MA106 – Linear Algebra

Assignment 4

February 2011

Answer the questions on your own paper. Write your own name in the top lefthand corner, and your supervisor's name in the top right-hand corner. Solutions to Problems 2, 4, 5 and 6 only must be handed in by 2.00 pm on THURSDAY 9 FEBRUARY (Thursday of the fifth week of term), or they will not be marked.

1. For the following pairs of matrices A, B, determine whether any of A + B, AB and BA are defined and calculate those that are defined.

1.
$$A = \begin{pmatrix} -1 & 2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix};$$

2. $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & -3 \\ 1 & 2 \end{pmatrix};$
3. $A = \begin{pmatrix} 2 & 0 \\ 2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 0 \\ -3 & 2 \end{pmatrix};$
4. $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$

[2.] Are the following identities satisfied by all $n \times n$ matrices A and B, where $I = I_n$ is the $n \times n$ identity matrix? Give either a proof or counterexample. [2 marks each]

(i)
$$(A - B)(A + B) = A^2 - B^2;$$

(ii) $(A - I)(A^2 + A + I) = A^3 - I.$

3. Find the matrices representing the following linear maps $T : \mathbb{R}^3 \to \mathbb{R}^4$, with respect to the standard bases of \mathbb{R}^3 , \mathbb{R}^4 :

(i)
$$T(\alpha, \beta, \gamma) = (\alpha + \beta + \gamma, 2\beta - \gamma, \alpha - \beta, \alpha - \beta);$$

(ii) $T(\alpha, \beta, \gamma) = (0, \alpha + \gamma, \gamma, 2\alpha - 3\gamma).$

4. Find the matrices representing the following geometrical transformations $T : \mathbb{R}^3 \to \mathbb{R}^3$, with respect to the standard basis.

(i) T rotates each point through an angle θ about the x-axis in the direction that moves the point (0, 0, 1) towards the point (0, -1, 0). [2 marks]

(ii) T reflects each point in the (x, z)-plane.

5. (Effect of using a different basis.) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map defined by $T(\alpha, \beta) = (\alpha + \beta, \alpha - \beta)$. Write down the matrix of T, firstly using the standard basis of \mathbb{R}^2 and secondly using the basis (-1, 1), (0, -2) of \mathbb{R}^2 .

[1+2 marks]

[1 marks]

6. Let $S: U \to V$ and $T: V \to W$ be linear maps, where U, V and W are vector spaces over the same field K. Prove the following:

(i) $\operatorname{Rank}(TS) \leq \operatorname{Rank}(T);$ [2 marks] (ii) $\operatorname{Rank}(TS) \leq \operatorname{Rank}(S);$ [3 marks]

(iii) If U = V and S is nonsingular then $\operatorname{Rank}(TS) = \operatorname{Rank}(T)$; [2 marks]

(iv) If V = W and T is nonsingular then $\operatorname{Rank}(TS) = \operatorname{Rank}(S)$. [3 marks]

[This question is quite difficult, but important. (i) and (iii) are easier than (ii) and (iv). As a hint for (ii), note that if $\operatorname{Rank}(S) = r$, then $\operatorname{Im}(S)$ is spanned by r vectors.]

7. Let $T: V \to W$ be a linear map, where $\dim(V)$ and $\dim(W)$ may be assumed to be finite. Prove:

- (i) T is injective if and only if there is a linear map $S: W \to V$ with $ST = I_V$;
- (ii) T is surjective if and only if there is a linear map $S: W \to V$ with $TS = I_W$.