MA106 – Linear Algebra

Assignment 7

February 2011

Answer the questions on your own paper. Write your own name in the top lefthand corner, and your supervisor's name in the top right-hand corner. Solutions to Problems 1, 2, 4 and 5 only must be handed in by 2.00 pm on THURSDAY 1 MARCH (Thursday of the eighth week of term), or they will not be marked.

1. Write the following permutations of the set $\{1, 2, 3, 4, 5, 6, 7, 8\}$ in cyclic form, and then express them as composites of transpositions, and hence decide whether they are even or odd permutations. [1 mark each; marks given for correct answers only]

	1	2	3	4	5	6	7	8		1	2	3	4	5	6	7	8		1	2	3	4	5	6	7	8
(i)	\downarrow ;	(ii)	\downarrow ;	(iii)	\downarrow .																					
	8	4	1	7	5	3	2	6		1	3	5	7	2	4	6	8		4	6	5	1	8	7	2	3

2. Evaluate the following determinants. You may want to use elementary row and/or column operations to reduce the matrix to a simpler form first.

[2 marks for (i), 3 marks for (ii).]

[4 marks]

	1	4	1	I		1	2	0	6	
(i)		4 1	-1 1	;	(;;)	2	5	3	0	
	$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	1	1		(11)	1	6	0	$-2 ^{2}$	ŀ
		-4	0			0	-2	5		

3. Prove directly, that if A and B are 2×2 matrices, then det(AB) = det(A) det(B).

4. Let K be the finite field with only the two elements 0 and 1, where 1 + 1 = 0.

(i) How many 2×2 matrices with entries in K are there? [2 marks]

(ii) How many of these are non-singular?

5. Let $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{R}$, where $n \geq 2$. Show that

$$\begin{vmatrix} 1 & \alpha_1 & \alpha_1^2 & \cdots & \alpha_1^{n-1} \\ 1 & \alpha_2 & \alpha_2^2 & \cdots & \alpha_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha_n & \alpha_n^2 & \cdots & \alpha_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (\alpha_j - \alpha_i).$$

[Suggestion: Do it for n = 2 and 3 and then try to use induction on n.] [6 marks]

6. (Continuation of Question 4.)

(i) Find a formula for the number of nonsingular $n \times n$ matrices with entries in the field K of order 2.

[*Hint*: Let the rows of the matrix A be $\mathbf{r}_1, \ldots, \mathbf{r}_n$. Then A is nonsingular if and only if the \mathbf{r}_i are linearly independent, which is the case if and only if, for each i, \mathbf{r}_i is not in the subspace of the rowspace spanned by $\mathbf{r}_1, \ldots, \mathbf{r}_{i-1}$. Use this to count the number of possibilities for \mathbf{r}_i , once $\mathbf{r}_1, \ldots, \mathbf{r}_{i-1}$ have been chosen.]

(ii) Using a calculator, show that, if an $n \times n$ matrix over K is chosen at random then, as $n \to \infty$, the probability that the matrix is nonsingular approaches the limit (approximately) 0.288788....