MA106 - Linear Algebra

Assignment 9

March 2011
Answer the questions on your own paper. Write your own name in the top lefthand corner, and your supervisor's name in the top right-hand corner. Solutions to Problems 1, 2, $\mathbf{3}$ and 5 only must be handed in by $\mathbf{2 . 0 0} \mathrm{pm}$ on THURSDAY 15 MARCH (Thursday of the tenth week of term), or they will not be marked.

1. Let $\mathbb{R}[x]_{\leq 2}$ be the vector space of polynomials of degree at most 2 over \mathbb{R}. Let $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ and $\mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}, \mathbf{e}_{3}^{\prime}$ be the bases $1, x, x^{2}$ and $1,(1-x),(1+x)^{2}$ of $\mathbb{R}[x]_{\leq 2}$.
(i) Write down the basis change matrices from basis \mathbf{e}_{i}^{\prime} to basis \mathbf{e}_{i} and from basis \mathbf{e}_{i} to basis \mathbf{e}_{i}^{\prime}.
[2 marks]
(Note: Use the definition in the lecture notes, which says that the basis change matrix from basis \mathbf{e}_{i} to basis \mathbf{e}_{i}^{\prime} has columns that represent \mathbf{e}_{i} in terms of the \mathbf{e}_{i}^{\prime}.)
(ii) Use (i) to write the polynomial $3-4 x-2 x^{2}$ as a linear combination of $\mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}, \mathbf{e}_{3}^{\prime}$, and then check your answer by direct calculation.
[2 marks]
2. Determine whether the following pairs of matrices are equivalent. [2 marks each]
(i) $\left(\begin{array}{ccc}1 & 3 & -2 \\ -1 & 1 & -2 \\ 0 & -1 & 1\end{array}\right)$ and $\left(\begin{array}{ccc}0 & 1 & -2 \\ -2 & -1 & 0 \\ 1 & 0 & -1\end{array}\right)$.
(ii) $\left(\begin{array}{cccc}1 & -1 & -2 & 2 \\ -2 & -1 & 1 & -3 \\ -1 & -5 & -4 & 0\end{array}\right)$ and $\left(\begin{array}{cccc}0 & 1 & 2 & -1 \\ 1 & 0 & -1 & -2 \\ -1 & 1 & 3 & 1\end{array}\right)$.
3. Express the matrix $\left(\begin{array}{cc}2 & 3 \\ -4 & 5\end{array}\right)$ as a product of elementary matrices. [5 marks]
4. Find the eigenvalues of each of the following matrices A over the complex numbers \mathbb{C}. For each eigenvalue find one corresponding eigenvector, and then write down a matrix P such that $P^{-1} A P$ is diagonal.
(i) $\left(\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right)$,
(ii) $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$,
(iii) $\left(\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right)$.
5. Find the eigenvalues of the following pairs of matrices, and use them to decide which of the pairs are similar.
(i) $\left(\begin{array}{ll}3 & 2 \\ 1 & 7\end{array}\right)$ and $\left(\begin{array}{cc}9 & 10 \\ -1 & 1\end{array}\right)$;
[2 marks]
(ii) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 4 & -3 & -2 \\ -4 & 1 & 0\end{array}\right)$ and $\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 2 & 0 \\ 4 & 10 & -1\end{array}\right)$;
[2 marks]
(iii) $\left(\begin{array}{ccc}-2 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -1\end{array}\right)$ and $\left(\begin{array}{ccc}-2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & -1 & -1\end{array}\right)$.
6. Show that, if λ is an eigenvalue of the matrix A, then λ^{2} is an eigenvalue of A^{2}. Is the converse true? (Give proof or counterexample.)
7. Let $T: V \rightarrow V$ be a linear map satisfying $T^{2}=T$.
(i) Show that $\operatorname{Im}(T)$ and $\operatorname{Ker}(T)$ are complementary subspaces of V. (See Section 4 of the course for the definition of complementary subspaces.)
[Hint: Write each $\mathbf{v} \in V$ as $\mathbf{v}=T(\mathbf{v})+(\mathbf{v}-T(\mathbf{v}))$.]
(ii) Show that a basis of $\operatorname{Im}(T)$ and a basis of $\operatorname{Ker}(T)$ together form a basis of V.
(iii) Deduce that T can be represented by the matrix

$$
\left(\begin{array}{cc}
I_{r} & \mathbf{0}_{r, n-r} \\
\mathbf{0}_{n-r, r} & \mathbf{0}_{n-r, n-r}
\end{array}\right)
$$

8. (past exam. question)
(i) State without proof two conditions, each of which implies that an $n \times n$ matrix is similar to a diagonal matrix.
(ii) Find the eigenvalues of the matrix $\left(\begin{array}{ccc}3 & 2 & 1 \\ -1 & 3 & 2 \\ 1 & -4 & -3\end{array}\right)$.
(iii) For each eigenvalue find the set of all possible eigenvectors.
(iv) Determine whether this matrix is similar to a diagonal matrix, giving reasons for your conclusion.
