MA106 – Linear Algebra

Assignment 2

January 2011

[3 marks]

Answer the questions on your own paper. Write your own name in the top lefthand corner, and your supervisor's name in the top right-hand corner. Solutions to Problems 1, 3, 4 and 6 only must be handed in by 2.00 pm on THURSDAY 26 JANUARY (Thursday of the third week of term), or they will not be marked.

1. Determine whether the following sequences of vectors are linearly dependent or linearly independent. The field of scalars is \mathbb{R} in each case, and V is \mathbb{R}^n for the appropriate value of n.

(i)
$$(0, 0, 1)$$
. [1 mark]
(ii) $(1, -1, 0)$, $(1, 0, -1)$, $(0, -1, 1)$. [2 marks]

(iii)
$$(0, 1, -2), (1, 2, 3), (3, 0, -8).$$
 [2 marks]

(iv) (1,0,1,-1), (2,-2,1,0), (0,-2,1,2), (1,-2,2,1). [2 marks]

2. Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ be vectors in a vector space, and let $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_m$ be linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$. Suppose that \mathbf{v} is a linear combination of $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_m$. Prove that \mathbf{v} is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$.

3. Determine whether the following sequences of vectors span \mathbb{R}^n . (*Hint*: One approach is to determine whether the standard basis vectors $(1, 0, \ldots, 0), (0, 1, 0, \ldots, 0)$, etc. are linear combinations of the given vectors. If so, then use Qn. 2.)

(i)
$$(2, 1), (-6, -3);$$
 [2 marks]
(ii) $(2, 3, -2), (1, 2, -2), (1, 3, -4), (2, 1, 0).$ [3 marks]
4. Find a basis of \mathbb{R}^5 that contains the vectors $(1, -1, 1, -1, 0), (-1, -1, 1, -1, 0), (-1, -1, 1, -1, 0)$

5. The following sequences of vectors in \mathbb{R}^4 are *not* bases of \mathbb{R}^4 . In each case give a reason why it is not a basis in one short sentence.

(i) (1, 0, 1, 0), (4, 3, 2, 1), (0, 0, 0, 0), $(-2, -1.5, -11, 10^{100})$; (ii) $(1, -1, \sqrt{3}, 5)$, (5, 0, 2, 3), (0, 3, -2, 0), (1, 0, 1, 4), $(-4, 0, 0.5, \pi)$;

(iii) (6, -3, -2, 5), (1, 2, 1, 0), (-1, -2, -1, 0), (6, 3, 2, -5);

(iv) (1,0,1,2), (3,0,-1,-5), (-4,0,-2,6), (1,0,-5,7);

(v) $(2, 1, -1, 2^{0.01}), (0, 0, 0, -2.5), (5, 5, 5, 5).$

6. Find the dimension and a basis of the following vector spaces V over the givenfield K.[1 mark for each part]

(i) V is the set of all vectors (α, β, γ) in \mathbb{R}^3 with $\alpha + 2\beta - 2\gamma = 0$; $K = \mathbb{R}$.

(ii) V is the set of all vectors (α, β, γ) in \mathbb{R}^3 with $\alpha - \beta = -\gamma$ and $\alpha + 2\beta = \gamma$; $K = \mathbb{R}$.

(iii) $V = \mathbb{C}^2$; $K = \mathbb{R}$.

(iv) V is the set of all polynomials over \mathbb{R} of degree at most n, in which the sum of the coefficients is 0; $K = \mathbb{R}$.

(v) $K = \mathbb{R}$ and V is the set of functions from \mathbb{R} to \mathbb{R} which are solutions of the differential equation $\frac{d^2f}{dr^2} - 5f = 0$.