of N, neither
is subtraction). If you take Algebra courses (as all Mathematics students do, starting with
MA136 Introduction to Abstract Algebra this term) you will learn more about these and
other algebraic systems.

Here is one more big difference between the real and complex systems: there is no good
definition of “less than” or “greater than” for complex numbers, and there are no positive
or negative complex numbers. You may like to think about why this must be so: the clue is
that wherever “positive” makes sense, squares are always positive–but all complex numbers
are squares (see Example 5.6)!

So remember: Inequalities between complex numbers have no meaning. This is a point
that needs special care. Never write α > β if either α or β is a non-real complex number!

5.2 Powers, conjugates, reciprocals and division

How do we define exponentiation? In other words, what does αn mean? Well if n is a positive
integer then this is easy to define.

Definition 5.7. If α is a complex number and n a positive integer then we define

αn = α · α · · ·α︸ ︷︷ ︸
n times

.

The definition is correct, but involves a subtle point that should really be checked: when
forming the product αn by repeated multiplication, does it matter how we group the factors?
For example, when n = 4, are α(α(α2)) and (α2)(α2) equal? The answer (luckily) is “yes”,
and it can be proved using the associative law, but the proof is exceedingly tedious and will
be omitted.

Example 5.8. Let α = 1 + i. Then (check this):

α2 = 2i, α4 = (2i)2 = −4.

Notice that −4 is not the square of a real number but it is the square and fourth power of
certain complex numbers. We see from the calculation above that α = 1 + i is a root of the
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polynomial X4 + 4. This polynomial does not have any real roots but has 4 complex roots
which are ±1± i (check). 13

Exercise 5.2. For which positive integral values of n is in real?

Next we come to a simple but important operation on complex numbers: conjugation.
We will see later that the conjugate helps us in defining the division of complex numbers.

Definition 5.9. Let α = a + bi be a complex number, where a, b are real numbers. We
define the conjugate of α (denoted by α) to be α = a− bi.

Theorem 5.10. Suppose α, β are complex numbers. Then

(i) The equality α = α holds if and only if α is a real number.

(ii) Conjugation distributes over addition and multiplication: in other words

α + β = α + β and α · β = α · β.

(iii) If α = a+ bi with a, b real numbers then

α · α = a2 + b2.

In particular α · α is a non-negative real number, which is 0 if and only if α = 0.

Proof. The proof is left as an exercise.

Exercise 5.3. What is the geometric meaning14 of conjugation? I.e. if z is a complex
number, describe the geometric operation on the complex plane that takes z to its conjugate
z.

Next, and before defining division more generally, we would like to define reciprocals of
complex numbers. In other words, if α is a non-zero complex number, what do we mean
by 1/α? There are certain reasonable things that we should expect from this definition. Of
course we want to define reciprocal in such a way that α · (1/α) = 1. The key to discovering
the correct definition is part (iii) of Theorem 5.10. This can be rewritten as follows: if a, b
are real and α = a+ bi then

αα = (a+ bi)(a− bi) = a2 + b2.

We instantly see that the following definition is reasonable.

Definition 5.11. Let α be a non-zero complex number and write α = a+ bi where a, b are
real and not both 0. Define the reciprocal of α to be

1

α
=

a

a2 + b2
− b

a2 + b2
i =

1

a2 + b2
α.

13An important theorem which we will see later is the Fundamental Theorem of Algebra which says that
a polynomial of degree n has n complex roots (counting multiplicities). This is clearly not true if we work
just with real numbers.

14You should get used to thinking geometrically, and to drawing pictures. The true meaning of most
mathematical concepts is geometrical. If you spend all your time manipulating symbols (i.e. doing algebra)
without understanding the relation to the geometric meaning, then you will have very little in terms of
mathematical insight.
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You can easily check that multiplying out

(a+ bi)

(
a

a2 + b2
− b

a2 + b2
i

)
and simplifying gives 1, and also that (since a and b are real!) the expression a2 + b2 cannot
be 0 unless a = b = 0, but this is exactly what we excluded by insisting that α 6= 0. So the
definition makes sense.

Recall that we defined αn only for positive integer values of n. Now if n is negative we
can define αn = 1/α−n. So (with α0 = 1) we have defined15 αn for all n ∈ Z whenever α is
a non-zero complex number; the usual laws for working with exponents apply.

It is now clear how to define division: if α and β are complex and α = a+ bi is non-zero,
then we define

β/α = β · 1/α =
βα

a2 + b2
.

The last expression here gives us the following standard way to divide complex numbers:
multiply top and bottom by the conjugate of the denominator; this makes the denominator
real, so we may easily simplify.

Example 5.12.

3 + i

2− 4i
=

(3 + i)(2 + 4i)

(2− 4i)(2 + 4i)

=
2 + 14i

22 + 42

=
1

10
+

7

10
i.

Exercise 5.4. Solve the equation (5− i)X + 7 = 2i.

Exercise 5.5. Write
1

cos θ + i sin θ

in the form a + i b. (You might already know the answer, but do this question using the
definition of reciprocal).

5.3 The Absolute Value and Argument of complex numbers

Let a be a real number. We recall the definition of the modulus (also called the absolute
value) |a| as follows:

|a| =

{
a if a ≥ 0

−a if a < 0.

From now on we say absolute value instead of modulus. We would like to extend the notion of
absolute value to complex numbers. The above definition will not do because the inequalities
a ≥ 0 and a < 0 do not have a meaning when a is a complex number. There is, however,
another—more geometric—definition of the absolute value of a real number: if a is a real
number then |a| is the distance on the real line between the numbers a and 0. This definition

15to define αx for real x, or αβ for complex β is much harder and is a question of analysis, not algebra.
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can be extended to complex numbers. In geometric terms we define, for a complex number
α, its absolute value |α| to be the distance between α and 0 (the origin) in the complex
plane. This definition is not suitable for calculations, however it is easy to see how to turn
it into an algebraic definition; if α = a + bi with a, b real then the distance of α from the
origin is

√
a2 + b2. We finally arrive at our definition.

Definition 5.13. Let α = a+ bi be a complex number with a, b real. We define the absolute
value of α to be

|α| =
√
a2 + b2.

Note that when we speak of the square-root of a positive real, we always mean the positive
square-root.

Theorem 5.14. Let α, β be complex numbers.

(i) αα = |α|2.

(ii) |α| = 0 if and only if α = 0.

(iii) |αβ| = |α||β|.

(iv) |α + β| ≤ |α|+ |β| (this is the triangle inequality).

(v) |α− β| ≥
∣∣|α| − |β|∣∣.

Proof. The proof is left as an exercise.

Recall that there are two coordinate systems which one may employ to specify points
in the plane. The first is the Cartesian system and the second the polar system. In the
Cartesian system we represent a point by a pair (a, b): here a and b are distances we have
to move parallel to the x- and y-axes to reach our point, having started at the origin. In the
polar system we represent points by a pair (r, θ): here r is the distance of the point from
the origin. Moreover, if we denote the point by P then θ is the angle16 measured from the

positive x-axis to the ray
−→
OP in an anti-clockwise direction. This the polar system.

Converting between Cartesian and polar coordinates is easy. Let (a, b) and (r, θ) represent
the same point. We deduce from Figure 3 that

a = r cos θ, b = r sin θ.

Previously we used the Cartesian system to represent the complex number α = a+ bi on
the complex plane. But we can also use the polar system. Now r is the distance from the
origin, so r = |α| = |a+ bi| is just the absolute value of α. The angle θ has a special name:
it is the argument of α.

Definition 5.15. Let α = a + bi be a non-zero complex number, and suppose that α is

represented in the complex plane by the point P . Let θ be the angle the ray
−→
OP makes with

the positive real axis (or the positive x-axis). We call θ the argument of α. Note that we can
take 0 ≤ θ < 2π, or alternatively −π ≤ θ < π; each of these choices is sometimes called the
Principal Argument of α.

We collect the above facts in a useful Lemma.

16Normally, when we talk of angles, we are using the radian measure.
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r

P

b

aO

Figure 3: Cartesian coordinates (a, b), and by polar coordinates (r, θ) for the point P .

Lemma 5.16. If α = a+ bi is a non-zero complex number, r is its absolute value, and θ is
its argument, then

a = r cos θ, b = r sin θ,

and
α = r(cos θ + i sin θ). (25)

Moreover,
r = |α| =

√
a2 + b2, b = a tan θ.

The expression on the right-hand side of (25) is called the (r, θ)-form of α. It is important
to note that the equation b = a tan θ is not by itself enough to determine θ, since tan(θ) =
tan(θ + 2π).

Example 5.17. Write the following numbers in (r, θ)-form:

3i, −2, −5i, −1 + i,
√

3 + i.

Answer. For the first four of the complex numbers, a quick sketch will give us the
argument and it is easy to get the (r, θ)-form. For example,

|−1 + i| =
√

(−1)2 + 12 =
√

2.

From the sketch, the argument of −1 + i is π/4 + π/2 = 3π/4. Thus

−1 + i =
√

2

(
cos

3π

4
+ i sin

3π

4

)
.

Similarly

3i = 3
(

cos
π

2
+ i sin

π

2

)
, −2 = 2 (cos π + i sin π) ,

−5i = 5

(
cos

3π

2
+ i sin

3π

2

)
.
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Real Axis−1

−1+i
i

Imaginary Axis

Figure 4: It is clear that the argument of −1 + i is 3π/4.

Now let α =
√

3 + i. We see that

r = |α| =
√(√

3
)2

+ 12 =
√

4 = 2.

A sketch will not immediately give us the value of θ, but it is useful to make one anyway.
Note that sin θ = 1/2 and cos θ =

√
3/2. Thus θ = π/6. Hence the (r, θ)-form of α is

α = 2
(

cos
π

6
+ i sin

π

6

)
.

Multiplying and Dividing the (r, θ)-Form

Lemma 5.18. Suppose θ1, θ2, θ are real. Then

(cos θ1 + i sin θ1) (cos θ2 + i sin θ2) = cos(θ1 + θ2) + i sin(θ1 + θ2), (26)

cos θ1 + i sin θ1
cos θ2 + i sin θ2

= cos(θ1 − θ2) + i sin(θ1 − θ2), (27)

and
1

cos θ + i sin θ
= cos θ − i sin θ. (28)

Proof. These are simple exercises based on the (hopefully) familiar identities

sin(θ1 + θ2) = sin θ1 cos θ2 + sin θ2 cos θ1,

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2.

For example, to prove (26):

(cos θ1 + i sin θ1) (cos θ2 + i sin θ2)

= (cos θ1 cos θ2 − sin θ1 sin θ2) + i (sin θ1 cos θ2 + sin θ2 cos θ1)

= cos(θ1 + θ2) + i sin(θ1 + θ2).
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Theorem 5.19. (De Moivre’s Theorem) Suppose θ is real and n is an integer. Then

(cos θ + i sin θ)n = cosnθ + i sinnθ. (29)

Proof. We shall first prove De Moivre’s Theorem for non-negative n, using induction. It is
clearly true for n = 0 since 1 = cos 0 + i sin 0. Now suppose that (29) holds for a certain
non-negative n. Then

(cos θ + i sin θ)n+1 = (cos θ + i sin θ)n (cos θ + i sin θ)

= (cosnθ + i sinnθ) (cos θ + i sin θ)

= cos{(n+ 1)θ}+ i sin{(n+ 1)θ} using (26).

This shows that (29) is true with n replaced by n+ 1. By induction, the identity (29) holds
for all non-negative integers n. To prove (29) for negative n, use (28) and the identities:

sin(−x) = − sin(x), cos(−x) = cos(x).

Example 5.20. Let n be an integer. We will show that(√
3 + i

)n
+
(√

3− i
)n

= 2n+1 cos
1

6
nπ.

Let α =
√

3 + i. Since we will be exponentiating, it is convenient to use the (r, θ)-form for
α, which we have already worked out in Example 5.17:

α = 2
(

cos
π

6
+ i sin

π

6

)
.

By De Moivre’s Theorem

αn = 2n
(

cos
nπ

6
+ i sin

nπ

6

)
Hence (√

3 + i
)n

+
(√

3− i
)n

= αn + αn

= 2n
(

cos
nπ

6
+ i sin

nπ

6

)
+ 2n

(
cos

nπ

6
− i sin

nπ

6

)
= 2n

(
2 cos

nπ

6

)
= 2n+1 cos

nπ

6
.

Example 5.21. Simplify
(cos θ − i sin θ)5

cos 7θ + i sin 7θ
.

Answer. From (28)

(cos θ − i sin θ)5 = (cos θ + i sin θ)−5 .

By De Moivre,
cos 7θ + i sin 7θ = (cos θ + i sin θ)7 .
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Thus

(cos θ − i sin θ)5

cos 7θ + i sin 7θ
=

(cos θ + i sin θ)−5

(cos θ + i sin θ)7

= (cos θ + i sin θ)−12

= cos(−12 θ) + i sin(−12 θ)

= cos(12 θ)− i sin(12 θ).

Example 5.22. De Moivre’s Theorem is useful for reconstructing many formulae involving
trigonometric functions. For example, letting n = 2 in De Moivre’s Theorem we see that

cos 2θ + i sin 2θ = (cos θ + i sin θ)2

= cos2 θ − sin2 θ + i · 2 sin θ cos θ.

Comparing the real and imaginary parts, we get the well-known identities

cos 2θ = cos2 θ − sin2 θ, sin 2θ = 2 sin θ cos θ.

If you forget these identities, you can easily reconstruct them using De Moivre’s Theorem.
It is useful to know that the identity for cos 2θ is often given in the alternative form

cos 2θ = 2 cos2 θ − 1 = 1− 2 sin2 θ

which may be deduced from the previous identity for cos 2θ using cos2 θ + sin2 θ = 1.

Exercise 5.6. Let α, β be non-zero complex numbers. Suppose that the points P , Q represent
α and β on the complex plane. Show that OP is perpendicular to OQ if and only if α/β is
imaginary.

5.4 The Exponential Form of Complex Numbers

Definition 5.23. Let θ be a real number. Define ei θ by

eiθ = cos θ + i sin θ.

Let α = t+ iθ, where t and θ are real numbers. Define

eα = et · eiθ = et (cos θ + i sin θ)

where et has the usual meaning for real t.

You may have seen this definition of eiθ before, but it is surprising, and in need of some
justification. One way to see that it is reasonable is to use the power series expansion (Taylor
series) for ez with z = iθ, and compare to the series expansions of sin θ and cos θ.

Taking θ = π gives eiπ = −1, which we may write as a remarkable identity linking five
of the most important numbers in mathematics: 0, 1, i, e and π!

Euler’s Identity. eiπ + 1 = 0.

Exercise 5.7. Let z = π/6 + i log 2. Write ei z in the form a + b i. (Careful! This is a
trick question.)
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Exercise 5.8. Let α = t+ i θ where t and θ are real.

(i) Simplify |eα| and |ei α|.

(ii) Show that the conjugate of eα is eα.

Now let α be any non-zero complex number. Lemma 5.16 tells us that we may write

α = r(cos θ + i sin θ)

where r and θ are respectively the absolute value and the argument of α. We also recall that
eiθ = cos θ+ i sin θ. Thus we arrive at a very convenient representation of complex numbers.

Lemma 5.24. Let α be a non-zero complex number. Then

α = rei θ (30)

where r = |α| > 0 and θ is the argument of α.

We call rei θ the exponential form of the (non-zero) complex number α. The exponential
form of complex numbers is very useful for multiplication, division and exponentiation of
complex numbers.

Lemma 5.25. Suppose r1, r2, r, θ1, θ2, θ3 are real with r1, r2 > 0. Then

r1e
iθ1 · r2eiθ2 = r1r2e

i (θ1+θ2), (31)

r1e
iθ1

r2eiθ2
=
r1
r2
ei (θ1−θ2), (32)

and
(rei θ) = re−i θ. (33)

Moreover, for n an integer, (
rei θ

)n
= rnei nθ. (34)

Proof. You should be able to deduce this theorem from Lemma 5.18 and Theorem 5.19.

Example 5.26. Use what you know about ei θ to simplify

∞∑
n=0

cos(nθ)

2n
.

Answer: Note that the required sum is the real part of

∞∑
n=0

cos(nθ) + i sin(nθ)

2n
=
∞∑
n=0

(
eiθ

2

)n
=

1

1− eiθ

2

=
2

2− cos θ − i sin θ

=
2(2− cos θ + i sin θ)

(2− cos θ)2 + sin2 θ

=
2(2− cos θ + i sin θ)

5− 4 cos θ
.
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Hence
∞∑
n=0

cos(nθ)

2n
=

4− 2 cos θ

5− 4 cos θ
.

Example 5.27. Use what you know about ei θ to simplify

1 + cos
( π

10

)
+ cos

(
2π

10

)
+ · · ·+ cos

(
9π

10

)
. (35)

We know that cosnθ is the real part of ei n θ. Thus the sum (35) is the real part of

1 + eπi/10 + e2πi/10 + · · ·+ e9πi/10 =
e10πi/10 − 1

eπi/10 − 1

=
−2

cos(π/10)− 1 + i sin(π/10)

= −2
cos(π/10)− 1− i sin(π/10)

(cos(π/10)− 1)2 + sin2(π/10)

= −2
cos(π/10)− 1− i sin(π/10)

cos2(π/10) + sin2(π/10)− 2 cos(π/10) + 1

= −2
cos(π/10)− 1− i sin(π/10)

2− 2 cos(π/10)

=
cos(π/10)− 1− i sin(π/10)

cos(π/10)− 1
.

Taking the real part we get

1 + cos
( π

10

)
+ cos

(
2π

10

)
+ · · ·+ cos

(
9π

10

)
=

cos(π/10)− 1

cos(π/10)− 1
= 1.

Exercise 5.9. Let α be a complex number. Describe geometrically what happens to α (in
the complex plane) when it is multiplied by eit (where t is real).
Hint: write α in exponential form.

5.5 Roots of Complex Equations

Square roots and Quadratic Equations

The well-known method for solving quadratic equations work even when dealing with equa-
tions with complex coefficients. Since all complex numbers have square roots, all quadratic
equations have solutions!

Theorem 5.28. (Quadratic formula) Suppose a, b, c are complex numbers with a 6= 0. Then
the (complex!) solutions to the quadratic equation

ax2 + bx+ c = 0

are

x =
−b±

√
b2 − 4ac

2a
.

43



Proof. We complete the square and reorganise to get(
x+

b

2a

)2

=
b2 − 4ac

4a2
.

Square-rooting both sides gives

x+
b

2a
= ±
√
b2 − 4ac

2a

from which the quadratic formula follows.

To use this formula in practice you need to know how to find complex square roots. This
is simplest in polar form:

Lemma 5.29. The square roots of z = reiθ are ±
√
reiθ/2.

This is not hard to verify; we will consider more general nth roots later.
Make sure you have understood the argument in the proof of the quadratic formula before

you answer this question.

Exercise 5.10. Solve the equation (x−i+1)2 = −4. (Do not say, “expand the brackets,
rearrange and use the quadratic formula”!!!).

n-th Roots

Just as the exponential form makes it easy to multiply and divide complex numbers, so it
also makes it easy to find the n-th roots of complex numbers.

The trigonometric function sin θ is periodic with period 2π. Thus if θ1− θ2 = 2πk where
k is an integer, then sin θ1 = sin θ2. However the converse does not have to be true. By this
we mean, if sin θ1 = sin θ2 then it is not necessarily true that θ1 − θ2 = 2πk for some integer
k. For example sin π/4 = sin 3π/4.

However, the function ei θ has a very attractive property.

Lemma 5.30. The function ei θ is periodic with period 2π. Moreover, ei θ1 = ei θ2 if and only
if θ1 − θ2 = 2πk for some integer k.

The lemma follows from the properties of sin and cos.

Lemma 5.31. Suppose α and β are non-zero complex numbers with exponential forms

α = rei θ, β = sei φ.

Suppose that n is a positive integer. Then αn = β if and only if

r = s1/n, θ =
φ+ 2πk

n
(36)

for some integer k.
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Proof. Suppose that αn = β. Note that

rn = |αn| = |β| = s.

But r and s are positive, so r = s1/n. Cancelling rn = s from αn = β, we get

ei nθ = ei φ.

From Lemma 5.30 we see that
nθ = φ+ 2πk,

for some integer k. Dividing by n gives (36).
Conversely, suppose that (36) holds for some integer k. Then

αn = rnei nθ = s ei φ · e2πi k = s ei φ = β,

as required.

Apparently, the Lemma gives us infinitely many n-th roots of a complex number β: one
for each value of k. This is not so! There is repetition, and there are only n distinct nth
roots. The following theorem gives the n-th roots without repetition.

Theorem 5.32. Let β be a non-zero complex number and let its exponential form be

β = sei φ.

The n-th roots of β are

s1/n exp

(
(φ+ 2π k)i

n

)
, k = 0, 1, 2, . . . , n− 1.

Proof. Exercise

Example 5.33. Find (all) the cube roots of −2.

Answer. We note first that
−2 = 2 exp(πi).

Thus from the Theorem, the cube roots of −2 are

21/3 exp

(
(π + 2πk)i

3

)
, k = 0, 1, 2.

These are

21/3 exp

(
πi

3

)
= 21/3 (cos π/3 + i sin π/3) = 21/3

(
1

2
+ i

√
3

2

)
21/3 exp (π i) = −21/3

21/3 exp

(
5πi

3

)
= 21/3 (cos 5π/3 + i sin 5π/3) = 21/3

(
1

2
− i
√

3

2

)
.
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The n-th Roots of Unity

It is worthwhile looking a little more closely at the n-th roots of 1. We can write 1 in
exponential form as 1 = 1 exp(0 · i). Theorem 5.32 tells us that the n-th roots of 1 are

exp

(
2π k i

n

)
= cos

2π k

n
+ i sin

2π k

n
, k = 0, 1, 2, . . . , n− 1.

If we write

ζ = exp

(
2π i

n

)
then we see that the n-th roots of unity are

1, ζ, ζ2, . . . , ζn−1.

It is easy to sketch the n-th roots of unity on the complex plane. They all have absolute
value 1, so they lie on the circle with radius 1 and centre at the origin. The first one to
draw is 1; you know where that one is. The next one is ζ. This is the one you get if start
at 1 go around the circle in an anticlockwise direction through an angle of 2π/n. To get ζ2,
start at ζ and go around the circle in an anticlockwise direction through an angle of 2π/n,
and so on. The points 1, ζ,. . . ,ζn−1 are equally spaced around the circle with an angle 2π/n
between each one and the next. See Figure 5 for the cube and fourth roots of unity.

Figure 5: On the left, the three cube roots of unity: here ζ = e2πi/3. On the right, the fourth
roots of unity. Note that e2πi/4 = eπi/2 = i, so the fourth roots of unity are 1, i, i2 = −1,
and i3 = −i.

Example 5.34. What is the sum of the n-th roots of unity?

Answer.

1 + ζ + ζ2 + · · ·+ ζn−1 =
ζn − 1

ζ − 1
=

1− 1

ζ − 1
= 0.

Example 5.35. Write down all the cube roots of unity.

Answer. We can (and will) use the above recipe to write the cube roots of unity. But
there is another (easier) way: the cube roots of unity are the roots of the polynomial X3−1.
By factoring

X3 − 1 = (X − 1)(X2 +X + 1).
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and using the quadratic formula on the second factor, we see that the cube roots of unity
are

1,
−1 + i

√
3

2
,

−1− i
√

3

2
.

Having found them, what is the point of using the general recipe to find the cube roots of
unity? Well, knowing the solution beforehand will allow us to check that the recipe that we
wrote down is correct.

Using the general formula we find that the cube roots of unity are

exp

(
2π k i

3

)
= cos

2π k

3
+ i sin

2π k

3
, k = 0, 1, 2, . . . , n− 1.

These are

cos 0 + i sin 0 = 1,

cos
2π

3
+ i sin

2π

3
=
−1 + i

√
3

2
,

cos
4π

3
+ i sin

4π

3
=
−1− i

√
3

2
.

For larger n, while it is always true that the n-th roots of unity are the roots of Xn − 1,
for large values of n it is not convenient to use this fact to write down the n-th roots.

Summary. There are two square-roots of unity17 and they add up to 0; there are three
cube-roots of unity and they add up to 0; there are four fourth-roots of unity and they add
up to 0; there are five fifth-roots of unity and they add up to 0; . . .

Exercise 5.11. Sketch the fifth and sixth roots of unity.

General polynomial equations

The nth roots of unity are the roots of the polynomial equation Xn − 1 = 0. This equation
has degree n and (as we have seen) has exactly n complex roots. In fact every equation of
degree n has exactly n roots, provided that we count them correctly! To see why we have
to count roots properly, note that the equation X2 = 0 has only one root, 0, despite having
degree 2. In the chapter on polynomials (see section 7.3) we’ll see that X = 0 is a root of
multiplicity 2, and the count comes out correctly.

17“Unity” is just another name for 1.
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6 Sets, functions and relations

6.1 The languages of sets and logic

Mathematics has many pieces of notation which are impenetrable to the outsider. Some of
these are just notation, and we have already met quite a few. See the table on page 1 (right
at the beginning of these notes) for a quick reference.

The operations of union, ∪, and intersection, ∩, behave in some ways rather like + and
×, and indeed in some early 20th century texts A∪B is written A+B and A∩B is written
AB. Let us first highlight some parallels:

Property Name

A ∪B = B ∪ A A ∩B = B ∩ A

x+ y = y + x x× y = y × x

Commutativity of ∪ and ∩

Commutativity of + and ×

(A ∪B) ∪ C = A ∪ (B ∪ C) (A ∩B) ∩ C = A ∩ (B ∩ C)

(x+ y) + z = x+ (y + z) (x× y)× z = x× (y × z)

Associativity of ∪ and ∩

Associativity of + and ×

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

x× (y + z) = (x× y) + (x× z)

Distributivity of ∩ over ∪

Distributivity of × over +

However there are also some sharp contrasts:

Property Name

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

x+ (y × z) 6= (x+ y)× (x+ z)

Distributivity of ∪ over ∩

Non-distributivity of + over ×

Each of the properties of ∪ and ∩ listed is fairly easy to prove. For example, to show that

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (37)

we reason as follows. First, saying that sets X and Y are equal is the same as saying that
X ⊆ Y and Y ⊆ X. So we have to show

1. A ∩ (B ∪ C) ⊆ (A ∩B) ∪ (A ∩ C), and

2. A ∩ (B ∪ C) ⊇ (A ∩B) ∪ (A ∩ C).

To show the first inclusion, suppose that x ∈ A∩ (B ∪C). Then x ∈ A and x ∈ B ∪C. This
means x ∈ A and either x ∈ B or x ∈ C (or both18). Therefore either

x ∈ A and x ∈ B
18 we will always use “or” in this inclusive sense, as meaning one or the other or both, and will stop saying

“or both” from now on
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or
x ∈ A and x ∈ C

That is, x ∈ (A ∩B) ∪ (A ∩ C).
To show the second inclusion, suppose that x ∈ (A∩B)∪ (A∩C). Then either x ∈ A∩B

or x ∈ A ∩ C, so either
x ∈ A and x ∈ B

or
x ∈ A and x ∈ C.

Both alternatives imply x ∈ A, so this much is sure. Moreover, the first alternative gives
x ∈ B and the second gives x ∈ C, so as one alternative or the other must hold, x must be
in B or in C. That is, x ∈ B ∪ C. As x ∈ A and x ∈ B ∪ C, we have x ∈ A ∩ (B ∪ C), as
required. We have proved “distributivity of ∩ over ∪”.

In this proof we have simply translated our terms from the language of ∪ and ∩ to the
language of or and and. In logic, the symbols ∨, meaning “or”, and ∧, meaning “and” are
used (see the table on page 1); the resemblance they bear to ∪ and ∩ is not a coincidence.
For example, it is the definition of the symbols ∪ and ∩ that

x ∈ A ∪B ⇐⇒ (x ∈ A) ∨ (x ∈ B).

and
x ∈ A ∩B ⇐⇒ (x ∈ A) ∧ (x ∈ B).

Many proofs in this area amount to little more than making this translation.

Exercise 6.1. (i) Prove that x /∈ B ∩ C if and only if x /∈ B or x /∈ C.
(ii) Go on to show that Ar (B ∩ C) = (ArB) ∪ (Ar C).

In deciding whether equalities like the one you’ve just been asked to prove are true or
not, Venn diagrams can be very useful. A typical Venn diagram looks like this:

A B

C

It shows three sets A,B,C as discs contained in a larger rectangle, which represents the set
of all the things being discussed. For example we might be talking about sets of integers,
in which case the rectangle represents Z, and A,B and C represent three subsets of Z.
Venn diagrams are useful because we can use them to guide our thinking about set-theoretic
equalities. The three Venn diagrams below show, in order, ArB, ArC and Ar (B ∩C).
They certainly suggest that Ar (B ∩ C) = (ArB) ∪ (Ar C) is always true.
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A B

C

A B

C

A B

C

Exercise 6.2. Let A,B,C, . . . be sets.
(i) Which of the following is always true?

1. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

2. Ar (B r C) = (ArB) ∪ C

3. Ar (B ∪ C) = (ArB) r C

4. Ar (B ∩ C) = (ArB) ∪ (Ar C)

(ii) For each statement in (i) which is not always true, draw Venn diagrams showing three
sets for which the equality does not hold.

The general structure of the proof of an equality in set theory is exemplified with our proof
of distributivity of ∩ over ∪, (37). Let us consider another example. Distributivity of ∪ over
∩ is the statement

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C). (38)

We translate this to

x ∈ A ∨ (x ∈ B ∧ x ∈ C)⇐⇒(x ∈ A ∨ x ∈ B) ∧ (x ∈ A ∨ x ∈ C). (39)

Let us go a stage further. There is an underlying logical statement here:

a ∨ (b ∧ c)⇐⇒(a ∨ b) ∧ (a ∨ c). (40)

In (40), the particular statements making up (39), “x ∈ A”, “x ∈ B” etc., are replaced by
letters a, b, etc. denoting completely general statements, which could be anything at all —
”It is raining”, ”8 is a prime number”, etc. Clearly (39) is a particular instance of (40). If
we succeed in showing that (40) is always true, regardless of the statements making it up,
then we will have proved (39) and therefore (38).

We broke up the proof of distributivity of ∩ over ∪, (37), into two parts. In each, after
translating to the language of ∨,∧ and =⇒ , we did a bit of work with “and” and ”or”, at
the foot of page 48 and the top of page 49, which was really just common sense. Most of
the time common sense is enough to for us to see the truth of the not very complex logical
statements underlying the set-theoretic equalities we want to prove, and perhaps you can
see that (40) is always true, no matter what a, b and c are19. But occasionally common
sense deserts us, or we would like something a little more reliable. We now introduce a
thoroughly reliable technique for checking these statements, and therefore for proving set
theoretic equalities.

19or of the implications from left to right and right to left separately, as we did in the proof of (37)
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6.2 Truth Tables

The significance of the logical connectives ∨, ∧ and ⇐⇒ is completely specified by the
following tables, which show what are the “truth value” (True or False) of a ∨ b, a ∧ b and
a⇐⇒b, given the various possible truth-values of a and b. Note that since there are two
possibilities for each of a and b, there are 22 = 4 possibilities for the two together, so each
table has 4 rows.

a ∨ b

T T T
T T F
F T T
F F F

a ∧ b

T T T
T F F
F F T
F F F

a ⇐⇒ b

T T T
T F F
F F T
F T F

(41)

We now use these tables to decide if (40) is indeed always true, whatever are the statements
a, b and c. Note first that now there are now 23 = 8 different combinations of the truth
values of a, b and c, so 8 rows to the table. I’ve added a last row showing the order in which
the columns are filled in: the columns marked 0 contain the truth assignments given to the
three atomic statements a, b and c. The columns marked 1 are calculated from these; the
left hand of the two columns marked 2 is calculated from a column marked 0 and a column
marked 1; the right hand column marked 2 is calculated from two columns marked 1; and
the column marked 3 is calculated from the two columns marked 2. The different type faces
are just for visual display.(

a ∨ (b ∧ c)
)
⇐⇒

(
a ∨ b) ∧ (a ∨ c)

)
T T T T T T T T T T T T T

T T T F F T T T T T T T F

T T F F T T T T F T T T T

T T F F F T T T F T T T F

F T T T T T F T T T F T T

F F T F F T F T T F F F F

F F F F T T F F F F F T T

F F F F F T F F F F F F F

0 2 0 1 0 3 0 1 0 2 0 1 0

(42)

Because the central column consists entirely of T ’s, we conclude that it is true that (40)
always holds.

The parallel between the language of set theory and the language of ∨ and ∧ goes further
if we add to the latter the words “implies” and “not”. These two are denoted =⇒ and ¬.
The symbol ¬ is used to negate a statement: ¬(x ∈ X) means the same as x /∈ X; “¬ (n is
prime)” means the same as “n is not prime”. Here are some translations from one language
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to the other.

Language of ∪,∩,r,⊆ Language of ∨,∧,¬, =⇒

{x ∈ X : P(x)} ∪ {x ∈ X : Q(x)} = {x ∈ X : P(x) ∨Q(x)}

{x ∈ X : P(x)} ∩ {x ∈ X : Q(x)} = {x ∈ X : P(x) ∧Q(x)}

X r {x ∈ X : P(x)} = {x ∈ X : ¬ P(x)}

{x ∈ X : P(x)}r {x ∈ X : Q(x)} = {x ∈ X : P(x) ∧ ¬Q(x)}

{x ∈ X : P(x)} ⊆ {x ∈ X : Q(x)} ⇐⇒ ∀x ∈ X
(
P(x) =⇒ Q(x)

)
{x ∈ X : P(x)} = {x ∈ X : Q(x)} ⇐⇒ ∀x ∈ X

(
P(x)⇐⇒ Q(x)

)
In the table we introduce the symbol ∀, meaning “for all”. This symbol is called a quantifier
(specifically, it the universal quantifier) and a statement which starts with it (such as (44)
below) is called a quantified statement. There is a second quantifier, ∃, which means “there
exists”. For example, the statement

∃z ∈ C : z2 = −1

asserts the existence of a square root of minus one in the field C of complex numbers. (There
are in fact two, but that does not matter.)

The truth tables for =⇒ and ¬ are as follows:

a =⇒ b

T T T
T F F
F T T
F T F

¬ a
F T
T F

(43)

The truth table for =⇒ often causes surprise. The third row seem rather odd: if a is false,
then how can it claim the credit for b’s being true? The last line is also slightly peculiar,
although possibly less than the third. There are several answers to these objections. The
first is that in ordinary language we are not usually interested in implications where the first
term is known to be false, so we don’t usually bother to assign them any truth value. The
second is that in fact, in many cases we do use “implies” in this way. For example, we have
no difficulty in agreeing that the statement

∀x ∈ Z (x > 1 =⇒ x2 > 2) (44)

is true. But among the infinitely many implications it contains (one for each integer!) are

0 > 1 =⇒ 02 > 2,

an instance of an implication with both first and second term false, as in the last line in the
truth table for =⇒ , and

−3 > 1 =⇒ 9 > 2,

an implication with first term false and second term true, as in the third line in the truth
table for =⇒ . If we were to give these implications any truth value other than T , then we
could no longer use the universal quantifier in (44).
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Exercise 6.3. Use truth tables to show

1. (a =⇒ b)⇐⇒(¬a ∨ b)

2. (a =⇒ b)⇐⇒(¬b =⇒ ¬a)

3. ¬(a =⇒ b)⇐⇒(a ∧ ¬b)

Exercise 6.4. Another justification for the (at first sight surprising) truth table for =⇒ is
the following: we would all agree that(

a ∧
(
a =⇒ b

))
=⇒ b

should be a tautology. Show that

1. It is, if the truth table for =⇒ is as stated.

2. It is not, if the third or fourth lines in the truth table for =⇒ are changed.

Exercise 6.5. Each of the four cards shown has a number on one side and a letter on the
other.

F D 7 3

Which cards do you need to turn over to check whether it is true that every card with a “D”
on one side has a “7” on the other?

Tautologies and Contradictions

The language of ∨,∧, =⇒ ,⇐⇒,¬ is called the Propositional Calculus, which is part of
Logic. Mathematicians use some of the logical symbols we have introduced all the time
(including ∀, ∃, =⇒ , ⇐⇒) but do not use ∨, ∧ and ¬ much. In fact the symbol ∧ has
other uses in mathematics (for example, in vector calculus) which are much more common.
Since this is a course in Mathematics and not Logic, we will not use those three after this
chapter.

There are two more ideas from logic which are useful and common in mathematical
discussion which we will mention briefly here. A statement in the Propositional Calculus
is a tautology if it always holds, no matter what the truth-values of the atoms a, b, c, . . . of
which it is composed. We have shown above that (40) is a tautology, and the statements
of Exercise 6.3 are also examples. The word “tautology” is also used in ordinary language
to mean a statement that is true but conveys no information, such as “all bachelors are
unmarried” or “it takes longer to get up north the slow way”.

The opposite of a tautology is a contradiction, a statement that is always false. The
simplest is

a ∧ ¬a.
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If a statement implies a contradiction, then we can see from the truth table that it must be
false: consider, for example,

a =⇒
(
b ∧

(
¬ b

))
T F T F F T
T F F F T F
F T T F F T
F T F F T F

The only circumstance under which the implication can be true is if a is false. This is
the logic underlying a proof by contradiction. We prove that some statement a implies a
contradiction (so that the implication is true) and deduce that a must be false.

Dangerous Complements and de Morgan’s Laws

If you have seen any set theory before, you may have spotted one operation which has missing
from our discussion so far, namely the complement of a set. We would like to define Ac, the
complement of A, as “everything that is not in A.” But statements involving “everything”
are dangerous, for reasons having to do with the logical consistency of the subject. Indeed,
Bertrand Russell provoked a crisis in the early development of set theory with his idea of
the set of all sets which are not members of themselves. If this set is not a member of itself,
then by its definition it is a member of itself, which implies that it is not, which means that
it is, . . . . One result of this self-contradictory definition (known as Russell’s paradox) was
that mathematicians became wary of speaking of “the set of all x with property P”. Instead,
they restricted themselves to the elements of sets they were already sure about: “the set of
all x ∈ X with property P” is OK provided X itself is already a well defined set.

Therefore for safety reasons, when we speak of the complement of a set, we always mean
its complement in whatever realm of objects we are discussing 20. In fact many people never
use the term “complement” on its own, but always qualify it by saying with reference to what.
Rather than saying “the complement of the set of even integers”, we say “the complement
in Z of the set of even integers”. Otherwise, the reader has to guess what the totality of the
objects we are discussing is. Are we talking about integers, or might we be talking about
rational numbers (of which integers are a special type)? The complement in Q of the set of
integers is the set of rationals with denominator greater than 1; the complement in Z of the
set of integers is obviously the empty set. It is important to be precise.

The problem with precision is that it can lead to ponderous prose. Sometimes the elegance
and clarity of a statement can be lost if we insist on making it with maximum precision. A
case in point is the two equalities in set theory which are known as “de Morgan’s Laws”,
after the nineteenth century British mathematician Augustus de Morgan. Both involve the
complements of sets. Rather than qualifying the word “complement” every time it occurs,
we adopt the convention that all occurrences of the word “complement” refer to the same
universe of discourse. It does not matter what it is, so long as it is the same one at all points
in the statement.

With this convention, we state the two laws. They are

(A ∩B)c = Ac ∪Bc (45)

20The term “universe of discourse” is sometimes used in place of the vague “realm of objects we are
discussing”.
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and
(A ∪B)c = Ac ∩Bc (46)

Using the more precise notation “X rA” (for the set {x ∈ X : x /∈ A}) in place of Ac, these
can be restated, less succinctly, as

X r (A ∩B) = (X r A) ∪ (X rB) (47)

and
X r (A ∪B) = (X r A) ∩ (X rB) (48)

Complements are the set-theoretic counterparts to negation in logic. In fact, proving de
Morgan’s laws simply amounts to showing that the statements

¬(a ∧ b)⇐⇒¬a ∨ ¬b

and
¬(a ∨ b)⇐⇒¬a ∧ ¬b

are tautologies.

Exercise 6.6. 1. On a Venn diagram draw (A ∩B)c and (A ∪B)c.

2. Prove de Morgan’s Laws. You can use truth tables, or you can use an argument, like
the one we used to prove distributivity of ∩ over ∪, (37), which involves an appeal to
common sense. Which do you prefer?

It is worth noting that for de Morgan’s Laws to hold we do not need to assume that A
and B are contained in X. The diagram overleaf shows a universe X1 containing A and B,
and another, X2, only partially containing them. De Morgan’s laws hold in both cases.

X

A B

X

A B

1 2
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6.3 Functions and mappings

What is counting? The standard method we all learn as children is to assign, to each of the
objects we are trying to count, a natural number, in order, beginning with 1, and leaving
no gaps. The last natural number used is “the number of objects”. This process can be
summarised as “establishing a one-to-one correspondence between the set of objects we are
counting and an initial segment of the natural numbers”.

Definition 6.1. (i) Let A and B be sets. A one-to-one correspondence between the
two sets is the assignment, for each member of the set A, of a member of the set B, in
such a way that the elements of the two sets are paired off. Each member of A must
be paired with one, and only one, member of B, and vice-versa.

(ii) The set A is finite if there is a one-to-one correspondence between A and some subset21

{1, 2, . . ., n} of N. In this case n is the cardinality (or number of elements) of
A.

(iii) The set A is infinite if it is not finite.

When we count the oranges in a basket, we are determining a one-to-one correspondence
between some initial segment {1, 2, . . ., n} of N and the set {oranges in the basket}.

The set of integers modulo n consists of {0, 1, 2, . . ., n − 1}. The complex nth roots
of 1 are 1, e2πi/n, . . ., e2kπi/n, . . ., e2(n−1)πi/n. There is a one-to-one correspondence between
the integers modulo n and the set of n’th roots of unity: we simply map k 7→ e2kπi/n for
0 ≤ k ≤ n− 1.

Example 6.2. There can be one-to-one correspondences between pairs of infinite sets as
well as between pairs of finite sets.

1. We saw on page 17 that there is a one-to-one correspondencebetween the natural
numbers N and the set S of subgroups of Z. The natural number n can be paired, or
associated with, the subgroup nZ. Proposition 3.2 proves that each member of S is
generated by some natural number, so the assignment

n ∈ N 7→ nZ ∈ S

determines a one-to-one correspondence.

2. Let R>0 denote the set of strictly positive real numbers. The rule

x ∈ R 7→ log x ∈ R

determines a one-to-one correspondence between R>0 and R.

3. The rule
x ∈ R 7→ ex ∈ R>0

also determines a one-to-one correspondence.

4. The mapping f(n) = 2n determines a one-to-one correspondence from Z to 2Z.

21This is what we mean by “initial segment”. When n− 0, this is the empty set.
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5. One can construct a bijection from N to Z. For example, one can map the even numbers
to the positive integers and the odd numbers to the negative integers, by the rule

f(n) =

{
n
2

if n is even
−n+1

2
if n is odd

One-one correspondences are examples of functions or mappings. If A and B are sets
then a mapping from A to B is a rule which associates to each element of A one and only
one element of B. In this case A is the domain of the mapping, and B is its codomain22. We
usually give mappings a label, such as f or g, and use the notation f : A → B to indicate
that f is a mapping from A to B. We say that f maps the element a ∈ A to the element
f(a) ∈ B. We also say that f(a) is the image of the element a under f . The image of the
whole set A under f is the set {b ∈ B : ∃a ∈ A such that f(a) = b}, which can also be
described as {f(a) : a ∈ A}; this set is denoted f(A) or im(f) and is called the image of f .

Example 6.3. 1.There is a mapping m : {Men} → {Women} defined by m(x) = mother of
x. It is a well-defined mapping, because each man has precisely one mother. But it is
not a one-to-one correspondence, first because the same woman may be the mother of
several men, and second because not every woman is the mother of some man.

2. The recipe
x 7→ son of x

does not define a mapping from {Women} to {Men}. The reasons are the same as
in the previous example: not every woman has a son, so the rule does not succeed
in assigning to each member of {Women} a member of {Men}, and moreover some
women have more than one son, and the rule does not tell us which one to assign.

Definition 6.4. Let f : A → B be a mapping.

• f is injective, or one-to-one, if different elements of A are mapped to different
elements of B. That is, f is injective if

a1 6= a2 =⇒ f(a1) 6= f(a2),

or equivalently if
f(a1) = f(a2) =⇒ a1 = a2

for all a1, a2 ∈ A.

• f is surjective, or onto, if every element of B is the image of some element of A.
That is, f is surjective if for all b ∈ B there exists a ∈ A such that f(a) = b, or, in
other words, if f(A) = B.

• f is bijective if it is both injective and surjective.

The corresponding nouns are injection, surjection and bijection. A one-to-one corre-
spondence is nothing other than a bijective map or bijection:

Proposition 6.5. The mapping f : A → B is a one-to-one correspondence if and only if it
is both injective and surjective. 2

22The words source and target are sometimes used in place of domain and codomain.
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Example 6.6. The mapping (function) f : R → R defined by f(x) = x2 is neither injective
nor surjective. However, if we restrict its codomain to R≥0 (the non-negative reals) then
it becomes surjective: f : R → R≥0 is surjective. And if we restrict its domain to R≥0, it
becomes injective.

Exercise 6.7. Which of the following is injective, surjective or bijective:

1. f : R → R, f(x) = x3

2. f : R>0 → R>0, f(x) = 1
x

3. f : Rr {0} → R, f(x) = 1
x

4. f : Rr {0} → Rr {0}, f(x) = 1
x

5. f : {Countries} → {Cities}, f(x) = Capital city of x

6. f : {Cities} → {Countries}, f(x) = Country in which x lies

Proposition 6.7. The pigeonhole principle. If A and B are finite sets with the same
number of elements, and f : A → B is a mapping then

f is injective ⇐⇒f is surjective.

Proof. Let n = |A| = |B| and label the elements A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bn}.
Now f maps A to the set f(A) = {f(a1), f(a2), . . . , f(an)} ⊆ B.

If f is injective then there are no repeats in this list, so f(A) contains n distinct elements;
hence f(A) = B and f is surjective.

If f is not injective, then f(ai) = f(aj) for some i, j with i 6= j. But then the list contains
at most n− 1 elements so does not contain all elements of B, and so f is not surjective. 2

This is one of those proofs which may either seem completely obvious to you, or incompre-
hensible (or even both, depending on the day of the week it is). So I will give a second proof,
in case you prefer it.
Proof. Label the elements of B as b1, . . . , bn. For 1 ≤ i ≤ n let mi be the number of
elements a ∈ A such that f(a) = bi. Then m1 +m2 + · · ·+mn = n and all mi ≥ 0.

Now f is surjective ⇐⇒ all mi ≥ 1, while f is injective ⇐⇒ all mi ≤ 1. But these are
both clearly equivalent to m1 = m2 = · · · = mn = 1. 2

The pigeonhole principle is false for infinite sets. For example,

• the map N → N defined by f(n) = n+ 1 is injective but not surjective.

• The map N → N defined by

f(n) =

{
n/2 if n is even
(n− 1)/2 if n is odd

is surjective but not injective.

• The map N → N defined by n 7→ 2n is injective but not surjective.

58



Definition 6.8. Let A,B and C be sets, and let f : A → B and g : B → C be mappings.
Then the composition of f and g, denoted g ◦ f , is the mapping A → C is defined by

g ◦ f(a) = g(f(a)).

Note that g ◦ f means “do f first and then g”.

Example 6.9. 1. Consider f : R>0 → R defined by f(x) = log x and g : R → R defined
by g(x) = cos x. Then g ◦ f(x) = cos(log x) is a well defined function, but f ◦ g is not:
where cosx < 0, log(cos x) is not defined.

2. In order that g◦f be well-defined, it is necessary that the image of f should be contained
in the domain of g.

(ii) The function h : R → R defined by h(x) = x2 + x can be written as a composition:
define f : R → R2 by f(x) = (x, x2) and a : R2 → R by g(x, y) = x+ y; then h = a ◦ f .

Proposition 6.10. If f : A → B, g : B → C and h : C → D are mappings, then the
compositions h ◦ (g ◦ f) and (h ◦ g) ◦ f are equal.

A
f
//

g◦f
((

B
g //

h◦g

55C
h // D

Proof. For any a ∈ A,

(h ◦ (g ◦ f))(a) = h((g ◦ f)(a)) = h(g(f(a)) = (h ◦ g)(f(a)) = ((h ◦ g) ◦ f)(a).

2

Exercise 6.8. Suppose that f : A → B and g : B → C are mappings. Show that

1. f and g both injective =⇒ g ◦ f injective

2. f and g both surjective =⇒ g ◦ f surjective

3. f and g both bijective =⇒ g ◦ f bijective

and find examples to show that

1. f injective, g surjective 6=⇒ g ◦ f surjective

2. f surjective, g injective 6=⇒ g ◦ f surjective

3. f injective, g surjective 6=⇒ g ◦ f injective

4. f surjective, g injective 6=⇒ g ◦ f injective

Suppose that I want to show that two sets A and B have the same number of elements.
One way would be to count the elements of each and then compare the results. But suppose
instead that I can find a a 1-1 correspondence ϕ : A → B. Then A and B must have the same
number of elements. The reason is simple: suppose that B has n elements. Then there is
a 1-1 correspondence ψ : B → {1, 2, . . . , n}. Because the composite of 1-1 correspondences
is a 1-1 correspondence (6.8(3)), ψ ◦ ϕ : A → {1, 2, . . . , n} is also a 1-1-correspondence, so
that A too has n elements. A substantial part of mathematics is devoted to finding clever
1-1 correspondences between sets, in order to be able to conclude that they have the same
number of elements without having to count them.
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Example 6.11. 1. A silly example: the rule

x ∈ {Husbands} 7→ wife of x ∈ {Wives}

determines a one-to-one correspondence between the set of husbands and the set of
wives, assuming, that is, that everyone who is married, is married to just one person,
of the opposite sex. Although the example is lighthearted, it does illustrate the point:
if you want to show that two sets have the same number of elements, it may be
more interesting to look for a one-to-one correspondencebetween them, using some
understanding of their structure and relation, than to count them individually and
then compare the numbers. This is especially the case in mathematics, where structure
permeates everything.

2. For a natural number n, let D(n) (for “divisors”) denote the set of natural numbers
which divide n (with quotient a natural number). There is a one-to-one correspondence
between the set D(144) of factors of 144 and the set D(2025) of factors of 2025. One
can establish this by counting the elements of both sets; each has 15 members. More
interesting is to appreciate that the coincidence is due to the similarity of the prime
factorisations of 144 and 2025:

144 = 24 × 32, 2025 = 34 × 52;

once one has seen this, it becomes easy to describe a one-to-one correspondence without
needing to enumerate the members of the sets D(144) and D(2025): every divisor of
144 is equal to 2i3j for some i between 0 and 4 and some j between 0 and 2. It is
natural to make 2i3j correspond to 3i5j ∈ D(2025).

Exercise 6.9. Which pairs among

64, 144, 729, 900, 11025

have the same number of factors?

Exercise 6.10. Show the number of ways of choosing k from n objects is equal to the number
of ways of choosing n− k from n objects. Can you do this without making use of a formula
for the number of choices?

Exercise 6.11. Denote the number of elements in a finite set X by |X|. Suppose that A
and B are finite sets. Then

|A ∪B| = |A|+ |B| − |A ∩B|.

(i) Can you explain why? Can you write out a proof? If this is too trying, go on to
(ii) What is the corresponding formula for |A∪B ∪C| when A, B and C are all finite sets?
And for |A ∪B ∪ C ∪D|? For |A1 ∪ · · · ∪ An|?

6.4 Inverses

Here’s a definition which does not look to be very useful at first sight, but will turn out to
be.

60



Definition 6.12. For any set A the identity map A → A is the map idA : A → A defined
by idA(x) = x for all x ∈ A.

The identity map has the property that when we compose it with any other map there
is no change; rather like multiplying by the number 1:

Lemma 6.13. Let A,X, Y be any sets and f : X → A and g : A → Y any maps. Then

idA ◦ f = f and g ◦ idA = g.

Proof. The is obvious from the definition, as this picture should make clear.

X
f //

idA◦f

66A
idA //

g◦idA

66A
g // Y

2

Definition 6.14. If f : A → B is a mapping then a mapping g : B → A is

• a left inverse to f if g ◦ f = idA (that is, if g(f(a)) = a for all a ∈ A),

• a right inverse to f if f ◦ g = idB (that is, if f(g(b)) = b for all b ∈ B).

• an inverse of f if it is both a right and a left inverse of f , (that is, g ◦ f = idA and
f ◦ g = idB).

Be careful! A right inverse or a left inverse is not necessarily an inverse. This is a case
where mathematical use of language differs from ordinary language. A large cat is always a
cat, but a left inverse is not always an inverse.

It is immediate from the definition that f is a left inverse to g if and only if g is a right
inverse to f and vice versa.

As a matter of fact we almost never say an inverse, because if a mapping f has an inverse
then this inverse is necessarily unique — so we call it the inverse of f .

Proposition 6.15. (i) If g : B → A is a left inverse of f : A → B, and h : B → A is a
right inverse of f , then g = h, and each is an inverse to f . (ii) If g and h are both inverses
of f , then g = h.

Proof. (i) We are given g ◦ f = idA and f ◦ h = idB. Now we compute g ◦ f ◦ h in two
ways, using associativity (Proposition 6.10):

g = g ◦ idB = g ◦ (f ◦ h) = (g ◦ f) ◦ h = idA ◦ h = h.

(ii) The second statement is a special case of the first. 2

The same mapping may have more than one left inverse (if it is not surjective) and more
than one right inverse (if it is not injective). For example, if A = {1, 2, 3} and B = {p, q},
and f(1) = f(2) = p, f(3) = q then both g1 and g2, defined by

g1(p) = 1 and g2(p) = 2
g1(q) = 3 g2(q) = 3

,

are right inverses to f .
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On the other hand, a non-injective map cannot have a left inverse. In this example, f has
mapped 1 and 2 to the same point, p. If g : B → A were a left inverse to f , it would have

• to map p to 1, in order that g ◦ f(1) = 1, and

• to map p to 2, in order that g ◦ f(2) = 2.

Clearly the definition of mapping prohibits this: a mapping g : B → A must map p to just
one point in A.

Essentially the same argument can also be used to prove the first of the following two
statements. To get an idea for the proof of the second, see what goes wrong when you try
to find a right inverse for a simple non-surjective map (e.g. g1 in the previous example).

Exercise 6.12. Let f : A → B be a map. Show that

1. if f has a left inverse then it is injective.

2. If f has a right inverse then it is surjective.

The converse to Exercise 6.12 is also true:

Proposition 6.16. (i) If p : X → Y is a surjection then there is an injection i : Y → X
which is a right inverse to p.
(ii) If i : Y → X is an injection then there is a surjection p : X → Y which is a left inverse
to i.

Proof. (i) If p : X → Y is a surjection, define i : Y → X by choosing, for each y ∈ Y ,
one element x ∈ X such that p(x) = y, and define i(y) to be this chosen x. Then i is an
injection; for if i(y1) = i(y2) then p(i(y1)) = p(i(y2), which means that y1 = y2. Clearly, i is
a right inverse to p.

(ii) If i : Y → X is an injection, define a map p : X → Y as follows:

p(x) =

{
y if i(y) = x
any point in X if there is no y ∈ Y such that i(y) = x

(I clarify: in the second case, where x is not the image of any point y, we have to choose
some y in Y to map x to, but it does not matter which.) Then p is a surjection: if y ∈ Y ,
then there is an x ∈ X such that p(x) = y, namely x = i(y). Again, it is clear that p is a
left inverse to i. 2

Proposition 6.17. A map f : A → B has an inverse if and only if it is a bijection.
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Proof. Suppose f is a bijection. Then it is surjective, and so has a right inverse g, and
injective, and so has a left inverse h. By Proposition 6.15, g = h and is the inverse of f .
Conversely, if f has an inverse then in particular it has a left inverse, and so is injective, and
a right inverse, and so is surjective. Hence it is bijective. 2

The inverse of a bijection f is very often denoted f−1. This notation is suggested by the
analogy between composition of mappings and multiplication of numbers: if g : B → A is
the inverse of f : A → B then

g ◦ f = idA

just as for multiplication of real numbers,

x−1 × x = 1.

Warning. In mathematics we use the symbol f−1 even when f does not have an inverse
(because it is not injective or not surjective). The meaning is as follows: if f : A → B is a
mapping then for b ∈ B,

f−1(b) = {a ∈ A : f(a) = b}.

It is the “preimage of b under f”, and is a subset of A, not an element of A.

Example 6.18. Let f : R → R be given by f(x) = x2. Then f−1(1) = {−1, 1}, f−1(9) =
{−3, 3}, f−1(−1) = ∅.
(ii) In general, f : A → B is an injection if f−1(b) has no more than one element for all
b ∈ B, and f is a surjection if f−1(b) has no fewer than one element for all b ∈ B.

Technically speaking, this f−1 is not a mapping from B to A, but from B to the set of
subsets of A. When f is a bijection and f(a) = b, then the preimage of b is the set {a}, while
the image of b under the inverse of f is a. Thus, the two meanings of f−1 differ only by the
presence of a curly bracket, and the dual meaning of f−1 need not cause any confusion.

6.5 Rules and Graphs

If f : R → R is a function, the graph of f is, by definition, the set

{(x, y) ∈ R2 : y = f(x)}.

The graph gives us complete information about f , in the sense that it determines the value
of f(x) for each point x ∈ R, even if we do not know the “rule” by which f(x) is to be
calculated.
The requirement, in the definition of function, that a function assign a unique value f(x) to
each x, has a geometrical significance in terms of the graph: every line parallel to the y-axis
must meet the graph once, and only once. Thus, of the following curves in the plane R2,
only the first defines a function. If we attempt to define a function using the second, we find
that at points like the point a shown, it is not possible to define the value f(a), as there are
three equally good candidates. The third does not define a function because it does not offer
any possible value for f(a).
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It is possible to define the graph of an arbitrary mapping f : A → B, by analogy with the
graph of a function R → R:

Definition 6.19. (i) Given sets A and B, the Cartesian Product A × B is the set of
ordered pairs (a, b) where a ∈ A and b ∈ B.

(ii) More generally, we define the Cartesian product A × B × C as the set of ordered
triples {(a, b, c) : a ∈ A, b ∈ B, c ∈ C}, the Cartesian product A × B × C ×D as the set of
ordered quadruples {(a, b, c, d) : a ∈ A, b ∈ B, c ∈ C, d ∈ D}, and so on.

(iii) Given a map f : A → B, the graph of f is the set

{(a, b) ∈ A×B : b = f(a)}.

Why do we use the × sign for the Cartesian product?

Proposition 6.20. Suppose A and B are sets with m and n members respectively. Then
A×B has m× n members.

Proof. Let A = {a1, . . . , am} and B = {b1, . . . , bn}. Then we can list the elements of
A×B as

(a1, b1) (a2, b1) · · · (am, b1)

(a1, b2) (a2, b2) · · · (am, b2)

· · · · · · · · · · · ·

(a1, bn) (a2, bn) · · · (am, bn)

Each column contains n members, and there are m columns, so altogether A×B has m× n
members. (This is how multiplication is defined: m × n means “add together m sets of n
objects”). 2

Example 6.21. 1. R× R is R2, which we think of as a plane.

2. R2 × R = {((x, y), z) : (x, y) ∈ R2, z ∈ R}. Except for the brackets, ((x, y), z) is the
same thing as the ordered triple (x, y, z), so we can think of R2×R as being the same
thing as R3.

3. If [−1, 1] is the interval in R, then [−1, 1] × [−1, 1] is a square in R2, and [−1, 1] ×
[−1, 1]× [−1, 1] is a cube in R3.

64



4. Let D be the unit disc {(x, y) ∈ R2 : x2 + y2 ≤ 1}, and let C1 be its boundary, the
circle {(x, y) ∈ R2 : x2 +y2 = 1}. Then D×R is an infinite solid cylinder, while C1×R
is an infinite tube.

a

b

The solid cylinder D × [a, b] and the hollow cylinder C1 × [a, b]

Whereas the graph of a function f : R → R is a geometrical object which we can draw, in
general we cannot draw the graphs just defined. One exception is where f : R2 → R, for
then the Cartesian product of its domain and codomain, R2 × R, is the same as R3. The
graph therefore is a subset of R3, and so in principle, we can make a picture of it. The same
holds if f : X → R where X ⊂ R2. The following pictures show the graphs of

f : [−1, 1]× [−1, 1] → R defined by f(x, y) =
x+ y + 2

2
,

g : [−1, 1]× [−1, 1] → R defined by g(x, y) = |x+ y|.

and
h : D → R defined by h(x, y) = x2 + y2,

where D is the unit disc in R2. I’ve drawn the first and the second inside the cube [−1, 1]×
[−1, 1]× [0, 2] in order to make the perspective easier to interpret.

x

y

z

x

y

x

(1,−1,0)(−1,−1,0)

(−1,−1,2)

(−1,1,2)

(1,1,0)

(1,1,2)
(−1,1,2)

(1,1,0)

(1,1,2)

(1,−1,0)(−1,−1,0)

(−1,−1,2)

Exercise 6.13. The following three pictures show the graphs of three functions [−1, 1] ×
[−1, 1] → R. Which functions are they?
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(1,−1,0)(−1,−1,0)

(−1,−1,2)

(1,1,0)

(1,1,2)

x

y

(−1,1,2)

y

x

(−1,−1,0) (1,−1,0)

(−1,1,0)

z

(0,0,2)

(1,1,0)

(1,−1,0)

(−1,−1,2)

(1,1,0)

(1,1,2)

x

(0,0,0)

(−1,1,2)

(−1,−1,−2)
(1,−1,−2)

(−1,−1,0)

(1.1,−2)

Hint: The third picture shows a pyramid. Divide the square [−1, 1]× [−1, 1] into four sectors
as indicated by the dashed lines. There is a different formula for each sector.

6.6 Graphs and inverse functions

If f : A → B is a bijection, with inverse f−1 : B → A, what is the relation between the
graph of f and the graph of f−1? Let us compare them:

graph(f) = {(a, b) ∈ A×B : f(a) = b}, graph(f−1) = {(b, a) ∈ B × A : f−1(b) = a}.

Since
f(a) = b ⇐⇒ f−1(b) = a,

it follows that
(a, b) ∈ graph(f) ⇐⇒ (b, a) ∈ graph(f−1).

So graph(f−1) is obtained from graph(f) simply by interchanging the order of the ordered
pairs it consists of. That is: the bijection

i : A×B → B × A, i(a, b) = (b, a)

maps the graph of f onto the graph of f−1.
In the case where f : R → R is a bijection with inverse f−1, then provided the scale on

the the two axes is the same, the bijection i(x, y) = (y, x) is simply reflection in the line
y = x. That is, with this proviso, if f : R → R is a bijection, then the graph of its inverse
is obtained by reflecting graph(f) in the line y = x.

The same holds if f is a bijection from D ⊂ R to T ⊂ R.

Example 6.22. The function F : R → R, f(x) = 2x + 5, is a bijection, with inverse
g(x) = 1

2
x− 5

2
. The graphs of the two functions, drawn with respect to the same axes, are
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y=2x+5

y=x/2−5/2

y

x

The function sin : [−π
2
, π
2
] → [−1, 1] is a bijection, with inverse arcsin : [−1, 1] → [−π

2
, π
2
].

−π/2 π/2

y=sin x

Exercise 6.14. (i) The diagram below shows the graphs of two functions f and g, and also
the line y = x, which is of course the graph of the function i(x) = x. Find the coordinates
of the points A,B,C,D, and P,Q,R, S, in terms of f, g and x.

x

y=x

y=f(x)

y

A B

CD

x

y=x

y=f(x)

y

PQ

SR

y=g(x)

xx
y=g(x)

(ii) Find the coordinates of the points A,B,C, and P,Q,R, S in terms of x.
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x

P

R

Q
S

y=x

y=1/x

A

x

y=x1/2

B

C

y=x

x

y

x

y

6.7 Relations

A relation on a set X is a condition which either does or does not hold for each (ordered)
pair of elements in the set. One could define this formally to be a function from X×X to the
two element set {T, F} (with T denoting True and F denoting False). It is more common,
though, to use some symbol, say ♥, for the relation so that x♥y means “x is related to y”
while x 6 ♥y means “x is not related to y”.

The most obvious example (for any setX) is equality which (of course) uses the symbol =,
so that x = y is true if x and y are the same and not otherwise. (Things do not get much
more obvious than that!) There are other relations which behave very much like equality,
though, and we will discuss these in detail below (Equivalence relations).

Another familiar example is the relation “less than” with symbol <, on the set of real
numbers (or any subset of R –but not on C!). Similarly >, ≤ and ≥ are all relations. In
an earlier chapter we used the symbol | to denote “divides” on N and on Z; this is another
example of a relation. And of course among people there is the relation A♥B meaning “A
loves B”.

Equivalence Relations

When we re-formulated arithmetic modulo n, we said what it means for two integers to be
“the same” (or congruent) modulo n, we were defining a relation on the integers which has
special properties, and is an example of an equivalence relation on the set of integers. Another
equivalence relation is the relation, among sets, of being in bijection with one another. A
geometric example is the relation “being parallel to each other” between straight lines in the
plane.

An example from everyday life: when we’re shopping, we don’t distinguish between
packets of cereal with the same label and size. As far as doing the groceries is concerned,
they are equivalent. Or again, the relation “having the same age (in years)” is an equivalence
relation on the set of all people.

Equivalence relations are relations which “behave like equality” without actually being
the equality relation (though equality certainly is an equivalence relation). The crucial
features of an equivalence relation are

• Symmetry: If a is equivalent to b then b is equivalent to a, and

• Transitivity: If a is equivalent to b and b is equivalent to c then a is equivalent to c.
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The formal definition of equivalence relation contains these two clauses, and one further
clause:

• Reflexivity: Every object is equivalent to itself.

Formally, an equivalence relation is a relation which satisfies these three defining properties
(symmetry, transitivity and reflexivity). It is easy to check that each of the examples of
relations described above have all of these three properties. For example, for congruence
modulo n:

Reflexivity: For every integer m, m−m is divisible by n, so m ≡ m (mod n).
Symmetry: If m1−m2 is divisible by n then so is m2−m1. So if m1 ≡ m2 (mod n) then

m2 ≡ m1 (mod n).
Transitivity: If m1 −m2 = kn and m2 −m3 = `n then m1 −m3 = (k + `)n. In other

words, if m1 ≡ m2 (mod n) and m2 ≡ m3 (mod n) then m1 ≡ m3 (mod n).
When discussing equivalence relations in the abstract, it is common to use the symbol

∼ to mean “related to”. Using this symbol, the three defining properties of an equivalence
relation on a set X can be written as follows:

E1 Reflexivity: for all x ∈ X: x ∼ x.

E2 Symmetry: for all x1, x2 ∈ X: if x1 ∼ x2 then x2 ∼ x1.

E3 Transitivity: for all x1, x2 and x3 in X: if x1 ∼ x2 and x2 ∼ x3 then x1 ∼ x3.

Exercise 6.15. (i) Check that the relation among sets A,B defined by

A ∼ B if there is a bijection ϕ : A → B

has the properties of reflexivity, symmetry and transitivity.
(ii) Ditto for the relation, among positive integers, of having the same prime factors.
(iii) Let f : X → Y be any function, and define the relation ∼ on X by

x1 ∼ x2⇐⇒f(x1) = f(x2).

Show that this is an equivalence relation on X. Is the relation in (ii) of this form (for suitable
f , Y with X = N)?

An equivalence relation on a set X splits up X into equivalence classes, consisting of elements
that are mutually equivalent. Two elements are in the same equivalence class if and only if
they are equivalent. Denoting the equivalence class containing the element x by [x]:

[x] = {y ∈ X | y ∼ x}.

For example, in the case of congruence modulo n, we denoted the equivalence class of an
integer m by [m]. (This notation ignores the modulus n, so should only be used in a context
where the modulus is known and fixed.)

Two distinct equivalence classes have empty intersection — in other words, any two
equivalence classes either do not meet at all, or are the same. This is easy to see: if X1 and
X2 are equivalence classes, and there is some x in their intersection, then for every x1 ∈ X1,
x1 ∼ x, as x ∈ X1, and for every x2 ∈ X2, x ∼ x2 as x ∈ X2. It follows by transitivity that
for every x1 ∈ X1 and for every x2 ∈ X2, x1 ∼ x2. As all the elements of X1 and X2 are
equivalent to one another, X1 and X2 must be the same equivalence class.

The fact we have just mentioned is sufficiently important to be stated as a proposition:
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Proposition 6.23. If ∼ is an equivalence relation in the set X then any two equivalence
classes of ∼ are either disjoint, or equal. 2

In other words, an equivalence relation on a set X partitions X into disjoint subsets,
the equivalence classes. For example, with the relation of congruence modulo n there are
exactly n classes, namely [0], [1], . . . , [n− 1]. When n = 2, the two classes are the sets [0] of
all even integers and the set [1] of all odd integers.

You will see many more examples of equivalence relations in other mathematics courses.

Order Relations

Order relations are another common and important kind of relation in mathematics. Con-
sider the following relations:

1. ≤ among real numbers;

2. ⊆ among sets;

3. | (divisibility) among positive integers;

None of them is an equivalence relation, even though each has two of the three necessary
properties: reflexivity and transitivity. Crucially, they do not have the property of symmetry.
For example, a ≤ b does not imply b ≤ a. In fact all except the last have a property almost
opposite to that of symmetry, that the relation points both ways only when the two objects
are in fact one and the same (this property is known as antisymmetry):

1. if a ≤ b and b ≤ a then a = b

2. if A ⊆ B and B ⊆ A then A = B

3. if m,n ∈ N are positive, and if m | n and n | m then m = n. [However if m and n are
integers and m | n and n | m, then we can only conclude that m = ±n (prove this!);
we cannot quite say that they are equal.]

Relations 1, 2 and 3 here are examples of order relations. You will see many more examples
in other mathematics courses.
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7 Polynomials

A polynomial is an expression like

anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

in which a0, a1, . . ., an, the coefficients, are (usually) constants, x is the variable or indeter-
minate, and all the powers to which x is raised are natural numbers. For example

P1(x) = 3x3 + 15x2 + x− 5, P2(x) = x5 +
3

17
x2 − 1

9
x+ 8

are polynomials; P1 has integer coefficients, and P2 has rational coefficients. The set of all
polynomials (of any degree) with, respectively, integer, rational, real and complex coefficients
are denoted Z[x],Q[x],R[x] and C[x]. Because Z ⊆ Q ⊆ R ⊆ C, we have

Z[x] ⊆ Q[x] ⊆ R[x] ⊆ C[x].

If we assign a numerical value to x then any polynomial in x acquires a numerical val-
ues; for example P1(1) = 14, P1(0) = −5, P2(0) = 8. So every polynomial determines a
polynomial function with domain and codomain equal to the coefficient number system; how-
ever, here we will be concerned with polynomials more as algebraic objects than as special
functions.

A lot of what we say about polynomials here is completely obvious, but there is a lot
of standard terminology and notation which goes with polynomials which it is important
to absorb. We’ll also see that the algebra of polynomials has a lot in common with the
arithmetic of the integers, and we will consider questions of divisibility and factorisation for
polynomials, as well as hcf and lcm for polynomials, and even the Euclidean Algorithm.

The degree of a non-zero polynomial is the highest power of x appearing in it with non-zero
coefficient. The degrees of the polynomials P1 and P2 above are degP1 = 3 and degP2 = 5.
The degree of the polynomial 2x+ 0x5 is 1. A polynomial of degree 0 is a non-zero constant.
The zero polynomial 0 (i.e. having all coefficients equal to 0) does not have a degree. This
is merely a convention23. You may think that there is not much that is worth saying about
this particular polynomial, but it is necessary to include it if we want to avoid complicating
later statements by having to exclude it. (For example we want the sum of two polynomials
always to be a polynomial; try adding x to −x!) The leading term in a non-zero polynomial
is the term of highest degree. In P1 it is 3x3 and in P2 it is x5. The coefficient of the leading
term is called the leading coefficient ; polynomials withe leading coefficient 1 are called monic.
For example, P2 is monic but P1 is not, as it has leading coefficient 3. Every polynomial
(other than 0) has a leading term, and, obviously, its degree is equal to the degree of the
polynomial.

Polynomials can be added and multiplied together, according to the following natural
rules:
Addition: To add together two polynomials you simply add the coefficients of each power of
x. Thus the sum of the polynomials P1 and P2 above is

x5 + 3x3 + (15 +
3

17
)x2 +

8

9
x+ 3.

23other conventions for deg 0 are −1 and −∞!

71



If we allow that some of the coefficients ai or bj may be zero, we can write the sum of two
polynomials using the formula

(anx
n+ · · ·+a1x+a0)+(bnx

n+ · · ·+b1x+b0) = (an+bn)xn+ · · ·+(a1+b1)x+(a0+b0) (49)

or, more briefly (∑
i

aix
i

)
+

(∑
i

bix
i

)
=
∑
i

(ai + bi)x
i.

We are not assuming that the two polynomials have the same degree, n, here: if one poly-
nomial has degree, say, 3 and the other degree 5, then we can write them as a5x

5 + · · ·+ a0
and b5x

5 + · · ·+ b0 by setting a4 = a5 = 0.
Multiplication: To multiply together two polynomials we multiply each of the terms inde-
pendently, using the rule

xm × xn = xm+n,

and then group together all of the terms of the same degree. For example the product of the
two polynomials P1 and P2, (3x3 + 15x2 + x− 5)(x5 + 3

17
x2 − 1

9
x+ 8), is equal to

3x8+15x7+x6+
( 9

17
−5
)
x5+

(45

17
− 1

3

)
x4+

(
24− 5

3
+

3

17

)
x3+

(
120− 1

9
− 15

17

)
x2+

(
8+

5

9

)
x−40.

The general formula is(
amx

m + · · ·+ a0
)(
bnx

n + · · ·+ b0
)

(50)

=
(
ambn

)
xm+n +

(
ambn−1 + am−1bn

)
xm+n−1 + · · ·

· · ·+
(
a0bk + a1bk−1 + · · ·+ ak−1b1 + akb0

)
xk + · · ·

· · ·+ (a1b0 + a0b1
)
x+ a0b0.

This can be written more succinctly( m∑
i=0

aix
i
)( n∑

j=0

bkx
j
)

=
m+n∑
k=0

( k∑
i=0

aibk−i
)
xk.

The coefficient of xk here can also be written in the form∑
i+j=k

aibj .

The sum and the product of P1 and P2 are denoted P1 + P2 and P1P2 respectively. Each is,
evidently, a polynomial. Note that the sum and product of polynomials are both defined so
that for any value c we give to x, we have

(P1 + P2)(c) = P1(c) + P2(c), (P1P2)(c) = P1(c)P2(c).

The following proposition is obvious:

Proposition 7.1. If P1 and P2 are polynomials then deg(P1P2) = deg(P1) + deg(P2), and
provided P1 + P2 6= 0, deg(P1 + P2) ≤ max{deg(P1), deg(P2)}.
Proof. Obvious from the two formulae (49) and (50). 2

We note that the inequality in the formula for the degree of the sum is due to the possibility
of cancellation, as, for example, in the case

P1(x) = x2 + 1, P2(x) = x− x2,
where max{deg(P1), deg(P2)} = 2 but deg(P1 + P2) = 1.
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7.1 Polynomial hcf and lcm

Less obvious is that there is a polynomial version of division with remainder. We first state
this for polynomials with real coefficients (see below for other cases):

Proposition 7.2. If P1, P2 ∈ R[x] and P2 6= 0, then there exist Q,R ∈ R[x] such that

P1 = QP2 +R,

with either R = 0 (the case of exact division) or deg(R) < deg(P2).

Before giving a proof, let’s look at an example. We take

P1(x) = 3x5 + 2x4 + x+ 11 and P2(x) = x3 + x2 + 2.

Step 1:

P1(x)− 3x2P2(x) = 3x5 + 2x4 + x+ 11− 3x2(x3 + x2 + 2) = −x4 − 6x2 + x+ 11

Note that the leading term of P1 has cancelled with the leading term of 3x2P2. We chose
the coefficient of P2(x), 3x2, to make this happen.

Step 2:(
P1(x)− 3x2P2(x)

)
+ xP2(x) = −x4 − 6x2 + x+ 11 + x(x3 + x2 + 2) = x3 − 6x2 + 3x+ 11

Here the leading term of P1(x)− 3x2P2(x) has cancelled with the leading term of −xP2(x).
Step 3:(

P1(x)− 3x2P2(x) + xP2(x)
)
− P2(x) = x3 − 6x2 + 3x+ 11− x3 − x2 − 2 = −7x2 + 3x+ 9.

Here the leading term of
(
P1(x)− x2P2(x)− xP2(x)

)
has cancelled with the leading term of

P2(x).
At this point we cannot lower the degree of what’s left any further, so we stop. We have

P1(x) =
(
3x2 − x+ 1)P2(x) + (−7x2 + 3x+ 9).

That is, Q(x) = 3x2 − x+ 1 and R(x) = −7x2 + 3x+ 9.
Proof of Proposition 7.2: Suppose that deg(P2) = m. Let R (for “Remainders”) be the
set of all polynomials of the form R = P1−QP2, where Q can be any polynomial in R[x]. If
the polynomial 0 is in R, then P2 divides P1 exactly. Otherwise, consider the degrees of the
polynomials in R. By the Well-Ordering Principal, this set of degrees has a least element,
r0. We want to show that r0 < m.

Suppose, to the contrary, that r0 ≥ m. Let R0 = P1 −QP2 be a polynomial in R having
degree r0. In other words, R0 is a polynomial of the lowest degree possible, given that it is
in R. Its leading term is some constant multiple of xr0 , say cxr0 . Then if bxm is the leading
term of P2, the polynomial

R0(x)− c

b
xr0−mP2(x) = P1 −

(
Q+

c

b
xr0−m

)
P2 (51)

is also in R, and has degree less than r0. This contradicts the definition of r0 as the smallest
possible degree of a polynomial of the form P1 − QP2. We are forced to conclude that
r0 < deg(P2). 2
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The idea of the proof is really just what we saw in the example preceding it: that if P1−QP2

has degree greater than or equal to deg(P2) then by subtracting a suitable multiple of P2

we can remove its leading term, and thus lower its degree. To be able to do this we need
to be able to divide the coefficient of the leading term of R by the coefficient of the leading
term of P2, as displayed in (51). This is where we made use of the fact that our polynomials
had real coefficients: we can divide real numbers by one another. For this reason, the same
argument works if we have rational or complex coefficients, but not if our polynomials must
have integer coefficients. We record this as a second proposition:

Proposition 7.3. The statement of Proposition 7.2 holds with Q[x] or C[x] in place of R[x],
but is false if R[x] is replaced by Z[x]. 2

As with integers, we say that the polynomial P2 divides the polynomial P1 if there is a
polynomial Q such that P1 = QP2, and we use the same symbol, P2|P1, to indicate this.

You may have noticed a strong similarity with the proof of division with remainder for
natural numbers (Proposition 2.6). In fact there is a remarkable parallel between what we
can prove for polynomials and what happens with natural numbers. Almost every one of
the definitions we made for natural numbers has its analogue in the world of polynomials.

The quotient Q and the remainder R in Proposition 7.2 are uniquely determined by P1

and P2:

Proposition 7.4. If P1 = Q1P2 + R1 and also P1 = Q2P2 + R2 with R1 = 0 or deg(R1) <
deg(P2) and R2 = 0 or deg(R2) < deg(P2), then Q1 = Q2 and R1 = R2.

Proof. From P2Q1 +R1 = P2Q2 +R2 we get

P2(Q1 −Q2) = R2 −R1.

If Q1 6= Q2 then the left hand side is a polynomial of degree at least deg(P2). The right hand
side, on the other hand, is a polynomial of degree ≤ max{deg(R1), deg(R2)} and therefore
less than deg(P2). So they cannot be equal — unless they are both zero. 2

Incidentally, essentially the same argument proves uniqueness of quotient and remainder
in division of natural numbers, (as in Proposition 2.6).

Before going further, we will fix the kind of polynomials we are going to talk about. All
of what we do for the rest of this section will concern polynomials with real coefficients. In
other words, we will work in R[x]. The reason why we make this restriction will become
clear in a moment.

The first definition we seek to generalise from Z is the notion of prime number. We might
hope to define a “prime polynomial” as one which is not divisible by any polynomial other
than the constant polynomial 1 and itself. However, this definition is unworkable, because
every polynomial is divisible by the constant polynomial −1, or the constant polynomial 1

2
,

or indeed any non-zero constant polynomial. So instead we make the following definition:

Definition 7.5. The polynomial P ∈ R[x] is irreducible in R[x] if P is non-constant, and
whenever it factorises as a product of polynomials P = P1P2 with P1, P2 ∈ R[x] then either
P1 or P2 is a constant. If P is not irreducible in R[x], we say it is reducible in R[x].

74



So reducible polynomials P can be factored as P = P1P2 where both P1 and P2 have
degree strictly smaller than degP . To save breath, we shall start calling a factorisation
P = P1P2 of a polynomial P trivial if either P1 or P2 is a constant, and non-trivial if neither
is a constant. Thus, a polynomial is irreducible if it is non-constant and only has trivial
factorisations. (This is analogous to the definition of a prime as being an integer > 1 with
only trivial factorisations.)

Example 7.6. 1. Every polynomial of degree 1 is irreducible.
2. The polynomial P (x) = x2 + 1 is irreducible in R[x]. For if it were reducible, it would

have to be the product of polynomials P1, P2 of degree 1,

x2 + 1 = (a1x+ a0)(b1x+ b0).

Now compare coefficients on the right and left hand sides of the equation:

coefficient of x2 : a1b1 = 1

coefficient of x : a0b1 + a1b0 = 0

coefficient of 1 : a0b0 = 1

Multiply the middle equation by a0a1 and simplify using the first and last equations to get

a20 + a21 = 0,

whose only real solution is a0 = a1 = 0, but this leads to the contradiction 0 = 1 when we
substitute into the first equation!

The only logical way out of the contradiction is that x2 + 1 must be irreducible in R[x].
On the other hand, x2 + 1 is reducible in C[x]; it factorises as

x2 + 1 = (x+ i)(x− i).

Thus, reducibility depends on which set of polynomials we are working in. This is why for
the rest of this section we will focus on just the one set of polynomials, R[x].

Proposition 7.7. Every polynomial of degree greater than 0 is divisible by an irreducible
polynomial.

I gave two proofs of the corresponding statement for natural numbers, Lemma 2.2, which
states that a natural number n > 1 is divisible by some prime, and set an exercise asking
for a third. So you should be reasonably familiar with the possible strategies. I think the
best one is to consider the set S of all non-trivial divisors of n (i.e. divisors of n which are
greater than 1), and show that the least element d of S is prime. It has to be prime, because
if it factors as a product of natural numbers, d = d1d2, with neither d1 nor d2 equal to 1,
then each is a divisor of n which is less than d and greater than 1, and this contradicts the
definition of d as the least divisor of n which is greater than 1.

Exercise 7.1. Prove Proposition 7.7. Hint: in the set of all non-trivial factors of P in R[x],
choose one of least degree.

The next thing we will look for is an analogue, for polynomials, of the highest common
factor of two natural numbers. What could it be? Which aspect of hcf’s is it most natural
to try to generalise? Perhaps as an indication that the analogy between the theory of
polynomials and the arithmetic of N and Z is rather deep, it turns out that the natural
generalisation has very much the same properties as the hcf in ordinary arithmetic.
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Definition 7.8. If P1 and P2 are polynomials in R[x], we say that the polynomial P ∈ R[x]
is a highest common factor of P1 and P2 if it divides both P1 and P2 (i.e. it is a common
factor of P1 and P2) and P1 and P2 have no common factor of higher degree (in R[x]).

Highest common factors definitely do exist. For if P is a common factor of P1 and P2 then
its degree is bounded24 above by min{deg(P1), deg(P2)}. As the set of degrees of common
factors of P1 and P2 is bounded above, it has a greatest element, by the version of the
Well-Ordering Principle already discussed on page 10.

I say a highest common factor rather than the highest common factor because for all we
know at this stage, there might be two completely different and unrelated “highest common
factors” of P1 and P2. Moreover, there is the annoying, though trivial, point that if P is a
highest common factor then so is the polynomial λP for each non-zero real number λ. So
the highest common factor can’t possibly be unique. Of course, this latter is not a serious
lack of uniqueness. And, as we will see, it is in fact the only respect in which the hcf of two
polynomials is not unique:

Proposition 7.9. If P and Q are both highest common factors of P1 and P2 in R[x], then
there is a non-zero real number λ such that P = λQ.

So up to multiplication by a non-zero constant, the hcf of two polynomials is unique. One
common convention used to recover uniqueness is to choose the constant scaling factor so
that the hcf is monic.

But I can’t prove this proposition yet. When we were working in N, then uniqueness of
the hcf of two natural numbers was obvious from the definition, but here things are a little
more subtle. We will shortly be able to prove it though.

Proposition 7.9 is an easy consequence of the following analogue of Proposition 2.14:

Proposition 7.10. If P is a highest common factor of P1 and P2 in R[x], then any other
common factor of P1 and P2 in R[x] divides P .

Exercise 7.2. Deduce Proposition 7.9 from Proposition 7.10. Hint: if P and Q are both
highest common factors of P1 and P2 then by Proposition 7.9 P |Q (because Q is an hcf),
and Q|P , because P is an hcf.

But I can’t prove Proposition 7.10 yet either. If you think back to the arithmetic we
did at the start of the course, the corresponding result, Proposition 2.14, followed directly
from our description of hcf(m,n) in terms of the prime factorisations of m and n in Propo-
sition 2.12 (see page 13 of these Lecture Notes). And this made use of the Fundamental
Theorem of Arithmetic, the existence and uniqueness of a prime factorisation. Now there
is a “Fundamental Theorem of Polynomials” which says very much the same thing, with
“irreducible polynomial ” in place of “prime number”, and we could deduce Proposition 7.10
from it. But first we’d have to prove it, which I don’t want to do25. Even worse, in order to
use factorisation into a product of irreducibles to find hcfs, we’d have to develop techniques
to factorise polynomials. This turns out to be rather complicated. (You may think that
factorising polynomials requires being able to find all their roots. We all know a formula to
find the roots of quadratic polynomials, and formulae exist for polynomials of degree 3 and
4, though few people learn them these days, but for degree 5 and beyond no purely algebraic

24this does not cover the case P1 = P2 = 0, but decreeing that hcf(0, 0) = 0 deals with that case.
25It’s left as an exercise on the next Example sheet
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formula can exist (this was proved by Abel and Galois in the nineteenth century). Luckily,
though, polynomial factorisation does not require root-finding; but the method will not be
discussed further here.)

So we use a different tactic: we will develop the Euclidean algorithm for polynomials,
and see that it leads us to an essentially unique hcf.

The next lemma is the version for polynomials of Lemma 2.15 on page 14 of these lecture
notes. Since we cannot yet speak of the hcf of two polynomials, we have to phrase it
differently.

Lemma 7.11. Suppose P1, P2, Q and R are all in R[x], and P1 = QP2 +R. Then the set of
common factors of P1 and P2, is equal to the set of common factors of P2 and R.

Proof. Suppose F is a common factor of P1 and P2. Then P1 = FQ1 and P2 = FQ2 for
some Q1, Q2 ∈ R[x]. It follows that R = P1 − QP2 = FQ1 − FQQ2 = F (Q1 − QQ2), so F
also divides R, and therefore is a common factor of P2 and R. Conversely, if F is a common
factor of P2 and R, then P2 = FQ3 and R = FQ4 for some Q3, Q4 ∈ R[x]. Therefore
P1 = F (QQ3 +Q4), so F is a common factor of P1 and P2. 2

It will be useful to have a name for the set of common factors of P1 and P2: we will call it
F (P1, P2). Similarly, F (P ) will denote the set of all of the factors of P .

As usual, when it comes to understanding what is going on, one example is worth a
thousand theorems.

Example 7.12. P1(x) = x2 − 3x+ 2, P2(x) = x2 − 4x+ 3.
We divide P1 by P2:

1
x2 − 4x+ 3 x2 −3x +2

x2 −4x +3
x −1

so F (x2− 3x+ 2, x2− 4x+ 3) = F (x2− 4x+ 3, x− 1). Now we divide x2− 4x+ 3 by x− 1:

x −3
x− 1 x2 −4x +3

x2 −x
−3x +3
−3x +3

0

so F (x2 − 4x+ 3, x− 1) = F (x− 1, 0).
Note that F (x−1, 0) = F (x−1), since every polynomial divides 0. In F (x−1) there is

a uniquely determined highest common factor, namely x−1 itself. And it’s the only possible
choice (other than non-zero constant multiples of itself). Since F (P1, P2) = F (x − 1), we
conclude that the highest common factor of P1 and P2 is x− 1.

Example 7.13. P1(x) = x4 − x3 − x2 − x− 2, P2(x) = x3 + 2x2 + x+ 2.
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We divide P1 by P2:

x −3
x3 + 2x2 + x+ 2 x4 −x3 −x2 −x −2

x4 +2x3 +x2 +2x
−3x3 −2x2 −3x −2
−3x3 −6x2 −3x −6

4x2 +4

So F (P1, P2) = F (P2, 4x
2 + 4) = F (P2, x

2 + 1). Now we divide P2 by x2 + 1:

x +2
x2 + 1 x3 +2x2 +x +2

x3 +x
2x2 +2
2x2 +2

0

So F (P1, P2) = F (P2, x
2 + 1) = F (x2 + 1, 0) = F (x2 + 1). Once again, there are no two

ways about it. Up to multiplication by a non-zero constant26, there is only one polynomial
of maximal degree in here, namely x2 + 1. So this is the hcf of P1 and P2.

Is it clear to you that something like this will always happen? We do one more example.

Example 7.14. P1(x) = x3 + x2 + x+ 1, P2(x) = x2 + x+ 1.
We divide P1 by P2.

x
x2 + x+ 1 x3 +x2 +x +1

x3 +x2 +x
1

So F (P1, P2) = F (P2, 1). If we divide P2 by 1, of course we get remainder 0, so F (P2, 1) =
F (1, 0). This time, the hcf is 1.

Proof. of Proposition 7.10 The idea is to apply the Euclidean algorithm, dividing and
replacing the dividend by the remainder at each stage, until at some stage the remainder on
division is zero. We label the two polynomials P1 and P2 we begin with so that deg(P2) ≤

26I won’t say this again
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deg(P1). The process goes like this:

Step Division Conclusion

Step 1 P1 = Q1P2 +R1 F (P1, P2) = F (P2, R1)

Step 2 P2 = Q2R1 +R2 F (P2, R1) = F (R1, R2)

Step 3 R1 = Q3R2 +R3 F (R1, R2) = F (R2, R3)

· · · · · · · · ·

Step k Rk−2 = QkRk−1 +Rk F (Rk−2, Rk−1) = F (Rk−1, Rk)

· · · · · · · · ·

Step N RN−2 = QNRN−1 F (RN−2, RN−1) = F (RN−1)

The process must come to an end as shown, for when we go from each step to the next, the
degree of the remainder decreases:

degP2 > degR1 > degR2 > . . . .

But degrees are natural numbers, so this sequence must be finite! If degRN−1 is 0 for some N ,
then RN−1 is a non-zero constant, and the final division goes exactly with reminder RN = 0
as shown; or in any case there must be exact division at some step, say the N ’th, and RN = 0
(though RN−1 may not be constant). Either way, we must end with an exact division and
zero remainder, and the table gives an accurate description of how the process ends.

From the table we read that

F (P1, P2) = . . .=F (RN−1). (52)

The right hand set has a unique element of highest degree, RN−1. So this is the unique
element of highest degree in the left hand side, F (P1, P2). In other words, it is the highest
common factor of P1 and P2. We can speak of the highest common factor of P1 and P2, and
we can rewrite (52) as

F (P1, P2) = F (H), (53)

where H = hcf(P1, P2). The equality (53) also tells us that H is divisible by every other
common factor of P1 and P2, because the polynomials in F (H) are precisely those that
divide H. 2
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Definition 7.15. We say two polynomials P and Q are equivalent if one is a non-zero
constant multiple of the other.

For example, Proposition 7.9 says that given two polynomials P1 and P2, any two highest
common factors of P1 and P2 are equivalent. Of course, this equivalence is an equivalence
relation. We can quite reasonably speak of the highest common factor of two polynomials,
either by agreeing to scale to make the hcf monic, or by just agreeing not to consider
equivalent polynomials as different for this purpose.

Exercise 7.3. Find the hcf of 27

1. P1(x) = x4 − 1, P2(x) = x2 − 1

2. P1(x) = x5 − 1, P2(x) = x2 − 1

3. P1(x) = x6 − 1, P2(x) = x4 − 1.

Exercise 7.4. In each of Examples 7.12, 7.13 and 7.14, find polynomials A and B such
that H = AP1 + BP2, where H = hcf(P1, P2). Hint: review the method for natural numbers
(subsection 3.2, page 19).

Exercise 7.5. Define a lowest common multiple of polynomials P1 and P2 to be a poly-
nomial divisible by both, whose degree is minimal among all such. (i) Prove that lowest
common multiples exist. (ii) Show that

P1P2

hcf(P1, P2)

is a lowest common multiple. (iii) Prove that any two lowest common multiples of P1 and
P2 are equivalent.

Exercise 7.6. Find the lcm of P1 and P2 in each of the examples of Exercise 7.3.

Exercise 7.7. Show that if P1, P2 ∈ R[x] and H is the highest common factor of P1 and P2

in R[x] then there exist A,B ∈ R[x] such that H = AP1 + BP2. Hint: you could build a
proof around the table in the proof of Proposition 7.10, that the Euclidean algorithm leads to
the hcf of two polynomials, on page 79 of the Lecture Notes. If you can do Exercise 2 then
you probably understand what is going on, and writing out a proof here is just a question of
getting the notation right.

Exercise 7.8. Prove by induction that every polynomial of degree ≥ 1 in R[x] can be written
a product of irreducible polynomials. Hint: do induction on the degree, using POI II. Begin
by showing it’s true for all polynomials of degree 1 (not hard!). In the induction step, assume
it’s true for all polynomials of degree ≥ 1 and < n and deduce that it’s true for all polynomials
of degree n.

Exercise 7.9. Prove that the irreducible factorisation in Exercise 7.8 is unique except for
reordering and multiplying the factors by non-zero constants. Hint: copy the proof of Part 2
of the Fundamental Theorem of Arithmetic.

27Recall that we are working in R[x]. Does the value of the hcf change if we were to work in Q[x] or C[x]?
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7.2 The Remainder Theorem

The number α is a root of the polynomial P if P (α) = 0. A polynomial of degree n can have
at most n roots, as we will shortly see.

Proposition 7.16. The Remainder Theorem If P ∈ R[x], and α ∈ R, then on division of
P by x− α, the remainder is P (α).

Proof. If
P = (x− α)Q+R

with R = 0 or deg(R) < 1 = deg(x − α), then R is in either case constant. Substituting
x = α in both sides gives

P (α) = 0×Q(α) +R,

so the constant is R = P (α). 2

Corollary 7.17. If P ∈ R[x], α ∈ R and P (α) = 0 then x− α divides P . 2

Corollary 7.18. A polynomial P ∈ R[x] of degree n can have at most n roots in R.

Proof. We’ll prove this by induction on n = degP . If n = 0 then P is a non-zero constant
so certainly has no roots.

Now suppose that degP = n ≥ 1 and that the result holds for polynomials of degree at
most n− 1. If P has no roots in R that is fine; otherwise it has a root α and we can write

P = (x− α)Q

where degQ = n− 1. By induction, Q has at most n− 1 real roots. But any root β of P is
either a root of Q, or equals α (or both), since

0 = P (β) = (β − α)Q(β).

So P has at most one more root than Q, which is at most 1 + (n− 1) = n roots. 2

Remark 7.19. Proposition 7.16 and Corollaries 7.17,7.18 remain true (and with the same
proof) if we substitute R throughout by Q, or if we substitute R throughout by C (or
indeed, by any field at all, though since this is a first course, we don’t formalise or discuss
the definition of “field”). Since Q ⊆ R ⊆ C, a polynomial with rational or real coefficients
can also be thought of as a polynomial in C[x]. So the complex version of Corollaries 7.18
asserts, in particular, that a polynomial of degree n with rational coefficients can have no
more than n distinct complex roots. Indeed, a degree n polynomial with coefficients in a
field F can have no more than n roots in any field containing F .

For enthusiasts (and not examinable for this course) here are two examples of what can
go wrong when our coefficients do not form a field. The polynomial x2 − 1 has more than
two roots in Z/8 (x = 1, 3, 5, 7 all work, as you may check. You may like to see where
the preceding proof breaks down here! For an even worse case, the set H of “quaternions”
behaves exactly like a field except that it fails to be commutative; and in H the equation
x2 = −1 has infinitely many solutions!
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7.3 The Fundamental Theorem of Algebra

Quite what singles out each Fundamental Theorem as meriting this title is not always clear.
But the one we’re going to discuss now really does have repercussions throughout algebra
and geometry, and even in physics.

Theorem 7.20. If P ∈ C[x] has degree greater than 0, then P has a root in C.

Corollary 7.21. If P ∈ C[x] has leading coefficient an, then P factorises completely into
linear factors in C[x],

P (x) = an(x− α1)· · ·(x− αn).

(Here the αi do not need to be all distinct from one another).

Proof. By induction on n using Theorem 7.20 and Corollary 7.17. 2

Corollary 7.21 is often expressed as the statement:

“Polynomials over C have as many roots as their degree, counting multiplicities”.

Here a number α is said to be a root of P (x) of multiplicity k if x− α appears exactly k
times in the factorisation of P (x), so that (x− α)k | P (x) but (x− α)k+1 - P (x). A root of
multiplicity 1 is called a simple root while roots of multiplicity k ≥ 2 are called multiple roots.
In many applications it is important to be able to detect multiple roots, so the following
criterion is useful. It refers to the derivative P ′ of a polynomial P , which can be defined
purely algebraically: the derivative of P =

∑
k akx

k is P ′ =
∑

k kakx
k−1. The usual rules for

derivatives of sums and products all apply.

Proposition 7.22. Let P (x) ∈ C[x].

1. α is a multiple root of P if and only if P (α) = P ′(α) = 0.

2. P has no multiple roots if hcf(P, P ′) = 1.

Proof. (1) If α is a multiple root of P then P (x) = (x − α)kR(x) with k ≥ 2 and
R(x) ∈ C[x]. Differentiating gives P ′(x) = (X − α)k−1[(x − α)R′(x) + kR(x)], and hence
(since k − 1 > 0) P ′(α) = 0.

Conversely if P (α) = P ′(α) = 0 then P (x) = (x − α)Q(x) for some polynomial Q.
Differentiating gives P ′(x) = Q(x) + (x − α)Q′(x), so now P ′(α) = 0 =⇒ Q(α) = 0 so
(x− α) | Q and (x− α)2 | P .

(2) By (1), P has a multiple root α if and only if P and P ′ have a common root α, which
is if and only if x−α divides both P and P ′. This implies (and by Theorem7.20 is equivalent
to) hcf(P, P ′) having positive degree. 2

The remainder of this subsection is devoted to a sketch proof of the Fundamental Theorem
of Algebra. It makes use of ideas and techniques that you will not see properly developed
until the third year, so is at best impressionistic. It will not appear on any exam or classroom
test, and it will not be covered in lectures. On the other hand, it is good to stretch your
geometric imagination, and it is interesting to see how an apparently algebraic fact can have
a geometric proof. So try to make sense of it, but don’t be discouraged if in the end you
have only gained a vague idea of what it’s about. You are welcome to skip the next couple
of pages and go straight to Section 7.4.
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Sketch proof of Theorem 7.20 Let

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0.

Because an 6= 0, we can divide throughout by an, so now we can assume that an = 1. The
formula

Pt(x) = xn + t(an−1x
n−1 + · · ·+ a1x+ a0)

defines a family of polynomials, one for each value of t. We think of t as varying from 0 to
1 in R. When t = 0, we have the polynomial xn, and when t = 1 we have the polynomial P
we started with.

The polynomial P0(x) is just xn, so it certainly has a root, at 0. The idea of the proof
is to find a way of making sure that this root does not fly away and vanish as t varies from
0 to 1. We will in fact find a real number R such that each Pt has a root somewhere in the
disc DR of centre 0 and radius R. To do this, we look at what Pt does on the boundary of
the disc DR, namely the circle CR of centre 0 and radius R.

Each Pt defines a “map” from C to C, sending each point x ∈ C to P (x) ∈ C. For each
point x on CR we get a point Pt(x) in C, and the collection of all these points, for all the
x ∈ CR, is called the image of CR under Pt. Because Pt is “continuous”. a property you will
soon learn about in Analysis, the image of CR under Pt is a closed curve, with no breaks. In
the special case of P0, the image is the circle of radius Rn.

As x goes round the circle CR once, then P0(x) goes round the circle CRn n times.
(Remember that the argument of the product of two complex numbers is the sum of their
arguments, so the argument of x2 is twice the argument of x, and by induction the argument
of xn is n times the argument of x.) That is, as x goes round the circle CR once, P0(x) winds
round the origin n times. We say: P0 winds the circle CR round the origin n times. For
t 6= 0, the situation is more complicated. The image under Pt of the circle CR might look
like any one of the curves shown in the picture below.

In each picture I have added an arrow to indicate the direction Pt(c) moves in as x moves
round CR in an anticlockwise direction, and have indicated the origin by a black dot. Al-
though none of the three curves is a circle, for both the first and the second it still makes
sense to speak of the number of times Pt winds the circle CR round the origin in an anticlock-
wise direction. You could measure it as follows: imagine standing at the origin, with your
eyes on the point Pt(x). As x moves round the circle CR in an anticlockwise direction, this
point moves, and you have to twist round to keep your eyes on it. The number in question
is the number of complete twists you make in the anticlockwise direction minus the number
in the clockwise direction.

83



We call this the winding number for short. In the first curve it is 2, and in the second
it is -1. But the third curve runs right over the origin, and we cannot assign a winding
number. In fact if the origin were shifted upwards a tiny bit (or the curve were shifted
down) then the winding number would be 1, and if the origin were shifted downwards a
little, the winding number would be 2. What it is important to observe is that if, in one of
the first two pictures, the curve moves in such a way that it never passes through the origin,
then the winding number does not change. Although this is, I hope, reasonably clear from
the diagram, it really requires proof. But here I am only giving a sketch of the argument, so
I ask you to trust your visual intuition.

We’ve agreed that the winding number of P0 is n. Now we show that if R is chosen big
enough then the winding number of Pt is still n for each t ∈ [0, 1]. The reason is that if we
choose R big enough, we can be sure that the image under Pt of CR never runs over the
origin, for any t ∈ [0, 1]. For if |x| = R we have

|Pt(x)| = |xn + t(an−1x
n−1 + · · ·+ a0)| ≥ |xn| − t

(
|an−1||xn−1|+ · · ·+ |a0|

)
The last expression on the right hand side is equal to

= Rn
{

1− t
( |an−1|

R
+
|an−2|
R2

+ · · ·+ |a0|
Rn

)}
It’s not hard to see that if R is big enough, then the expression in round brackets on the
right is less than 1, so provided t ∈ [0, 1] and |x| = R, Pt(x) 6= 0.

So now, as P0 morphs into Pt, the winding number does not change, because the curve
never runs through the origin. In particular, P itself winds CR round the origin n times.

Now for the last step in the proof. Because P winds CR round the origin n times, PR
must have a root somewhere in the disc DR with centre 0 and radius R. For suppose to the
contrary that there is no root in DR. In other words, the image of DR does not contain the
origin, as shown in the picture.

D
R

D
R

Image of 

0

I claim that this implies that the winding number is zero. The argument is not hard to
understand. We’ve agreed that if, as t varies, the curve Pt(CR) does not at any time pass
through the origin, then the number of times Pt winds CR round the origin does not change.
We now apply the same idea to a different family of curves.
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0

The disc DR is made up of the concentric circles CλR, λ ∈ [0, 1], some of which are shown in
the lower picture on the left in the diagram at the foot of the last page. The images of these
circles lie in the image of DR. If the image of DR does not contain the origin, then none of
the images of the circles CλR passes through the origin. It follows that the number of times
P winds the circle CλR around the origin does not change as λ varies from 0 to 1.

When λ = 0, the circle CλR is reduced to a point, and its image is also just a single point.
When λ is very small, the image of CλR is very close to this point, and clearly cannot wind
around the origin any times at all. That is, for λ small, P winds the curve CλR around the
origin 0 times. The same must therefore be true when λ = 1. In other words, if P does not
have a root in DR then P winds CR round the origin 0 times.

But we’ve shown that P winds CR n times around the origin if R is big enough. Since
we are assuming that n > 0, this means that a situation like that shown in the picture is
impossible: the image of DR under P must contain the origin. In other words, P must have
a root somewhere in the disc DR. 2

7.4 Algebraic numbers

A complex number α is an algebraic number if it is a root of a nonzero polynomial P ∈ Q[x].
For example, for any n ∈ N, the n’th roots of any positive rational number q are algebraic
numbers, being roots of the rational polynomial

xn − q.

In particular the set of algebraic numbers contains Q (take n = 1).
The set of algebraic numbers is in fact a field. This is rather non-obvious: it is not obvious

how to prove, in general, that the sum and product of algebraic numbers are algebraic (though
see the exercises at the end of this section).

It is not hard to show (using Exercise 7.7) that if α is a root of both P and Q ∈ Q[x]
then it is root of hcf(P,Q). It then follows that if we let P be the polynomial of least degree
with α as a root, then every other polynomial with α as a root is a multiple of P . This
P (scaled to be monic) is called the minimal polynomial of the algebraic number α. For
example, α =

√
5 +
√

6 is algebraic and has minimal polynomial x4 − 22x2 + 1. (To check
this, first show that α2 = 11 + 2

√
30.) The study of algebraic numbers is (not surprisingly)

called Algebraic Number Theory (see the Third Year course MA3A6); it was developed by
people trying to prove Fermat’s Last Theorem, using Roots of Unity (which are algebraic,
being roots of xn − 1).
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Complex numbers which are not algebraic are transcendental. It is not obvious that there
are any transcendental numbers. In the next (and final) chapter we will develop methods
which show that in fact almost all complex numbers are transcendental. Surprisingly, show-
ing that any individual complex number is transcendental is much harder. Apostol’s book
on Calculus (see the Introduction) gives a straightforward, though long, proof that e is tran-
scendental. A famous monograph of Ivan Niven, “Irrational numbers”, (available from the
library) contains a clear proof that π is transcendental. This has an interesting implication
for the classical geometrical problem of “squaring the circle”, since it is not hard to prove28

that any length one can get by geometrical constructions with ruler and compass, starting
from a fixed unit, is an algebraic number. For example, the length x =

√
2 in the diagram on

page 28 is an algebraic number. Because π is transcendental (and therefore so is
√
π), there

can be no construction which produces a square whose area is equal to that of an arbitrary
given circle.

Exercise 7.10. (i) Show that if α ∈ C, and for some positive integer n, αn is algebraic,

then α is algebraic too. Deduce that if α ∈ C is transcendental, then so is α
1
n for any n ∈ N.

Exercise 7.11. (i) Find a polynomial in Q[x] with
√

2
√

3 as a root. (ii) Ditto for
√

2× 3
1
3 .

(iii) Ditto for
√

2 +
√

3. Hint: by subtracting suitable multiples of even powers of
√

2 +
√

3

from one another, you can eliminate the square roots. (iv)∗ Can you do it for
√

2 + 3
1
3 ?

As an application of our work on polynomials, and the factorisation theory of integers
we can prove the following which is both a huge help in finding rational roots of integer
polynomials, and also gives a way to prove that numbers are irrational.

Proposition 7.23. Let P (x) = adx
d + · · ·+ a1x+ a0 ∈ Z[x] and let α be a root of P .

1. If α ∈ Z then α | a0;

2. More generally, if α = m/n ∈ Q with hcf(m,n) = 1 then m | a0 and n | ad.

Proof. (1) a0 = −a1α − a2α2 − · · · − adαd ∈ αZ. (2) Substitute α = m/n in P (α) = 0
and clear denominators to get

adm
d + ad−1m

d−1n+ · · ·+ a1mn
d−1 + a0n

d = 0.

So m | a0nd; but hcf(m,nd) = 1, so m | a0. Similarly, n | admd =⇒ n | ad. 2

Examples. We can use this to show that many algebraic numbers are irrational.

1. α =
√

77 is a root of x2 − 77. If α = m/n were rational it would have to be an integer
since n | 1, but 8 < α < 9 so α /∈ Z. hence α must be irrational!

2. α =
√

2 +
√

3 is a root of x4 − 10x2 + 1 (see previous exercise), so if α = m/n were
rational then m | 1 and n | 1 which implies α = ±1. This is ridiculous since α > 3; so
α is irrational.

28See, for instance, Ian Stewart, Galois Theory, Chapter 5
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8 Counting: to infinity and beyond?

8.1 Different Infinities

We return to the question which we started to consider in section 6.3: what does it mean to
count? We have answered this question in the case of finite sets: a set A is finite if there is
a bijection {1, . . ., n} → A, and in this case29 the number of elements in A is n, and write
|A| = n. If there is no bijection {1, . . ., n} → A for any n ∈ N , we say A is infinite. Is that
the end of the story? Do all infinite sets have the same number of elements? More precisely,
given any two infinite sets, is there necessarily a bijection between them? The answer is no.
In this section we will prove that R is not in bijection with N. But we will begin with

Proposition 8.1. If B ⊂ N is infinite then there is a bijection c : N → B.

We will also prove

1. Many other infinite sets, such as Q, are also in bijection with N.

2. The set of algebraic numbers is in bijection with N.

3. There are infinitely many different infinities.

Definition 8.2. The set A is countable if there is a bijection between A and some subset
of N (possibly N itself); A is countably infinite if it is countable but not finite.

Proposition 8.1 implies

Corollary 8.3. Every countably infinite set is in bijection with N.

Proof. Suppose A is a countably infinite set. Then there is a bijection f : A → B, where
B is some infinite subset of N. By Proposition 8.1, there is a bijection c : N → B whose
inverse is a bijection c−1 : B → N. Therefore c−1 ◦ f is a bijection from A to N. 2

Proof. of Proposition 8.1 Define a bijection c : N → B as follows: let b0 be the least
element of B (using WOP), and set c(0) = b0. Let b1 be the least element of Nr {b0} (using
WOP again), and set c(1) = b1. Let c2 be the least element of B r {b0, b1}. Set c(2) = b2.
Etc.

Since B is assumed to be infinite, this procedure never terminates. That is, for every
n, B r {b0, b1, . . ., bn} is always non-empty, so by the WOP has a least element, bn+1, and
we can define c(n + 1) = bn+1. Thus, by induction on N, c(n) is defined for all n. The
map c is injective, for bn+1 > bn for all n, so if m > n it follows that c(m) > c(n). It is
surjective, because if b ∈ B then b is equal to one of c(0), c(1), . . ., c(b) since n ≤ c(n) for
all n (remember that B ⊂ N). Thus c is a bijection. 2

Proposition 8.4. The set of rational numbers is countably infinite.

Proof. Define an mapping g : Q → N, as follows:

• g(0) = 0

29As a special case, |A| = 0 if there is a bijection from the empty set {} to A. A function with empty
domain may seem strange to you, but it is certainly surjective since no element of A fails to be in its image!
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• if q ∈ Q is positive and written in lowest form as m
n

(with m,n ∈ N) then g(q) = 2m ·3n

• if q ∈ Q is negative and is written in lowest form as q = −m
n

with m,n ∈ N then
g(q) = 2m · 3n · 5.

Uniqueness of factorisation into primes implies that g is an injection, and clearly its image
is infinite. By definition this means that Q is countably infinite. 2

Here is a graphic way of counting the positive rationals. The array

1
1

2
1

3
1

4
1

5
1
· · ·

1
2

2
2

3
2

4
2

5
2
· · ·

1
3

2
3

3
3

4
3

5
3
· · ·

1
4

2
4

3
4

4
4

5
4
· · ·

· · · · · · · · · · · · · · ·

contains every positive rational number (with repetitions such as 2
2

or 2
4
). We count them

as indicated by the following zigzag pattern:

1
1

��

2
1

// 3
1

�������
4
1

// 5
1

�������
6
1

//

1
2

AA�����
2
2

�������
3
2

AA�����
4
2

�������
5
2

AA�����

1
3

��

2
3

AA�����
3
3

�������
4
3

AA�����

1
4

AA�����
2
4

�������
3
4

AA�����

1
5

��

2
5

AA�����

1
6

AA�����

1

��

3 // 4

~~||||||
10 // 11

~~|||||
21 //

2

>>||||||
5

~~||||||
9

>>||||||
12

~~|||||
20

>>|||||

6

��

8

>>||||||
13

~~|||||
19

>>|||||

7

>>||||||
14

~~|||||
18

>>|||||

15

��

17

>>|||||

16

>>|||||

This defines a surjection N → Q>0, but not an injection, as it takes no account of the
repetitions. For example, it maps 1, 5, 13, . . . all to 1 ∈ Q. But this is easily remedied by
simply skipping each rational not in lowest form; the enumeration becomes

1

��

3 // 4

~~|||||||||||||||
9 // 10

~~|||||||||||||||||||||||||||||||
17 //

2

>>||||||
8

>>||||||
16

>>|||||

5

��

7

>>||||||
15

>>|||||

6

>>||||||
14

>>|||||

11

��

13

>>|||||

12

>>|||||
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We have defined a bijection N → Q>0.

Exercise 8.1. (i) Suppose that X1 and X2 are countably infinite. Show that X1 × X2 is
countably infinite. Hint: both proofs of the countability of Q can be adapted to this case. Go
on to prove by induction that if X1, . . ., Xn are all countably infinite then so is X1×· · ·×Xn.
(ii) Suppose that each of the sets X1, X2, . . ., Xn. . . is countably infinite. Show that their
union ∪n∈NXn is countably infinite. Hint 1: make an array like the way we displayed the
positive rationals in the previous paragraph. Define a map by a suitable zig-zag. Hint 2: do
part (iii) and then find a surjection N× N → ∪n∈N Xn. (iii) Show that if A is a countable
set and there is a surjection g : A → B then B is also countable. Hint: a surjection has a
right inverse, which is an injection.

Proposition 8.5. The set A of algebraic numbers is countably infinite.

Proof. The set of polynomials Q[x]≤n of degree≤ n, with rational coefficients, is countably
infinite: there is a bijection Q[x]≤n → Qn+1, defined by mapping the polynomial a0 + a1x+
· · · + anx

n to (a0, a1, . . ., an) ∈ Qn+1, and by Exercise 8.1(i), Qn+1 is countably infinite. It
follows, again by Exercise 8.1(i), that Q[x]≤n × {1, . . ., n} is countably infinite.

Each non-zero polynomial in Q[x]≤n has at most n roots. If P ∈ Q[x]≤n, order its roots
in some (arbitrary) way, as α1, . . ., αk. Define a surjection

fn :
(
Q[x]≤n r {0}

)
× {1, 2, . . ., n} → An

by
f(P, j) = j’th root of P.

(if P has k roots and k < n, define fn(P, k + 1) = · · · = fn(P, n) = αk). As there is a
surjection from a countable set to An, An itself is countable. It is clearly infinite.

Finally, the set A of algebraic numbers is the union ∪n∈NAn, so by Exercise 8.1(ii), A is
countably infinite. 2

So far, we’ve only seen one infinity.

Proposition 8.6. The set R of real numbers is not countable.

Proof. If R is countable then so is the open interval (0, 1). Suppose that (0, 1) is countable.
Then by Corollary 8.3 its members can be enumerated30, as a1, a2, . . ., ak, . . . , with decimal
expansions

a1 = 0. a11 a12 a13 . . .
a2 = 0. a21 a22 a23 . . .
. . . = . . .. . .
ak = 0. ak1 ak2 ak3 . . .
. . . = . . .. . .

(to avoid repetition, we avoid decimal expansions ending in an infinite sequence of 9’s.) To
reach a contradiction, it is enough to produce just one real number in (0, 1) which is not on
this list. We construct such a number as follows: for each k, choose any digit bk between 1
and 8 which is different from akk. Consider the number

b = 0 . b1 b2 . . . bk . . .

30It is more convenient here to start counting at 1 and not 0.
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Its decimal expansion differs from that of ak at the k’th decimal place. Because we have
chosen the bk between 1 and 8 we can be sure that b ∈ (0, 1) and is not equal in value to
any of the ak. We conclude that no enumeration can list all of the members of (0, 1). That
is, (0, 1) is not countable. 2

This argument, found by Georg Cantor (1845-1918) in 1873, is known as Cantor’s diagonal-
isation argument.

Corollary 8.7. Transcendental numbers exist.

Proof. If every real number were algebraic, then R would be countable. 2

Exercise 8.2. (i) Find a bijection (−1, 1) → R. (ii) Suppose a and b are real numbers and
a < b. Find a bijection (a, b) → R.

The fact that the infinity of R is different from the infinity of N leads us to give them
names, and begin a theory of transfinite numbers. We say that two sets have the same
cardinality if there is a bijection between them. The cardinality of a set is the generalisation
of the notion, defined only for finite sets, of the “number of elements it contains”. The
cardinality of N is denoted by ℵ0; the fact that Q and N have the same cardinality is
indicated by writing |Q| = ℵ0. The fact that |R| 6= ℵ0 means that there are infinite cardinals
different from ℵ0. Does the fact that N ⊂ R mean that ℵ0 < |R|? And are there any
other infinite cardinals in between? In fact, does it even make sense to speak of one infinite
cardinal being bigger than another?

Suppose that there is a bijection j : X1 → X2 and a bijection k : Y1 → Y2. Then if there
is an injection X1 → Y1, there is also an injection i2 : X2 → Y2, i2 = k ◦ i1 ◦ j−1, as indicated
in the following diagram:

X2
i2 //___

j−1

��

Y2

X1 i1
// Y1

k

OO

Similarly, if there is a surjection X1 → Y1 then there is also a surjection X2 → Y2.
This suggests the following definition.

Definition 8.8. Given cardinals ℵ and ℵ′, we say that ℵ ≤ ℵ′ (and ℵ′ ≥ ℵ) if there are sets
X and Y with |X| = ℵ and |Y | = ℵ′, and an injection X → Y .

Note that By Proposition 6.16, |X| ≥ |Y | also if there is a surjection X → Y .
This definition raises the natural question: is it true 31 that

|X| ≤ |Y | and |Y | ≤ |X| =⇒ |X| = |Y |?

In other words, if there is an injection X → Y and an injection Y → X then is there a
bijection X → Y ?

Theorem 8.9. Schroeder-Bernstein Theorem If X and Y are sets and there are injec-
tions i : X → Y and j : Y → X then there is a bijection X → Y .

31The analogous statement is certainly true if we have integers or real numbers p, q in place of the cardinals
|X|, |Y |.
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Proof. Given y0 ∈ Y , we trace its ancestry. Is there an x0 ∈ X such that i(x0) = y0? If
there is, then is there a y1 ∈ Y such that j(y1) = x0? And if so, is there an x1 ∈ X such
that i(x1) = y1? And so on. Points in Y fall into three classes:

1. those points for which the line of ancestry originates in Y

2. those points for which the line of ancestry originates in X.

3. those points for which the line of ancestry never terminates

Call these three classes YY , YX and Y∞. Clearly Y = YY ∪ YX ∪ Y∞, and any two among
Y∞, YY and YX have empty intersection.

Divide X into three parts in the same way:

1. XX consists of those points for which the line of ancestry originates in X;

2. XY consists of those points for which the line of ancestry originates in Y

3. X∞ consists of those points for which the line of ancestry never terminates.

Again, these three sets make up all of X, and have empty intersection with one another.
Note that

1. i maps XX to YX ,

2. j maps YY to XY ,

3. i maps X∞ to Y∞.

Indeed,

1. i determines a bijection XX → YX

2. j determines a bijection YY → XY

3. i determines a bijection X∞ → Y∞.

Define a map f : X → Y by

f(x) =


i(x) if x ∈ XX

j−1(x) if x ∈ XY

i(x) if x ∈ X∞

Then f is the required bijection. 2

The Schroeder Bernstein Theorem could be used, for example, to prove Proposition 8.4, that
|Q| = ℵ0, as follows: as in the first proof of Proposition 8.4 we construct an injection Q → Z
(sending ±m

n
to ±2m3n), and then an injection Z → N (say, sending a non-negative integer n

to 2n and a negative integer −n to 2n− 1). Composing the two give us an injection Q → N.
As there is also an injection N → Q (the usual inclusion), Schroeder-Bernstein applies, and
says that there must exist a bijection.

Exercise 8.3. Use the Schroeder-Bernstein Theorem to give another proof of Proposition 8.1.
Hint: saying that a set X is infinite means precisely that when you try to count it, you never
finish; in other words, you get an injection N → X.
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Let X and Y be sets. We say that |X| < |Y | if |X| ≤ |Y | but |X| 6= |Y |. In other words,
|X| < |Y | if there is an injection X → Y but there is no bijection X → Y .

Definition 8.10. Let X be a set. Its power set P(X) is the set of all the subsets of X.

If X = {1, 2, 3} then X has eight distinct subsets:

∅, {1}, {2}, {3}, {2, 3}, {1, 3}, {1, 2}, {1, 2, 3}

so P(X) has these eight members. It is convenient to count ∅ among the subsets of X,
partly because this gives the nice formula proved in the following proposition, but also, of
course, that it is true (vacuously) that every element in ∅ does indeed belong to X.

Proposition 8.11. If |X| = n then |P(X)| = 2n.

Proof. Order the elements of X, as x1, . . ., xn. Each subset Y of X can be represented by
an n-tuple of 0’s and 1’s: there is a 1 in the i’th place if xi ∈ Y , and a 0 in the i’th place if
xi /∈ Y . For example, ∅ is represented by (0, 0, . . . , 0), and X itself by (1, 1, . . ., 1). We have
determined in this way a bijection

P(X) → {0, 1} × · · · × {0, 1}︸ ︷︷ ︸
n times

= {0, 1}n.

The number of distinct subsets is therefore equal to the number of elements of {0, 1}n, 2n.
2

So if X is a finite set, |X| < |P(X)|. The same is true for infinite sets.

Proposition 8.12. If X is a set, there can be no surjection X → P(X).

Proof. Suppose that p : X → P(X) is a map. We will show that p cannot be surjective
by finding some P ∈P(X) such that p(x) 6= P for any x ∈ X. To find such a P , note that
since for each x, p(x) is a subset of X, it makes sense to ask: does x belong to p(x)? Define

P = {x ∈ X : x /∈ p(x)}.

Claim: for no x in X can we have p(x) = P . For suppose that p(x) = P . If x ∈ P , then
x ∈ p(x), so by definition of P , x /∈ P . If x /∈ P , then x /∈ p(x), so by definition of P , x ∈ P .
That is, the supposition that p(x) = P leads us to a contradiction. Hence we cannot have
p(x) = P for any x ∈ X, and so p is not surjective. 2

The set P in the proof is not itself paradoxical: in the case of the map

p : {1, 2, 3} → P({1, 2, 3})

defined by
p(1) = {1, 2}, p(2) = {1, 2, 3}, p(3) = ∅,

P is the set {3}, since only 3 does not belong to p(3). And indeed, no element of {1, 2, 3} is
mapped to {3}. If p : {1, 2, 3} → P({1, 2, 3}) is defined by

p(1) = {1}, p(2) = {2}, p(3) = {3}

then P = ∅; again, for no x ∈ {1, 2, 3} is p(x) equal to P .
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Corollary 8.13. For every set X, |X| < |P(X)|.

Proof. There is an injection X → P(X): for example, we can define i : X → P(X) by
i(x) = {x}. Hence, |X| ≤ |P(X)|. Since there can be no surjection X → P(X), there can
be no bijection, so |X| 6= |P(X)|. 2

Corollary 8.14. There are infinitely many different infinite cardinals.

Proof.
ℵ0 = |N| < |P(N)| < |P(P(N))| < |P(P(P(N)))| < · · ·.

2

8.2 Concluding Remarks

Questions

1. What is the next cardinal after ℵ0?

2. Is there a cardinal between ℵ0 and |R|?

3. Does question 1 make sense? In other words, does the Well-Ordering Principle hold
among infinite cardinals?

4. Given any two cardinals, ℵ and ℵ′, is it always the case that either ℵ ≤ ℵ′ or ℵ′ ≤ ℵ?
In other words, given any two sets X and Y , is it always the case that there exists an
injection X → Y or an injection Y → X (or both)?

None of these questions has an absolutely straightforward answer. To answer them with any
clarity it is necessary to introduce an axiomatisation of set theory; that is, a list of statements
whose truth we accept, and which form the starting point for all further deductions. Axioms
for set theory were developed in the early part of the twentieth century in response to the
discovery of paradoxes, like Russell’s paradox, described on page 54 of these lecture notes,
which arose from the uncritical assumption of the “existence” of any set one cared to define
— for example, Russell’s “set of all sets which are not members of themselves”. The standard
axiomatisation is the Zermelo-Fraenkel axiomatisation ZF. There is no time in this course
to pursue this topic. The final chapter of Stewart and Tall’s book The Foundations of
Mathematics lists the von Neumann-Gödel-Bernays axioms, a mild extension of ZF. A more
sophisticated account, and an entertaining discussion of the place of axiomatic set theory
in the education of a mathematician, can be found in Halmos’s book Naive Set Theory.
Surprisingly, quite a lot is available on the internet.

Of the questions above, Question 4 is the easiest to deal with. The answer is that if we
accept the Axiom of Choice, then Yes, every two cardinals can be compared. In fact, the
comparability of any two cardinals is equivalent to the Axiom of Choice.

The Axiom of Choice says the following: if Xα, α ∈ A is a collection of non-empty sets
indexed by the set A — that is, for each element α in A there is a set Xα in the collection
— then there is a map from the index set A to ∪αXα such that f(α) ∈ Xα for each α ∈ A.
The statement seems unexceptionable, and if the index set A is finite then one can construct
such a map easily enough, without the need for a special axiom. However, since the Axiom
of Choice involves the completion of a possibly infinite process, it is not accepted by all
mathematicians to the same extent as the other axioms of set theory. It was shown to be
independent of the Zermelo-Fraenkel axioms for set theory by Paul Cohen in 1963.
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Remark 8.15. We have tacitly used the Axiom of Choice in our proof of Proposition 6.16,
that if p : X → Y is a surjection then there is an injection i : Y → X which is a right inverse
to p. Here is how a formal proof, using the Axiom of Choice, goes: Given a surjection p, for
each y ∈ Y define

Xy = {x ∈ X : p(x) = y}

(this is what we called f−1(y) at the end of Section 6.4 on page 63). The collection of sets
Xy is, indeed, indexed by Y . Clearly ⋃

y∈Y

Xy = X,

and now the Axiom of Choice asserts that there is a map i from the index set Y to X, such
that for each y ∈ Y , i(y) ∈ Xy. This means that i is a right inverse to p, and an injection,
as required.

Almost without exception, the Axiom of Choice and the Zermelo-Fraenkel axioms are
accepted and used by every mathematician whose primary research interest is not set theory
and the logical foundations of mathematics. However, you will rarely find Axiom of Choice
used explicitly in any of the courses in a Mathematics degree. Nevertheless, a statement
equivalent to the Axiom of Choice, Zorn’s Lemma, is used, for example to prove that every
vector space has a basis32, and that every field has an algebraic closure. The comparability
of any two cardinals is also an easy deduction from Zorn’s Lemma. Unfortunately it would
take some time to develop the ideas and definitions needed to state it, so we do not say more
about it here. Again, Halmos’s book contains a good discussion.

There is a remarkable amount of information about the Axiom of Choice on the Internet.
A Google search returns more than 1.5 million results. Some of it is very good, in particular
the entries in Wikipedia and in Mathworld, and worth looking at to learn about the current
status of the axiom. One interesting development is that although very few mathematicians
oppose its unrestricted use, there is an increasing group of computer scientists who reject it.

The Continuum Hypothesis is the assertion that the answer to Question 2 is No, that
there is no cardinal intermediate between |N| and |R|. Another way of stating it is to say
that if X is an infinite subset of R then either |X| = ℵ0 or |X| = |R|. For many years after
it was proposed by Cantor in 1877, its truth was was an open question. It was one of the list
of 23 important unsolved problems listed by David Hilbert at the International Congress of
Mathematicians in 1900. In 1940 Kurt Gödel showed that no contradiction would arise if the
Continuum Hypothesis were added to the ZF axioms for set theory, together with the Axiom
of Choice. The set theory based on the Zermelo Fraenkel axioms together with the Axiom
of Choice is known as ZFC set theory. Gödel’s result here is summarised by saying that the
Continuum Hypothesis is consistent with ZFC set theory. It is far short of the statement
that the Continuum Hypothesis follows from ZFC, however. Indeed, in 1963 Cohen showed
that no contradiction would arise either, if the negation of the Continuum Hypothesis were
assumed. So both its truth and its falsity are consistent with ZFC set theory, and neither
can be proved from ZFC.

32Zorn’s lemma is not needed here to prove the result for finite dimensional vector spaces
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