MA106 – Linear Algebra

Assignment 3

January 2011

Answer the questions on your own paper. Write your own name in the top lefthand corner, and your supervisor's name in the top right-hand corner. Solutions to Problems 1, 2, 3 and 5 only must be handed in by 2.00 pm on THURSDAY 2 FEBRUARY (Thursday of the fourth week of term), or they will not be marked.

1. Which of the following subsets of \mathbb{R}^3 are subspaces of \mathbb{R}^3 ? Just answer yes or no in each case. [1 mark for each part]

(i) $\{(\alpha, \beta, \gamma) \mid \beta^3 = \alpha^3\};$ (ii) $\{(\alpha, \beta, \gamma) \mid \gamma^2 \ge 0\};$

(iii) $\{(\alpha, \beta, \gamma) \mid \alpha + \beta = \gamma\};$ (iv) $\{(\alpha, \beta, \gamma) \mid \alpha + \beta = 7\gamma + 1\}.$

2. Find the dimensions of the subspaces of K^n that are spanned by the following sequences of vectors, and in each case find a subsequence that is a basis of this subspace. [2 marks for each part]

(i) (1, 1, 0, 0), (0, 1, 0, 1), (1, 0, 0, -1), (0, 0, 1, 0), (1, 0, 1, -1), (0, 2, 1, 2), where $K = \mathbb{R}$;

(ii) (1, 1, 0, 0), (0, 1, 0, 1), (1, 0, 0, 1), (0, 1, 1, 0), (1, 0, 1, 0), (1, 1, 1, 1), where K is the finite field $\{0, 1\}$ with 2 elements;

(iii)
$$(-1, 3, 3, -1)$$
, $(3, -9, -9, 3)$, $(1, -3, -3, 1)$, $(-2, -3, -3, -2)$, $(2, -3, -3, 2)$, $K = \mathbb{R}$;

3. (i) Let W be a subspace of a vector space V. Suppose that $\mathbf{w}_1, \ldots, \mathbf{w}_m$ are linearly independent vectors in W which do not span W. Show that there exists $\mathbf{w}_{m+1} \in W$ such that $\mathbf{w}_1, \ldots, \mathbf{w}_{m+1}$ are linearly independent. [2 marks] (ii) Deduce that if W is a subspace of V and V has finite dimension, then W has finite dimension, and $\dim(W) \leq \dim(V)$. [2 marks] (iii) Let W_1 and W_2 be subspaces of a finite-dimensional vector space V with $W_1 \subseteq W_2$, and suppose that $\dim(W_1) = \dim(W_2)$. Prove that $W_1 = W_2$. [3 marks]

4. Let *W* be a subspace of a vector space *V* of finite dimension. Show that *W* has a complementary subspace in *V* (i.e. there is a subspace *X* of *V* such that V = W + X and $W \cap X = \{\mathbf{0}\}$).

5. Find the ranks and nullities of the following linear maps $T: U \to V$, and find bases of the kernel and image of T in each case.

(i) $U = \mathbb{R}^4$, $V = \mathbb{R}^4$, $T(\alpha, \beta, \gamma, \delta) = (\alpha + \gamma, \gamma + \delta, \alpha + \beta, \beta + \delta)$; [2 marks] (ii) $U = \mathbb{R}[x]_{\leq 5}$, $V = \mathbb{R}[x]_{\leq 5}$ (polynomials of degree at most 5 over \mathbb{R}), T(f) = f'''(fourth derivative of $f \in U$). [1 mark]

6. Describe the following linear maps $T : \mathbb{R}^2 \to \mathbb{R}^2$ geometrically. In all cases (x, y) is a vector in \mathbb{R}^2 , and we write T(x, y) rather than T((x, y)).

(i) T(x,y) = (-2x, -2y); (ii) T(x,y) = (0,y);(iii) T(x,y) = (y,x); (iv) $T(x,y) = (x/\sqrt{2} + y/\sqrt{2}, -x/\sqrt{2} + y/\sqrt{2}).$

7. Suppose that the linear map $T: U \to V$ is a bijection. So T has an inverse map $T^{-1}: V \to U$. Prove that T^{-1} is a linear map.