Answer the questions on your own paper. Write your own name in the top lefthand corner, and your supervisor's name in the top right-hand corner. Solutions to Problems 2, 4, 5 and $\mathbf{6}$ only must be handed in by $\mathbf{2 . 0 0} \mathrm{pm}$ on THURSDAY 9 FEBRUARY (Thursday of the fifth week of term), or they will not be marked.

1. For the following pairs of matrices A, B, determine whether any of $A+B, A B$ and $B A$ are defined and calculate those that are defined.
2. $A=\left(\begin{array}{lll}-1 & 2 & 3\end{array}\right), \quad B=\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)$;
3. $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0\end{array}\right), \quad B=\left(\begin{array}{cc}3 & -3 \\ 1 & 2\end{array}\right)$;
4. $A=\left(\begin{array}{ll}2 & 0 \\ 2 & 3\end{array}\right), \quad B=\left(\begin{array}{ll}-1 & 0 \\ -3 & 2\end{array}\right)$;
5. $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), \quad B=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$.
6. Are the following identities satisfied by all $n \times n$ matrices A and B, where $I=I_{n}$ is the $n \times n$ identity matrix? Give either a proof or counterexample. [2 marks each]
(i) $(A-B)(A+B)=A^{2}-B^{2}$;
(ii) $(A-I)\left(A^{2}+A+I\right)=A^{3}-I$.
7. Find the matrices representing the following linear maps $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$, with respect to the standard bases of $\mathbb{R}^{3}, \mathbb{R}^{4}$:
(i) $T(\alpha, \beta, \gamma)=(\alpha+\beta+\gamma, 2 \beta-\gamma, \alpha-\beta, \alpha-\beta)$;
(ii) $T(\alpha, \beta, \gamma)=(0, \alpha+\gamma, \gamma, 2 \alpha-3 \gamma)$.
8. Find the matrices representing the following geometrical transformations $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, with respect to the standard basis.
(i) T rotates each point through an angle θ about the x-axis in the direction that moves the point $(0,0,1)$ towards the point $(0,-1,0)$.
(ii) T reflects each point in the (x, z)-plane.
[1 marks]
9. (Effect of using a different basis.) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear map defined by $T(\alpha, \beta)=(\alpha+\beta, \alpha-\beta)$. Write down the matrix of T, firstly using the standard basis of \mathbb{R}^{2} and secondly using the basis $(-1,1),(0,-2)$ of \mathbb{R}^{2}.

$$
[1+2 \text { marks }]
$$

6. Let $S: U \rightarrow V$ and $T: V \rightarrow W$ be linear maps, where U, V and W are vector spaces over the same field K. Prove the following:
(i) $\operatorname{Rank}(T S) \leq \operatorname{Rank}(T)$;
[2 marks]
(ii) $\operatorname{Rank}(T S) \leq \operatorname{Rank}(S)$;
(iii) If $U=V$ and S is nonsingular then $\operatorname{Rank}(T S)=\operatorname{Rank}(T)$;
(iv) If $V=W$ and T is nonsingular then $\operatorname{Rank}(T S)=\operatorname{Rank}(S)$.
ent
[This question is quite difficult, but important. (i) and (iii) are easier than (ii) and (iv). As a hint for (ii), note that if $\operatorname{Rank}(S)=r$, then $\operatorname{Im}(S)$ is spanned by r vectors.]
7. Let $T: V \rightarrow W$ be a linear map, where $\operatorname{dim}(V)$ and $\operatorname{dim}(W)$ may be assumed to be finite. Prove:
(i) T is injective if and only if there is a linear map $S: W \rightarrow V$ with $S T=I_{V}$;
(ii) T is surjective if and only if there is a linear map $S: W \rightarrow V$ with $T S=I_{W}$.
