Answer the questions on your own paper. Write your own name in the top lefthand corner, and your supervisor's name in the top right-hand corner. Solutions to Problems 1, 2, $\mathbf{3}$ and 5 only must be handed in by $\mathbf{2 . 0 0} \mathbf{~ p m}$ on THURSDAY 2 FEBRUARY (Thursday of the fourth week of term), or they will not be marked.

1. Which of the following subsets of \mathbb{R}^{3} are subspaces of \mathbb{R}^{3} ? Just answer yes or no in each case.
[1 mark for each part]
(i) $\left\{(\alpha, \beta, \gamma) \mid \beta^{3}=\alpha^{3}\right\}$;
(ii) $\left\{(\alpha, \beta, \gamma) \mid \gamma^{2} \geq 0\right\}$;
(iii) $\{(\alpha, \beta, \gamma) \mid \alpha+\beta=\gamma\}$;
(iv) $\{(\alpha, \beta, \gamma) \mid \alpha+\beta=7 \gamma+1\}$.
2. Find the dimensions of the subspaces of K^{n} that are spanned by the following sequences of vectors, and in each case find a subsequence that is a basis of this subspace.
[2 marks for each part]
(i) $(1,1,0,0),(0,1,0,1),(1,0,0,-1),(0,0,1,0),(1,0,1,-1),(0,2,1,2)$, where $K=$ \mathbb{R};
(ii) $(1,1,0,0),(0,1,0,1),(1,0,0,1),(0,1,1,0),(1,0,1,0),(1,1,1,1)$, where K is the finite field $\{0,1\}$ with 2 elements;
(iii) $(-1,3,3,-1),(3,-9,-9,3),(1,-3,-3,1),(-2,-3,-3,-2),(2,-3,-3,2)$, $K=\mathbb{R}$;

3 . (i) Let W be a subspace of a vector space V. Suppose that $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$ are linearly independent vectors in W which do not span W. Show that there exists $\mathbf{w}_{m+1} \in W$ such that $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m+1}$ are linearly independent. [2 marks] (ii) Deduce that if W is a subspace of V and V has finite dimension, then W has finite dimension, and $\operatorname{dim}(W) \leq \operatorname{dim}(V)$.
[2 marks]
(iii) Let W_{1} and W_{2} be subspaces of a finite-dimensional vector space V with $W_{1} \subseteq W_{2}$, and suppose that $\operatorname{dim}\left(W_{1}\right)=\operatorname{dim}\left(W_{2}\right)$. Prove that $W_{1}=W_{2}$. [3 marks]
4. Let W be a subspace of a vector space V of finite dimension. Show that W has a complementary subspace in V (i.e. there is a subspace X of V such that $V=W+X$ and $W \cap X=\{\mathbf{0}\})$.
5 . Find the ranks and nullities of the following linear maps $T: U \rightarrow V$, and find bases of the kernel and image of T in each case.
(i) $U=\mathbb{R}^{4}, V=\mathbb{R}^{4}, T(\alpha, \beta, \gamma, \delta)=(\alpha+\gamma, \gamma+\delta, \alpha+\beta, \beta+\delta)$; $\quad[2$ marks]
(ii) $U=\mathbb{R}[x]_{\leq 5}, V=\mathbb{R}[x]_{\leq 5}$ (polynomials of degree at most 5 over \mathbb{R}), $T(f)=f^{\prime \prime \prime \prime}$ (fourth derivative of $f \in U$).
[1 mark]
6. Describe the following linear maps $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ geometrically. In all cases (x, y) is a vector in \mathbb{R}^{2}, and we write $T(x, y)$ rather than $T((x, y))$.
(i) $T(x, y)=(-2 x,-2 y)$;
(ii) $T(x, y)=(0, y)$;
(iii) $T(x, y)=(y, x)$;
(iv) $T(x, y)=(x / \sqrt{2}+y / \sqrt{2},-x / \sqrt{2}+y / \sqrt{2})$.
7. Suppose that the linear map $T: U \rightarrow V$ is a bijection. So T has an inverse map $T^{-1}: V \rightarrow U$. Prove that T^{-1} is a linear map.

