MA106 - Linear Algebra

Assignment 5

February 2011
Answer the questions on your own paper. Write your own name in the top lefthand corner, and your supervisor's name in the top right-hand corner. Solutions to Problems 1, $\mathbf{3}$ and $\mathbf{4}$ only must be handed in by $\mathbf{2 . 0 0} \mathrm{pm}$ on THURSDAY 16 FEBRUARY (Thursday of the sixth week of term), or they will not be marked.

1. Let U and V be vector spaces of dimensions n and m over K, and let $\operatorname{Hom}_{K}(U, V)$ be the vector space over K of all linear maps from U to V. Find the dimension and describe a basis of $\operatorname{Hom}_{K}(U, V)$. (You may find it helpful to use the correspondence with $m \times n$ matrices over K.)
[4 marks]
2. Reduce the following matrices to row-reduced form by using elementary row operations, and hence find their ranks.
(i) $\left(\begin{array}{ccc}1 & 2 & -6 \\ -3 & -6 & 18 \\ 2 & 4 & -12\end{array}\right)$;
(ii) $\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \\ -1 & 0 & 1 & 2\end{array}\right)$;
(iii) $\left(\begin{array}{ccccc}0 & 1 & 0 & -2 & 1 \\ 1 & 0 & 1 & 0 & -1 \\ -1 & 1 & -1 & 2 & 0 \\ 2 & -1 & 2 & -2 & 1\end{array}\right)$.
3. Write down the augmented matrices for the following systems of simultaneous linear equations (with coefficients in \mathbb{R}), reduce the matrices to row-reduced form, and then write down the set of all solutions of the equations in the form $\underline{\mathbf{x}}+\operatorname{Nullspace}(A)$ where A is the matrix for the original system; for example, one correct solution to (iii) is

$$
(-1,1,0)+\{\alpha(2,-1,0)+\beta(-3,0,1) \mid \alpha, \beta \in \mathbb{R}\}
$$

but you should choose a different particular solution \underline{x} in your solution to (iii)!
[2 marks each]
(i) $5 x-y=4, \quad x+y=1,3 x-3 y=2$;
(ii) $-y+2 z=0, x-y-z=-2,-x-y+5 z=2,-2 x-y+8 z=4$;
(iii) $x+2 y+3 z=1, \quad 2 x+4 y+6 z=2$;
(iv) $x-y+z=0, x+y-z=-1, x+5 y-5 z=3$.
4. Let $T: V \rightarrow V$ be a linear map, where V is a finite-dimensional vector space. Then T^{2} is defined to be the composite $T T$ of T with itself, and similarly $T^{i+1}=T T^{i}$ for all $i \geq 1$. Suppose that $\operatorname{Rank}(T)=\operatorname{Rank}\left(T^{2}\right)$.
(i) Prove that $\operatorname{Im}(T)=\operatorname{Im}\left(T^{2}\right)$.
[2 marks]
(ii) For $i \geq 1$, let $U_{i}: \operatorname{Im}(T) \rightarrow \operatorname{Im}(T)$ be defined as the restriction of T^{i} to the subspace $\operatorname{Im}(T)$ of V. Show that U_{i} is nonsingular for all i.
[3 marks]
(iii) Deduce that $\operatorname{Rank}(T)=\operatorname{Rank}\left(T^{i}\right)$ for all $i \geq 1$.
[3 marks]
5. Show that there is only one possible row reduced form that can be obtained from a given matrix A by performing elementary row operations.

