Answer the questions on your own paper. Write your own name in the top lefthand corner, and your supervisor's name in the top right-hand corner. Solutions to Problems 2, 4 and 5 only must be handed in by $\mathbf{2 . 0 0} \mathrm{pm}$ on THURSDAY 8 MARCH (Thursday of the ninth week of term), or they will not be marked.

1. An $n \times n$ matrix B is called symmetric if $B=B^{T}$. For any $n \times n$ matrix A, show that both $A A^{T}$ and $A+A^{T}$ are symmetric matrices. (Hint: Prove that $(C D)^{T}=D^{T} C^{T}$ if C and D are $n \times n$ matrices.)
2. Let A be an $n \times n$ matrix such that $A^{k}=O_{n, n}$ (the $n \times n$ zero matrix) for some natural integer k. Show that $I_{n}+A$ is invertible.
[7 marks]
3. Solve the following sets of linear equations using Cramer's rule.
(i) $x-y=-6, \quad 2 x+y=9$.
(ii) $x-y=1, \quad y+2 z=0, \quad 3 x-y=-1$.
4. Let K be a subfield of a larger field L. (For example, K, L could be \mathbb{Q}, \mathbb{R} or \mathbb{R}, \mathbb{C}.)
(i) Let A be an $m \times n$ matrix with entries in K. Then A can be regarded either as a matrix in $K^{m, n}$ or as a matrix in $L^{m, n}$. Show that the rank of A is the same in either case. (Hint: Use Corollary 8.7 of lecture notes.)
[4 marks]
(ii) Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ be vectors in K^{n}. Show that $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ are linearly independent in K^{n} if and only if they are linearly independent in L^{n}. (Hint: Use (i).)
[2 marks]
5. Let A be an $m \times n$ matrix. If $k \leq m$ and $l \leq n$, then a $k \times l$ matrix B is said to be a submatrix of A, if B can be obtained from A by deleting some set of $m-k$ rows and $n-l$ columns of A.
(For example, if $A=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12\end{array}\right)$, then (6), $\binom{3}{11},\left(\begin{array}{ccc}1 & 2 & 4 \\ 5 & 6 & 8 \\ 9 & 10 & 12\end{array}\right)$ are all examples of submatrices of A.)
Define the determinantal rank of A to be the largest k for which A has a $k \times k$ submatrix with nonzero determinant. Show that this is equal to the usual row or column rank of A.
[7 marks]
6. Show directly (without using row and column operations on matrices), that if $T: U \rightarrow V$ is a linear map, then there exist bases of U and V such that the matrix of T looks like

$$
\left(\begin{array}{cc}
I_{r} & \mathbf{0}_{r, n-r} \\
\mathbf{0}_{m-r, r} & \mathbf{0}_{m-r, n-r}
\end{array}\right) .
$$

(Hint: Choose a basis of the kernel of T, extend it to a basis of U, reorder the resulting basis of U, and then use the images of this basis under T as part of a basis of V.)

