MA106 – Linear Algebra

Assignment 8

March 2011

Answer the questions on your own paper. Write your own name in the top lefthand corner, and your supervisor's name in the top right-hand corner. Solutions to Problems 2, 4 and 5 only must be handed in by 2.00 pm on THURSDAY 8 MARCH (Thursday of the ninth week of term), or they will not be marked.

1. An $n \times n$ matrix B is called symmetric if $B = B^T$. For any $n \times n$ matrix A, show that both AA^T and $A + A^T$ are symmetric matrices. (Hint: Prove that $(CD)^T = D^T C^T$ if C and D are $n \times n$ matrices.)

2. Let A be an $n \times n$ matrix such that $A^k = O_{n,n}$ (the $n \times n$ zero matrix) for some natural integer k. Show that $I_n + A$ is invertible. [7 marks]

3. Solve the following sets of linear equations using Cramer's rule.

(i)
$$x - y = -6$$
, $2x + y = 9$.

(ii) x - y = 1, y + 2z = 0, 3x - y = -1.

4. Let K be a subfield of a larger field L. (For example, K, L could be \mathbb{Q}, \mathbb{R} or \mathbb{R}, \mathbb{C} .)

(i) Let A be an $m \times n$ matrix with entries in K. Then A can be regarded either as a matrix in $K^{m,n}$ or as a matrix in $L^{m,n}$. Show that the rank of A is the same in either case. (*Hint*: Use Corollary 8.7 of lecture notes.) [4 marks]

(ii) Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ be vectors in K^n . Show that $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ are linearly independent in K^n if and only if they are linearly independent in L^n . (*Hint*: Use (i).) [2 marks]

[5.] Let A be an $m \times n$ matrix. If $k \leq m$ and $l \leq n$, then a $k \times l$ matrix B is said to be a *submatrix* of A, if B can be obtained from A by deleting some set of m - k rows and n - l columns of A.

(For example, if
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}$$
, then (6), $\begin{pmatrix} 3 \\ 11 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 4 \\ 5 & 6 & 8 \\ 9 & 10 & 12 \end{pmatrix}$ are all examples of submatrices of A .)

examples of submatrices of A.)

Define the *determinantal rank* of A to be the largest k for which A has a $k \times k$ submatrix with nonzero determinant. Show that this is equal to the usual row or column rank of A. [7 marks]

6. Show directly (without using row and column operations on matrices), that if $T: U \to V$ is a linear map, then there exist bases of U and V such that the matrix of T looks like

$$egin{pmatrix} I_r & \mathbf{0}_{r,n-r} \ \mathbf{0}_{m-r,r} & \mathbf{0}_{m-r,n-r} \end{pmatrix}.$$

(*Hint*: Choose a basis of the kernel of T, extend it to a basis of U, reorder the resulting basis of U, and then use the images of this basis under T as part of a basis of V.)