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Chapter 1

Introduction

1.1 The questions

It was an unsolved problem for several years whether Hausdorff measures of different
dimensions can be Borel isomorphic. This problem was attributed to B. Weiss and
was popularized by D. Preiss. Let B denote the Borel o-algebra of R, and let H¢

denote the d-dimensional Hausdorff measure; then the exact question reads as follows.

Question 1. Let 0 < s,t <1 and s # t.
(i) Can the measure spaces (R, B, H*) and (R, B, H") be isomorphic?

(ii) Does there exist a Borel bijection f: R — R such that for every Borel set B,

0 < H(B) < oo+ 0<H(f(B)) < oc?

The two parts are not equivalent but it is easy to see that a negative answer to
(ii) implies a negative answer to (i).

It is important to make the distinction that we are looking for Borel isomorphisms
only. M. Elekes [4] proved that if we assume the continuum hypothesis then the
measure spaces (R, Mys, H®) and (R, My, H') are isomorphic whenever st €
(0,1), where My denotes the o-algebra of the sets which are measurable with

respect to HY.

Remark 1.1.1. In fact, the bijection f : R — R that M. Elekes constructed (as-

suming the continuum hypothesis) satisfies that
e if B C R is Borel and H*(B) < oo, then f(B) is Borel and H*(B) = H'(f(B));
e if f(B) is Borel and H!(f(B)) < oo, then B is Borel and H*(B) = H'(f(B)).

However, this map f is not Borel measurable.
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M. Elekes, aiming to solve the original problem (Question 1), raised the following

question [4].

Question 2. Let 0 < o < 1. Can we find for every Borel (or continuous, or typical
continuous) function f : [0,1] — R a Borel set B C [0,1] of positive Hausdorff

dimension such that f restricted to B is Holder continuous of exponent «a?

How is this question related to the previous one? Suppose that we have an
answer to Question 2 saying that (for some fixed «) for every Borel function f there
exists a Borel set B of dimension [ such that f is Holder-a on B. As it is well-
known, this implies that f(B) has dimension at most 3/c. It is easy to see that this
would answer (both parts of) Question 1 in the negative for those s and ¢ for which
0<s<fB<f/a<t<1holds.

According to a theorem of P. Humke and M. Laczkovich [6], a typical continuous
function f : [0,1] — R is not monotonic on any set of positive Hausdorff dimension.
Since every function of bounded variation is the sum of two monotonic functions,

this theorem motivated M. Elekes to raise an analogue of Question 2.

Question 3. Can we find for every Borel (or continuous, or typical continuous)
function f : [0,1] — R a Borel set B C [0, 1] of positive Hausdorff dimension such
that f restricted to B is of bounded variation? Can we even find such a set of

dimension 1/27

This problem has also been circulated by D. Preiss, and a similar question was
already asked by P. Humke and M. Laczkovich, see also Z. Buczolich [2; 3].

M. Elekes gave partial answers to Question 3 and Question 2 in [4]. He proved
that a typical continuous function f : [0,1] — R is not of bounded variation on
any set of Hausdorff dimension larger than 1/2. Regarding Question 2, he also gave
an upper bound for the possible dimension by showing that for every 0 < o < 1,
a typical continuous function is not Hélder-a on any set of dimension larger than

1—oc.

1.2 Restrictions of functions

We answer Question 2 and Question 3 by proving the following theorems. (In this

chapter all theorems are numbered as they will appear in the following chapters.)

Theorem 2.1.1. Let f : [0,1] — R be Lebesgue measurable. Then there exists
a compact set C C [0,1] of Hausdorff dimension 1/2 such that f|c is of bounded

variation.
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Theorem 2.1.2. Let f:[0,1] — R be Lebesque measurable and let 0 < o < 1. Then
there exists a compact set C C [0,1] of Hausdorff dimension 1 — « such that f|c is

a Holder-a function.

That is, the dimension bounds found by M. Elekes are sharp.

These theorems will be proved in Chapter 2. To prove Theorem 2.1.1, first we will
define discrete Hausdorff pre-measures on Z (the integers). Using this notion we will
be able to formalize and solve a discrete (quantitative) version of the problem. Then
suitable limit theorems will yield Theorem 2.1.1. It is possible to prove Theorem 2.1.2
in exactly the same way. However, we will present a simple proof instead, using a
theorem of P. Mattila about Hausdorff dimensions of plane sections.

We will also mention some generalizations of Theorems 2.1.1 and 2.1.2.

Remark 1.2.1. Theorems 2.1.1 and 2.1.2 belong to the family of restriction the-
orems. The setting of a restriction theorem usually is the following. Given some
function f from some class X, one tries to find a large set A such that f|4 belongs
to some other (nice) class Y. Here largeness usually means that A is infinite, un-
countable, perfect, not porous, or A is of positive measure or of second category. It is
interesting that for the above questions of M. Elekes, the proper notion of largeness is
Hausdorff dimension. We refer to the survey article of J. B. Brown [1] on restriction

theorems and to the references therein.

Remark 1.2.2. Notice that if A C R and f : A — R is a given function, then
there exists a function g : R — R extending f (that is, g|4 = f) such that the total
variation of g and f are equal and that f is Holder-« if and only if ¢ is Holder-a
(0 < a<1). (Given f, one can easily define g on the closure of A, and then the linear
extension works.) This yields that for every function f : [0,1] — R and g € [0, 1]

the following are equivalent:
(i) there exists a set A of dimension at least (3 such that f|4 is of bounded variation;

(ii) there exists a function g : [0,1] — R of bounded variation such that the set
[f = g] (that is, {z : f(x) = g(z)}) has dimension at least 3.

The same equivalence holds for the Holder-a property. Thus Questions 3 and 2 and
Theorems 2.1.1 and 2.1.2 could have been formulated equivalently corresponding to

(ii) as well.
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1.3 Borel maps and Hausdorff dimension

As explained above, Theorem 2.1.2 gives some partial results on the isomorphism
problem of Hausdorff measures (Question 1). For example, applying the theorem for
a = 2/3 implies that the Hausdorff measures of dimension 1/3—¢ and 1/2+¢ cannot
be Borel isomorphic. However, this approach does not seem to answer Question 1 in
its full generality.

In Chapter 3 we will show the following.

Theorem 3.1.2. Let 0 < d <1 and let f : R — R be Borel measurable. Then there
exists a compact set C of Hausdorff dimension d such that f(C) is of Hausdorff

dimension at most d.

Clearly, this theorem immediately implies that the Hausdorff measures of dif-
ferent dimensions cannot be Borel isomorphic; that is, we answer (both parts of)
Question 1 in the negative. The proof of Theorem 3.1.2 is based on two types of
random constructions. One of them can be used to obtain a random Cantor set of
dimension at most d almost surely; and the other to obtain a random compact set
of dimension at least d almost surely.

We will also prove the following generalization of Theorem 3.1.2.

Theorem 3.1.5. Let D C R" be a Borel set and let f : D — R™ be Borel measurable.
Then for every 0 < d < 1 there exists a Borel set A C D such that dim A = d-dim D
and dim f(A) < d-dim f(D).

1.4 Borel maps and Hausdorff measures

After we have shown that Hausdorff measures of different dimensions are not Borel
isomorphic, another question arises. Can it happen that H® and 2-'H* are Borel iso-
morphic? That is, does there exist a Borel bijection f such that 2-H*(B) = H*(f(B))
for every Borel set B? Of course, if we consider R (and R — R Borel bijections), then
the answer is positive: similarities of ratio 2'/* realize the isomorphism. However, if
we consider the unit interval [0, 1] only, then the question is highly non-trivial. We

will answer this question in Chapter 4 by showing the following.

Theorem 4.5.6. Let [ : [0, 1] — [0, 1] be Borel measurable. Then for every0 < s < 1
there exists a compact set C C [0,1] such that H*(C) =1 and H*(f(C)) < 1.

The proof of this theorem is similar to the proof of Theorem 3.1.2. That is, we

will use two types of random constructions. However, to prove that the random
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set produced by one of the constructions is sufficiently large, requires much more
effort than in the analogous proof in Chapter 3. This is the reason why we discuss
Theorem 3.1.2 separately, despite the fact that Theorem 4.5.6 is a stronger statement.

In Chapter 4 we will also prove several related theorems. Among others, we
will show that if f: R™ — R™ is a Borel bijection which preserves the s-dimensional
Hausdorff measure (for some 0 < s < n), then it also preserves the Lebesgue measure
(Theorem 4.5.21).

1.5 Notation and definitions

We say that the real function f is of bounded variation on the set A if f restricted
to A is a function of bounded variation. We say that the real function f is Holder
continuous of exponent « (or briefly Holder-) on the set A if f|4 is Holder-«; that
is, there exists a real number B > 0 such that for every z,y € A, |f(z) — f(y)| <
Blz —y|*.

Given ) # A C R and f : A — R, we denote the total variation of f by Var f;
that is,

n—1

Varf:sup{Z\f(a:iH)—f(a:i)\ >l <ae<...< T, xieA}.
i=1

Given ) # AC R and f: A — R, we say that f € B-Holder® if

Va,y e A [f(x) = fy)] < Ble —y[*

The word “typical” is used in the Baire category sense.

For z € R, we denote by [z] the ceiling of z, that is, the smallest integer not
smaller than x.

We denote by N the set of non-negative integers. As usual in set theory, we
identify each n € N with the set of its predecessors: n = {0,1,...,n — 1}.

The Lebesgue measure on R and on any Euclidean space R™ will be denoted by
A. It will be always clear from the context which Lebesgue measure we are using.

We denote the diameter of a set U C R” by diam U.

Let H5,(A) denote the s-dimensional Hausdorff pre-measure of the set A C R;
that is,

oo

HE(A) :inf{Z(diam[i)s - AcC G[}

i=1
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Let H*(A) denote the s-dimensional Hausdorff measure of A C R™; that is,

HE(4) = lim H5(4),

where
o0

H;(A) = inf {Z(diam U) : AcC U U;, diamU; < 5} .

i=1 i=1

The Hausdorff dimension of a set A is then defined as
dim A = inf{s > 0 : H*(A) = 0}.

By dimension we always mean the Hausdorff dimension.

We call an interval non-trivial if it has positive length. The diameter of an interval
I will sometimes be denoted by |I|. However, for finite sets S, |S| will denote the
number of elements of S. For multi-indices ¢, |i| will denote the length of i. The
intended interpretation will be always clear from the context.

If v is a Borel measure on R, we will denote its support by supp pu; that is,
supp p={x €R :Vr>0 p((xr—r,x+7r)) >0}

We say that p is supported on K if supp p C K.

Probability will be denoted by P. The expected value of a random variable X will
be denoted by E X or E(X). Conditional expectation will be denoted by E(X|A)
(where A is an event of positive probability). We denote the indicator variable by 1;
that is, 14 = 1 if the event A is satisfied and zero otherwise.

Let f : D — R™ be an injective map defined on D C R". For any set A C R",
we define f(A) to be f(AN D). (If we regard f as (f~')~!, this is the generally
accepted notation.)

Let p be a Borel measure on R™ (for example A or H*®). Let D C R™ be a Borel
set, and let f: D — R"™ be a Borel mapping. We say that f preserves the measure p,
if for every Borel set B C f(D) we have u(f~'(B)) = u(B). (Note that this implies
that we have u(f~1(B)) < u(B) for every Borel set B C R".)

We will use many times in our proofs (without explicitly stating) that the image
of a Borel set by a Borel mapping is analytic, thus Lebesgue and H*®-measurable.
We will also use the fact that the image of a Borel set by an injective Borel mapping
is Borel. We will also need that if A C R™ is analytic and H*(A) > 1, then there
exists a compact set C' C A such that H*(C) = 1. See [10, Theorem 8.13] or [5,
Theorem 4718].



Chapter 2

Holder restrictions and restrictions

of bounded variation

2.1 Outline

As we stated in the Introduction (§1.2), our goal here is to answer Question 2 and

Question 3 by proving the following theorems.

Theorem 2.1.1. Let f : [0,1] — R be Lebesgue measurable. Then there exists
a compact set C C [0,1] of Hausdorff dimension 1/2 such that f|c is of bounded

variation.

Theorem 2.1.2. Let f:[0,1] — R be Lebesgue measurable and let 0 < o < 1. Then
there exists a compact set C C [0,1] of Hausdorff dimension 1 — « such that f|c is

a Holder-a function.

From the results of M. Elekes [4] it follows that these theorems are sharp.

The chapter will be organized as follows. First, in §2.2, we define discrete Haus-
dorff pre-measures on the integers. Using this notion we formalize and solve a dis-
crete (quantitative) version of Theorem 2.1.1 in §2.3. Then in §2.4 we prove suitable
“limit theorems”, and finally deduce Theorem 2.1.1. In §2.5 we present a simple
proof of Theorem 2.1.2; using a theorem of P. Mattila about Hausdorff dimensions
of plane sections. Finally, in §2.6, we mention a variant of Theorem 2.1.1 regarding
generalized variations and we extend our theorems to Euclidean spaces.

We note that Theorem 2.1.2 can be proved in exactly the same way as Theo-
rem 2.1.1. Such a proof of Theorem 2.1.2 (and the proof of Theorem 2.1.1 presented

here) can be found in [9].
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2.2 Discrete Hausdorff pre-measure

We define the discrete Hausdorff pre-measure on the subsets of the set of integers

Z. The covering sets will be intervals I C Z, and here by interval we mean a set of

finitely many consecutive integers. By |I| we denote the number of elements of I.
Let d(X,Y’) denote the usual distance of X and YV (X,Y C R). If X or YV is

empty, then we define their distance to be oo.

Definition 2.2.1. Let 0 < s < 1. The discrete Hausdorff pre-measure of dimension
s is the function p® : P(Z) — [0, oo] defined by

1’ (A) = min { Z |I|° : 7 is a collection of intervals of Z such that A C UI}
Iez

It is reasonable to call ;® a pre-measure since it is subadditive.

Lemma 2.2.2. Let0<s<1and A,B C7Z. Then
1*(AUB) < p*(A) + p°(B). O

We also have a lower bound of p*(AU B).

Lemma 2.2.3. Let 0 <s <1 and A,B C7Z. Then
#*(AUB) = min (d(A, BY', p*(A) + 1°(B) ).

Proof. Consider a covering of AU B by intervals of integers. If there is an interval of
size at least d(A, B) then the inequality clearly holds. Suppose that every interval
is of size at most d(A, B). Then each interval can intersect either A or B but not
both, so we can split the covering into two parts to cover A and to cover B, which
corresponds to the case p*(AU B) > u®(A) + p*(B). O

The following statement connects p® to the (real) Hausdorff pre-measure HZ_.

Lemma 2.2.4. Let 0 < s < 1. For a set A C 7Z, let us define
o def .
A _U{[z,z+§].z€A}.

Then
HE(AY) < p’(A) <27 - HE (A7)
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Proof. We may suppose that A is finite (that is, bounded), otherwise H3 (A*) =
e (A) = oo.

We immediately obtain the inequality H?_ (A*) < p®(A) if we change each cover-
ing interval I C Z of A to the interval [min /, max [ + 1].

Since A* is compact, it is enough to consider finite coverings of A* with closed
intervals to calculate H2_ (A*). Notice that we may suppose that the covering in-
tervals are disjoint, since (a + b)* < a® + b° for every a,b > 0. Hence we may also
suppose that all the intervals covering A* are of the form [n,n + [ + %] (of length
[+ %) for some integer n and [ € N. Hence one can cover A by the corresponding
intervals {n,n+1,...,n+1} of size [+ 1. Since (I+1)* < 25(I+ 3)* for every [ € N,
we obtain the inequality p®(A) < 2°-HJ (A%). O

Definition 2.2.5. Let A C Z. We say that a mapping ¢ : A — Z is non-contractive
if |p(x) — @(y)| > |z — y| for every =,y € A.

In the sequel we will use the following observation many times.
Lemma 2.2.6. If ¢ : A — Z is non-contractive, then p*(p(A)) > u*(A). O

The proof is left to the reader.

2.3 Bounded variation — discrete version

2.3.1 Overview of the proof

Before we start we give an informal overview of the proof of Theorem 2.1.1.

So let f : [0,1] — R be measurable. Then f is continuous on some compact set
of positive measure. Let us just suppose that f is continuous on the whole interval
[0, 1], it will not make much difference. We would like to prove that f possesses the
property that there exists a set C' C [0, 1] of large dimension such that f|c has finite
variation. The key observation is that this property (or at least a quantitative version
of this property) goes through uniform convergence. That is, if some (not necessarily
continuous) functions f, converge uniformly to f, and there exist compact sets C,
such that

H(Cn) > e and Varf,|. < B

for some ¢ > 0 and finite B, then there exists a compact set C' such that

H:(C)>e and Varf|, < B. (2.1)
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(Note that H3,(C') > 0 implies that the dimension of C' is at least s.) Hence it is
enough to show that this (quantitative) property holds for a dense family of functions.
We choose the family of those functions g : [0, 1] — R which are piecewise constant

i itl

n’ n

on the intervals | ) (i=0,...,n—1). But for simplicity, we will deal with the
discrete functions h : n — R related to g by h(i) = g(%) (1 =0,...,n—1).

Now it is not difficult (using Lemma 2.2.4) to relate the following two statements:

(i) there exists a compact set C' C [0, 1] such that H?_ (C) is large and Var g|¢ is

small;
(ii) there exists a set A C n such that p®(A) is large and Var h|,4 is small.

Thus we only need to show that statement (ii) (after properly formulated) holds
for all n and all functions h : n — R, when s = 1/2. (Unfortunately, we can show
this for any fixed s < 1/2 only, but this will be enough to prove Theorem 2.1.1.)
In some sense, the proof will go by induction on n. This statement is what we will

formulate precisely and prove in this section.

2.3.2 Formalizing the discrete problem

In the following definition n is a positive integer, B is a positive real number, and
s,a € (0,1].

Definition 2.3.1.

b(n,B,s) = min max {u*(A) : Var f|4 < B}.

fn—[0,1] ACn

Notice that b is monotone increasing both in n and in B. Clearly, b(n, B,s) > 1
for all n, since the p*-measure of a single point is 1.

The discrete analogue of Theorem 2.1.1 is the following.

Theorem 2.3.2. For every 0 < s < 1/2 and B > 0,

6 b(n, B, s)

n>1 ns

> 0.

Note that the denominator n® is present because, when we exchange a function
g :[0,1] — R for the function h : n — R (as in the informal overview at the beginning
of this section), there is a scaling by a factor of n, and this changes s-dimensional

measures by a factor of n°.
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2.3.3 Solution of the discrete problem

First we state and prove two main “induction steps”, and then what remains, will

be just calculations.

Lemma 2.3.3. Fiz a positive integer K. Then for every s < 1/2 and B >0

b(n, KB+ K —1,s) >min (()", K -b([%],B,s))

for every n € N large enough (depending only on K ).

Proof. Let us choose K intervals of integers I3, ..., Ik inside n = {0,1,...,n—1} of

size {%W such that the distance of any two of them is at least

be done if n is sufficiently large (depending on K).

1 clearly this can
Fix any function f :n — [0, 1]. We have to find a set A C n of large p*-measure
such that Var f|4 < KB + K — 1. For each interval I;, consider the function f|1j.
Since |I;| = [5%], by the definition of b([531, B, s) we can find a set A; C I; such
that
Var fl4, < B and  p*(A4;) 2 b([51], B, s).

Put A = UszlAj. Applying Lemma 2.2.3 inductively to the sets A; we get

pf(A) > min ()", K-b([5%], B, s)). (2.2)
Since Var f|4 < EfZIVarf\Aj + (K —1) < KB+ K — 1, (2.2) instantly gives
Lemma 2.3.3. U

Lemma 2.3.4. For each positive integer L,
b(n, B,s) > b([2], BL,3).

Proof. Fix any function f : n — [0,1]. We have to find a set A C n such that
Var f|4 < B and that u*(A) > b([2], BL, s). For each i € L let

There exists an ¢ € L such that |S;| > [#]; let S be a subset of this .S; of size exactly
|S| = [#]. Let ¢ : [S| — S be the enumeration of S; that is, ¢ is the monotone
increasing bijection from |S| to S. Thus ¢ is a non-contractive mapping. Define

g : S| — [0, 1] by setting

g(x) =L (f(e(x)) = 1) (2.3)
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By the definition of b(|S|, BL, s), there exists a set T" C |S| such that
w*(T) > b(|S|, BL,s) and Varg|r < BL.
Using Lemma 2.2.6 and (2.3),
W (p(T)) > 1(T) > b(|S|, BL,s) and Var flyq) = - Varglr < B.

Thus A can be chosen as ¢(7T'), which proves this Lemma. O

Proof of Theorem 2.3.2. We consider s < 1/2 to be fixed. Let K be a sufficiently
large positive integer, in fact, let K > 2% K?* hold. First we will prove the Theorem
for B=2K — 1.
Let us apply Lemma 2.3.3 with B = 1. We obtain an N € N such that for all
n> N,
b(n,2K —1,s) >min ( ()", K -b([£].1,5)).

Now apply Lemma 2.3.4 to the right hand side with L = 2K — 1. We obtain

Bd

2K -1

b(n,2K —1,s) >min ( ()", K - b([ 1.2K —1,s))  (n>N).

Since b is monotone increasing in its first coordinate,

b(n,2K —1,s) > min ((7)", K - W[ sgar—p . 2K — 1,5))  (n>N). (2.4)

Fix an arbitrary positive integer ng, and define the sequence

Let 7 be the smallest nonnegative integer for which either

b(n;,2K —1,s) > (Z—Ij()s

or nj < N holds. Thus from (2.4) we obtain

b(n;,2K —1,s) > K -b(n;11,2K — 1, s) 0<i<j), (2.6)
and
b(n;, 2K — 1,8) > (155)° (2.7)

since if n; < N, then the right hand side is smaller than 1, which is a trivial lower
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bound. Thus from (2.6) and (2.7) we get

b(ng,2K —1,8) > K7 - (&)

Using (2.5) we obtain the lower bound

b(no, 2K — 1,5) > K7 - (125)° = K7 - ()" i (o)

= (4liN) ng(QsKS(ZK 1)8)J (= ) g (2.8)

provided that W > 1, which clearly holds since K was chosen so that K >

225 K28 holds. Since ng was arbitrary, from (2.8) we immediately obtain that

. . b(n,2K —1,5) s
nf —— > (mx) >0 (2.9)

Now let B > 0 be arbitrary. Let L € N be so large that BL > 2K — 1 holds. Using
Lemma 2.3.4, the fact that b is monotone increasing in its second coordinate, and
then (2.9),

b([2]. BL b([2] 2K — 1
n>1 ns n>1 ns n>1 ns
, —
> in Q0L2E—Ls) 0
n/zl (n/L)s
2.4 Bounded variation — the continuous case

2.4.1 Limit theorems

The informal overview in §2.3.1 contains a precise statement (2.1) about uniform
convergence. We will not prove that statement for two reasons. On the one hand,
it is not sufficient for us, because we also have to deal with functions f : [0,1] — R
which are not continuous, just measurable. On the other hand, we do not need the
statement in this generality, since it is more convenient to prove a similar theorem
for some specific sequence f,, only.

Let K C R be compact, and let f : K — R be continuous. Let

Ko = {0 5 K0 [ 21 # 0, i e 2,
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and define f, : K, — R by setting
fal@) = f(min(K N[, 5H)

where ¢ is the largest integer for which = € [ﬁ, %] C K, holds. Thus f,, is constant

n’ n

For X C R, let B(X,r) denote the r-neighborhood of the set X.

on each of the intervals [

Lemma 2.4.1. Let 0 < s < 1. Suppose that C, C K, are compact sets with
H: (Cn) > e (n€N) for somee > 0. Let C be an accumulation point of (C,,) in the
Hausdorff metric. Then C C K and H: (C) > €.

Proof. Since limsup K, def NyUy K, = K, C C K is trivial. Suppose to the
contrary that H (C) < . Then there exists an r > 0 such that H: (B(C,r)) < ¢
also holds. There exists an n such that C,, C B(C,r) (since C is an accumulation
point), which contradicts the fact that HZ (C,) > e. O

Lemma 2.4.2. Suppose that C,, C K,, are compact sets such that Var f,|, < B for

some B > 0. Let C' be an accumulation point of (Cy,) in the Hausdorff metric. Then
Var f|o < B also holds.

Proof. We know from the previous proof that C' C K. Let n; be a sequence of
integers such that C,, — C in the Hausdorff metric. Let zy < xy < ... < x} be
points in C. Let € > 0 be arbitrary. There exist an n = n; and § > 0 such that
C C B(Cy,0) and |f(z) — f(y)| <eif |x —y| <0+ + (z,y € K).

Let y; € C,, be such that |z; —y;| <0 (i=1,...,k) and y; < yo <--- < yi. By
the definition of f,, there exist z; € K such that f,(y;) = f(z) and |z; — y;| < %
(1=1,...,k).

Since |z — ;| < § + &, we have |f(z) — f(x;)| <e. Using that Var f,|. < B,

we have

B2 Y 1fulw) — )] = Y150 — S

and thus
k—1
Z |f(2i) = f(@ig1)] < B+ 2ke.
i=1
This holds for all £ > 0, therefore the total variation of f|- is at most B. O

Note that the sets (), in the previous lemmas are all contained in a compact

interval, hence the sequence (C,,) has an accumulation point in the Hausdorff metric.
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2.4.2 Proof of Theorem 2.1.1

Proposition 2.4.3. Let K C R be a compact set of positive Lebesgue measure, let
f: K — R be continuous, and let s < 1/2, B > 0. There exists a compact set
C C K of Hausdorff dimension at least s such that Var f|c < B.

Proof. We may suppose without loss of generality that f(K) C [0,1]. Let K, and
fn be defined as above.
Recall that we denote the Lebesgue measure by A. Let A, = n - A\(K,,); this is a

positive integer. Then

K, =

‘Pn(o)7 ©n(0) + 1} U.. U {Qpn()‘n — 1) on(A—1)+1

n n n ’ n

for some integers ¢, (0) < ¢,(1) < ... < pn(A, —1). Note that ¢, : A\, — Z is a

non-contractive mapping. Define the function g, : A\, — [0, 1] by setting

gu(k) = f(225) (k€ A). (2.10)

Let us apply Theorem 2.3.2 to the functions g,,. We obtain some € > 0 and subsets
An C A, such that p(A,) > A\e > A(K)*n’e and Varg,|, < B.

Let C,, =n~ (¢,(A,))* (see the definition of * in Lemma 2.2.4), thus C,, C K.
It is easy to see that we have Var f,|, = Varg,|, < B. From Lemma 2.2.4 we

obtain
HZ(Cn) = n"HE ((0n(A0))") =2 027515 (0n(An)),

and since ¢, is a non-contractive mapping we get from Lemma 2.2.6 that
H:(Ch) >n 270 (Ayn) > n 27 °A(K)*n’e = A\(K)2 %c.

Now choose an accumulation point C' of (C),). We immediately see from Lemma 2.4.1
that C C K, H: (C) > AN(K)®27 % > 0, thus the Hausdorff dimension of C' is at least
s; and from Lemma 2.4.2 we conclude that Var f|c < B. U

Now we are ready to prove our main theorem about bounded variation.

Proof of Theorem 2.1.1. There exists a compact set K C [0, 1] of positive Lebesgue
measure such that f|x is continuous. We may suppose that every non-empty intersec-
tion of K with an open interval has positive Lebesgue measure, since we may remove
those non-empty intersections from K which are of Lebesgue measure zero (and we
need to remove only countably many). Therefore we may use Proposition 2.4.3 not

only for K, but for any non-empty portion of K.
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Let x € K, and let x,, \, = be a strictly decreasing sequence in K converging fast

enough to ensure
[e.e]

sup | f(y) = flo)] < 1.

n—1 yElz,xn]NK

For each positive integer n, let us apply Proposition 2.4.3 to the function f restricted
to K N [Ton12, T2,] to obtain a compact set C,, C K N [T9,12,T2,] of dimension at
least 1/2 — 1/n such that Var f|c, < 27". Let C be the closure of |, C,, (which is
U,, Cn U{z}). Thus C is of dimension at least 1/2 and Var flc <1+ > 27" =2.
We may choose a compact subset of C' of dimension exactly 1/2 (see e.g. [10]),

which concludes the proof. O

2.5 Holder restrictions

2.5.1 Overview of the proof

We give an informal outline of the proof of Theorem 2.1.2.

Let 1 < ¢ < p be integers. A theorem of Mattila states that if A C RP is an
analytic set and H*(A) > 0, then we can find “many” ¢g-dimensional planes W C RP
such that dim(ANW) > s+q —p.

Let m < n and let f : R” — R™ be Borel measurable. Let A C R" x R™
be the graph of f. Then clearly H™(A) > 0. Applying the previous theorem with
p = n+m and ¢ = n, we obtain an affine mapping ¢ : R — R™ such that
dim(A N graphg) > n+n — (n +m) = n —m. This implies that f is actually
linear (affine) restricted to a set of dimension n —m. Thus f is Lipschitz on a set of
dimension n — m.

We can transform this result to the case of R — R functions. It is possible to
map a “large portion” of R to a “large portion” of R" by a Hélder-1/n mapping
such that its inverse is Holder-n (see §2.5.2 and Claim 2.5.1). Now let us pretend
that there is a Holder-1/n mapping p, : R — R™ such that its inverse is Holder-n,
and that there is an analogous map p,, : R — R™. Let g : R — R be an arbitrary
Borel function. Set f = p,, o g o p, ', this is an R" — R™ map. Apply the previous
result to f. Since f is Lipschitz on some C' C R" of dimension n — m, the function
g =p,}o fop, must be Holder-m/n on the set p,*(C) of dimension 1 — m/n.

A suitable approximation of any number 0 < o < 1 by fractions m/n would give
Theorem 2.1.2.
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2.5.2 Preliminaries

Let us recall some notions about self-similar sets. We say that a non-empty compact
set ' C R" is a self-similar set satisfying the strong separation condition if there

exist contractive similarities ¢; : R" — R™ (i = 1,2,...,k), k > 2, such that
F =@ (F)U" g F)U™ ... U" pp(F),
where U* denotes disjoint union. If the similarity ratio of ¢; is denoted by r;, then the
Hausdorff dimension s of F' is determined by the well-known equation (see e.g. [10])
k

Z ri =1

i=1
It is also known that H?*(F) is positive and finite. Setting €, = {1,2,...,k}" (the

coding space), we can define the coding map 7 : Q; — F' by

(o, i1, - -.)) = lim i, 0 3y 0 -+~ 0 5, (0).

m—00

Now let 0 < e < 1, and let n > 1 be an integer. Let r be such that
2mplme =1 (2.11)

holds. Then r < 1/2". For i =1,...,2" we define similarities ¢; : R — R by setting

1—r
on — 1

oi(r) =rz + (i—1) (i=1,...,2").

Then ¢;([0, 1]) are disjoint compact intervals in [0, 1]. Let E,, . be the self-similar set
generated by the similarities o1, @o, ..., pon; that is,

En,e =© (En,s) U* 902<En,5> U* LR U* Pan (En,€> C [07 1]

From equation (2.11) we conclude that the Hausdorff dimension of E,, . is 1 — «.
We also define a self-similar set in R”. Taking a direct product of the self-similar
set By C [0,1], let

Then F), . is also self-similar, and its Hausdorff dimension is n(1 — ¢). Clearly F), .

can be generated by 2" similarities of scaling ratio r/™.
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Claim 2.5.1. There exists a bijection p, : E,. — F,. such that p, is Hélder-1/n

and its inverse is Holder-n.

Proof. The self-similar sets E,, . and F}, . have the same coding space {don. It is easy
to verify that p, = 7p o 7' satisfies the requirements where 7 and 75 are the

coding maps of F, . and E, ., respectively. O

Claim 2.5.2. There exists a monotonic continuous surjective function g : E, . —
[0, 1] such that g is Holder-(1 — €).

Proof. We leave the proof to the reader. O

2.5.3 Proofs

Recall that we say that f € B-Holder” (where B > 0) if |f(z) — f(y)| < Blx — y|*

for every x and y in the domain of f.

Proposition 2.5.3. Let K C [0,1] be a compact set of positive Lebesque measure,
and let f : K — R be continuous. Let 0 < a < 1, and s < 1 — «. There exists a
compact set C' C K of Hausdorff dimension at least s such that f|c € 1-Hélder®.

Proof. There exists a compact set K’ C K of positive Lebesgue measure such that
f(K") C [y,y + 1] for some y € R. Therefore we may suppose without loss of
generality that f(K) C [0,1].

Choose positive integers 1 < m < n and some 0 < € < 1 such that
(l1—eym/n>a and 1—c—m/n>s. (2.12)

Let ¢ > 0 be sufficiently small (depending on n, m, and ¢).

Let 1 be the Borel measure obtained by restricting H'~° to the self-similar set
E,c. Then 0 < u(R) < oo. Let G = {(z,y) e R? : z+y € K}. Since A\(K) > 0, an
application of Fubini’s theorem yields that

/,u(K +t)dA(t) = A x u(G) = / MK +1t)dp(t) > 0.

R R

Therefore there exists some t € R such that pu(K +1¢) > 0. We may suppose without

loss of generality that in fact ¢ = 0; that is, u(K) > 0. Then H'¢(K N E,.) > 0.
Let g : Ey, . — [0, 1] be the function given by Claim 2.5.2. Let h : [0,1] — E,, . be

a Borel function such that goh is the identity. Then ho f|gxng, . : KNE, . — Ep, . is

a Borel mapping. Since H'"¢(K N E,,.) > 0, by Luzin’s theorem [12, Theorem 2.24]
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there exists a compact set D C K N E, . of positive H'~¢ measure such that ho f|p
is continuous.
Let p, : E,, . — F, . and p,, : B, . — F,,, - be the mappings given by Claim 2.5.1.
Let D,, = p,(D) C F,; this is a compact set. We define a continuous function
Y : D, — F, . CR™ by setting

Q/J:pmohof\Dop;lbn. (2.13)

Since the mapping p,, is Holder-1/n and its inverse is Holder-n, from H!=¢(D) > 0
we obtain H"'~¥)(D,,) > 0. Define the compact set

A = graph¢ = {(z,¢(x)) e R""™ : 2 € D, }.

As the projection of A to R™ is D,,, we clearly have H"!=9)(A) > 0. A theorem
of Mattila [10, Theorem 10.10] implies that for almost every n-plane in R**™ there
exists a parallel n-plane W such that ANW has Hausdorff dimension at least n(1 —
e)+n—(n+m)=n(l—e)—m. In fact, there exists an affine map ¢ : R* — R™
with Lipschitz constant at most ¢ such that W = graph ¢ satisfies that dim ANW >
n(l—e)—m.

Let C, = {z € D, : ¥(z) = ¢(x)} (a compact set). Since A N graphy is a
Lipschitz (affine) image of C),, we clearly have dimC, > n(1 — ¢) — m. Clearly
Y|e, = ¢|c, is a Lipschitz function with constant at most c.

From (2.13) it is easy to deduce that

flo=go(ho flp)=gop,' ovop,|p.

Since p,, is Holder-1/n, the map p;! is Holder-m, the function g is Holder-(1—¢), and
¥|c, is Lipschitz, we obtain that f|p is a Holder function with exponent (1 —¢)m/n
on the compact set C & p, Y(C,) C D. That is, f|c is a Holder function with
exponent (1 —e)m/n. Moreover, the Holder constant for this exponent is clearly at
most 1 if ¢ is sufficiently small (compared to the Holder constant of p,, p,.! and g for
the appropriate exponents). As dim C,, > n(1—¢)—m, we have dimC' > 1—e—m/n.
Therefore, using (2.12), we obtain that f|c € 1-Holder” and dim C' > s. O

Proof of Theorem 2.1.2. There exists a compact set K C [0, 1] of positive Lebesgue
measure such that f|x is continuous. We may suppose that every non-empty intersec-
tion of K with an open interval has positive Lebesgue measure, since we may remove
those non-empty intersections from K which are of Lebesgue measure zero (and we

need to remove only countably many). Therefore we may use Proposition 2.5.3 not
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only for K, but for any non-empty portion of K.

Let us apply Proposition 2.5.3 for some 0 < s < 1 — « to obtain a compact
set C" C K of dimension at least s such that f|c € 1-Holder”. Choose a strictly
decreasing sequence (z,,) in C’. Thus f is also Holder-a with constant at most 1 on
the sequence (x,,). For each positive integer n, let €, > 0 be very small. Now for each
positive integer n apply Proposition 2.5.3 to f restricted to K N[z, — €,, T, + &,].
We obtain compact sets C,, C K N[z, —&,, T, +&,] of dimension at least 1 —a—1/n
such that f|c, € 1-Holder®. Let C' be the closure of |, C,,. Thus C' is of dimension
at least 1 — av. It is clear that if the numbers ¢,, are chosen to be small enough, then
C=U,C,U{limz,}, and from the continuity of f, that f|c € 2-Holder”.

We may choose a compact subset of C' of dimension exactly 1—a, which concludes
the proof. O

2.6 Generalizations and open questions

Definition 2.6.1. The [(-variation of a function f : A — R (or f : A — R™) is
defined as

n—1
sup{Z|f(x,~+1) —f@))P cm<mp<... <y, 3 € A}.
i=1

Closely following the methods used in the proofs of Theorem 2.3.2 and The-
orem 2.1.1, one can generalize these theorems to bounded (-variations instead of

bounded 1-variation.

Theorem 2.6.2. Let f :[0,1] — R be Lebesgue measurable, 5 > 0. There ezists a
compact set C' C [0,1] of Hausdorff dimension % such that f has finite B-variation
on C.

This result is sharp. Indeed, the methods of M. Elekes used in [4] can also be
generalized to show that a typical continuous function has infinite S-variation on any

set of dimension larger than —2-

1+8°
Using standard techniques it is straightforward to generalize Theorem 2.6.2 and
Theorem 2.1.2 to higher dimensional Euclidean spaces. (Namely, we can exploit the
fact that it is possible to map a “large portion” of R to a “large portion” of R™ by

a Holder-1/n mapping such that its inverse is Holder-n; see Claim 2.5.1.)

Theorem 2.6.3. Let f : R — R™ be Lebesgue measurable, 3 > 0. There ezists a
compact set C' C R of Hausdorff dimension mi—l—ﬁ such that f has finite B-variation
on C.
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Theorem 2.6.4. Let f : R" — R™ be Lebesgue measurable and let 0 < a < I-.
There exists a compact set C' C R"™ of Hausdorff dimension n — ma such that f is
Holder-a on C.

These theorems (that is, the stated dimensions) are again sharp for all 3, m and

We have shown that every R — R Borel function is of bounded variation on some
compact set of Hausdorff dimension 1/2. However, we do not know anything about

the possible (1/2-dimensional) Hausdorff measure of such sets.

Question 4. Can we find for every Borel function f : [0,1] — R a Borel set B of
positive 1/2-dimensional Hausdorff measure such that f restricted to B is of bounded

variation?
A slightly more general variant is the following.

Question 5. Does there exist a Borel function f : [0,1] — R such that if f is
of bounded variation on some Borel set B, then B has zero/finite/o-finite 1/2-

dimensional Hausdorfl measure?

The analogous questions for the Holder-a property are also open.



Chapter 3

Borel maps and Hausdorft

dimension

3.1 Outline

Our main aim in this chapter is to solve a problem of D. Preiss and B. Weiss (Ques-

tion 1) as discussed in the Introduction (§1.3).

Theorem 3.1.1. For every 0 < s < t < 1 the measure spaces (R, B, H®) and
(R, B, H') are not isomorphic. Moreover, there does not exist a Borel bijection
f R — R such that for any Borel set B C R,

0 < H*(B) < oo <0< H(f(B)) < 0. (3.1)

Later we will also prove the analogous result in R" (see Theorem 3.7.5).

Theorem 3.1.2. Let f : R — R be Borel (or Lebesque) measurable. For every
0 < d <1 there exists a compact set A C R such that dim A = d and dim f(A) < d.

Theorem 3.1.2 clearly implies Theorem 3.1.1. Indeed, let f be Borel measurable
and choose a d for which s < d < t. By applying Theorem 3.1.2 we obtain a compact
set A of dimension d with dim f(A) < d. Since s < d, there exists a Borel subset B of
A for which 0 < H*(B) < oo (see e.g. [10]). Now f(B) C f(A), so it has dimension
at most d, which implies that H*(f(B)) = 0. So f cannot be an isomorphism of the
measure spaces (R, B, H®) and (R, B, H'), and cannot satisfy (3.1) either.

To prove Theorem 3.1.2 it is clearly enough to show the following.

Theorem 3.1.3. Suppose that K is a compact set of positive Lebesque measure, and
f: K — R is continuous. For every 0 < d <1 there exists a compact set A C K of
Hausdorff dimension d such that f(A) has Hausdorff dimension at most d.



3.2 Preliminaries 23

In fact, we will prove the following stronger theorem.

Theorem 3.1.4. Suppose that K is a compact set of positive Lebesque measure and
f: K — R is continuous. For every 0 < d <1 there exists a compact set A C K of
Hausdorff dimension d such that f(A) has Hausdorff dimension at most d-dim f(K).

We outline the proof of this theorem. First, in §3.2 we prove some auxiliary
lemmas. In §3.3 we define a random subtree of a specific rooted tree. Using this
random subtree we construct random Cantor sets in §3.4 and prove an upper esti-
mate for their dimension. In §3.5 we construct random compact sets and prove a
lower estimate for their dimension using energy integrals. Then in §3.6 we prove
Theorem 3.1.4 as follows: for the given K and continuous function f : K — R, we
apply the former construction in the range space and the latter in the domain space
in such a way that they produce a set A with the desired property.

Then, using straightforward techniques, we will deduce the following generaliza-
tion of Theorem 3.1.2 from Theorem 3.1.4 in §3.7.

Theorem 3.1.5. Let D C R" be a Borel set and let f : D — R™ be Borel measurable.
Then for every 0 < d < 1 there exists a Borel set A C D such that dim A = d-dim D
and dim f(A) < d-dim f(D).

Remark 3.1.6. We can state Theorem 3.1.2 (almost) equivalently in the following
form. If f: R — R is Borel measurable and 0 < d < 1, then there exists a compact
set B C R such that dim B = d and dim f~!(B) > d. We might ask if there is a set
B C R such that dim B = d and dim f~!(B) < d. However, this is far from true. In
Chapter 4 we present a continuous real function f such that f~!(z) is of dimension

1 for every z € R, see Claim 4.5.20.

All results of this chapter were published in [8] with essentially the same proof.
However, in [8] first we give an easier upper estimate (similar to §4.2) which is
sufficient to prove Theorem 3.1.3 but not Theorem 3.1.4. We also have a strong upper
estimate in [8] which is sufficient to prove Theorem 3.1.4 (and thus Theorem 3.1.5)
as well. In fact, it turned out that this argument contained some (minor) error. Here

we only give this stronger upper estimate correcting also the error made in [8].

3.2 Preliminaries

Notation. For a Borel measure p on R, let I;(1) denote the ¢-dimensional energy
of p; that is, L;(p) = [[ |z — y|~*dp(z) du(y). For Borel measures py, (k € N) and
i, b — p denotes that py weakly converges to p.
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The following statements are probably well-known.

Lemma 3.2.1. Suppose that p and py (k € N) are probability measures on R such
that p — . Then g X pp — ph X f.

Proof. We have to show that for every compactly supported continuous function
h:R* =R, [oohd(p X ptg) — [po hd(px ). Clearly it is enough to show this for
a dense subset of the compactly supported continuous functions. It is well known

that functions of the form

Z fi(x)g:(y) (f,g:R — R continuous functions with compact support)
i=1

are dense, so it is enough to check that

[ s@amdtnx ) = [ f@awde o),

By Fubini,

[ o) o s ) = [ @) diata) [ o) duaty

which tends to

/R f() dy(z) / o(y) duly) = / F(@)9(y) i x )

as k — oo, using up — 4 and Fubini again. O

Lemma 3.2.2. Suppose that j. (k € N) are probability measures on R supported on
[—R, R] for some R > 0. If up — p then Ii(p) < liminf I;(puy).

Proof. Let ¢ be a compactly supported continuous function on the plane which
equals 1 on the square [—R, R]* and for which 0 < ¢(z,y) < 1 everywhere. For each
positive integer i define h; : R? — R by setting

hi(w,y) = ¢(x,y) - min(|z —y|™,4).
Using Lemma 3.2.1 we have

/hi(x,y) dudﬂzli;n/hi(x,y) dpuye dyuy,

< li;n inf/ lo —y| " dpy, dpy = lilgn inf I; (g ).
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The support of 1 x p is in [~ R, R]? since py, is supported on [—R, R] for all k, so we

have
lim [ h (2, y) du(z) duly) = / |z =y~ du(z) du(y) = L(p).
Thus I, (p) < liminfy_ o L (). O

Lemma 3.2.3. Let 0 < t < 1, let A be a compact set in R and let I = [0, A\(A)].

Then
//|x—y| FAX(x) d\(y //|x—y|_td)\ z) d\(y) = A (A)*

where ¢; 18 a constant depending only on t.

Proof. Define the function ¢ : A — [0, \(A)] by setting
o(z) = A((—o0, 2] N A).

Using first the fact that ¢ is 1-Lipschitz and then that it is a measure preserving

transformation between A|4 and A|;, we obtain

| [le=srax@anm < [ [ le@ - o i@ i
= [ [la=sl ax@ ary /[ 1] / . A AA) dA() dA(Y)

= A(A) /[ | [ = A A = A
0,1 J[o,1

where ¢; is finite if ¢ < 1. O

3.3 The random tree

Let M > 3 and m be integers with 2 <m < M — 1. Let
M<w:{(i0,i1,...,in_1)Z’I’LGN, ZTE{O,]_,’M—:[}:M}

We will consider M<“ as a set of multi-indices and also as the M-adic tree with root
(), where every node has M children. For an ¢ € M=% let |i| denote the length of the
multi-index; that is, the level of the node i.

For 7,j € M<“ we write ¢ < j if j is a descendant of i in the tree. We say that i
and j are incomparable if i € j and j £ i. If i = (dg,41,...,9,1) € M<“ and r € M,

we adopt the notation ir = (ig, 41, ... ,,_1,7).
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We will use the notation i A j for the node which is the nearest common ancestor
of < and j; that is, ¢ A j is the longest multi-index for which t: A j <zand i Aj < j
hold.

Now we choose a “random m-adic subtree” S of M<“ in the following way. Let
X; (i € M<¥) be independent random variables with uniform distribution over the
set of m-element subsets of M. That is, for each set 7" C {0,1,...,M — 1} of m
elements,

P(X;,=T)= (%)

Define the random subtree as
S ={(io, 11, in-1) € M= 2ir € X(ig1,..1,_,) for every 0 <7 <n—1}.
So () € S, and for each i € S exactly m children of 7 are in S. It is easy to see that
{ie S:|i|=n} =m"

for every n € N, and
m

P(i € S) = (M) . (3.2)

Set
Sp,={ieS:|il=n} (neN).

3.4 Upper estimate

Let £ C R be a compact set. Suppose that for each i € M<“ a compact non-trivial

interval U; C R is given satisfying the following conditions:
(1) the endpoints of U; lie in F;
(2) for every node i and its child ir (r € M) we have U;. C U;; and

(3) for every node i and for every two distinct r,r" € M, the intervals Uy, and Uy,

can have at most one point in common.

In fact (3) implies that if ¢ and j are incomparable nodes, then U; and U; can have
at most one point in common.
Using our random subtree S C M<¥ (see §3.3), we define random compact sets
C,, as
C, = J{Uilies.}.
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Then Uy =Cy D Cy DCy D ---. Put

C=(Cn

Lemma 3.4.1. Almost surely C C E.

Proof. 1t is easy to check that lim,, .. max;cgs, |U;| = 0 implies that C' C E.

From the properties of the intervals U; we know that

> |Ui| < diam E

li|=n

for every n. Therefore for each fixed n, the number of those intervals U; for which
li| = nand |U;| > ¢ is at most (diam E)/§. Hence the probability that there exists an
i € S, for which |U;] > ¢ holds, tends to zero as n — oo. That is, the probability that
max;eg, |U;| > 6 holds, tends to zero as n — 0o. Keeping in mind that max;eg, |U;| is
monotone decreasing, this implies that lim,, ., max;cg, |U;| < § almost surely. Since
this holds for every 6 > 0, the proof is finished. O

Proposition 3.4.2. The random compact set C' defined above has Hausdorff dimen-

logm

swon at most Tog M

dim E almost surely.

Proof. Let t > dim E be arbitrary and let 0 < € < |Up|* be sufficiently small. Then
H'(E) = 0 (this makes sense even if ¢ > 1). Therefore we can choose a finite
collection of open intervals 7 covering the compact set E such that ), [/[' < e.
Clearly, we may suppose that Z is minimal in the sense that no interval is covered
by the others. Then we can split Z into two collections Z' and Z” such that both of
them contains disjoint intervals only.
Let
i={l€Z|3ieM*UCl}

and Zo = 7 \ 7.

Let I € Z; be arbitrary. Let j(/) be a smallest multi-index for which Ujy C 1
holds; that is, U; ¢ I if |i| < |j(I)]. Since e < |Uy|", we cannot have Uy C I, thus
= 1,

If for three multi-indices i, 7', 7" of length |j(I)| —1 all the corresponding intervals
U;, Uy, Uy intersected I, then at least one of them would be contained in I, which
is impossible. Therefore at most two intervals U; (with |i| = |j(I)| — 1) can intersect

I, hence by (3.2) HOE!
penr#0) <2 (5
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Now let I € Z,. Let N be a (large) positive integer. Then there can be at most
two intervals U; for which |i| = N and U; N I # (). Using (3.2) this implies that

P(Cﬂ]#@)ﬁQ(%)N

Since this holds for all N, we obtain P(C' N1 # () = 0.
Since the intervals I € 7" are disjoint, the nodes j(I) (when I € Z; NZ') form an

anti-chain in M <“; that is, none of them is an ancestor of any other. Thus

1
Z Ml =1

IeZnZ’

The same inequality holds for the intervals in Z; N Z”, therefore

71 <2 3.3
Z MO — ( ’ )
IEIl
Let s = logm t, hence s < t and m'/® = M.

By Lemma 3.4.1, C' C E almost surely. Therefore, almost surely, C' can be
covered by those intervals I € 7 which intersect C'. From the previous arguments

we obtain

E(H(C)) <E <Z |7|° 11001#@)

1€

:Z (CcnrI#n)|°
:Z (CnI#0)|IP°

<Z ( )J(I)I I

I1€Ty
(mliOI/s | 7)) s/t
MM

< 2c Z
I€T,

where we choose ¢ so that ), m = 1 holds, hence ¢ < 2 by (3.3). Applying

Jensen’s inequality to the concave function z — 2%/t and using m*/®* = M we obtain

| . | o/t
( 15(D)|t/s mt) /t i1/ | 7|t
s m 77’”
E(Hs(C)) = QCIZ; o S IZ M0
€T €l
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‘]’|t s/t s/t
= 2 <Z _> = ¢!/ <Z u|t>
c

Iely 1€y

s/t
<4 (Z |f|t> < 4e°/t,

IEIl

Because ¢ can be chosen arbitrarily small, we obtain E(H2 (C)) = 0 and thus

H: (C) = 0 almost surely. Therefore dim C' < s almost surely. This holds for every

s > llggj\"} dim E, since ¢ > dim E was arbitrary. So the dimension of C' is at most
log .
log a7 dim £ almost surely. O

3.5 Lower estimate

Suppose that for each i € M<“ a compact set P; C R is given satisfying the following

conditions:
(1) A(P) = M~V
(2) for every node ¢ and its child ir (r € M) we have P, C P;;

3) for every node 7 and for every two distinct r, 7’ € M the intersection of P;,. and
Yy Yy

P,/ is of Lebesgue measure zero.

In fact (3) implies that if ¢ and j are incomparable then A\(P; N P;) = 0.

Using our random subtree S C M<¥ (see §3.3), we define random compact sets
D,, as

D,=|J{P|ie S}
ThenP@:DODDlDDQD---. Put

D:ﬂDn.

Theorem 3.5.1. The random compact set D defined above has Hausdorff dimension

logm
log M

at least almost surely.

Proof. We define random Borel measures p; on R by setting

il 4) = \(AN D) (M)

m
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for every Borel set A C R, or equivalently,

[ = (%)k Ap, (keN). (3.4)

Hence py, is a probability measure with support Dy C F.

Let 0 < t < llggj\"} be fixed. We would like to give an upper bound for the

expected value of the t-energy of u,. To do this at first we need to calculate some

basic probability. We know that P(i € §) = (%)M for every ¢« € M<“. How much

isP(i € S,j € 8)if |i| =|j| = k7 Recall that ¢ A j denotes the nearest common

ancestor of ¢ and j in the tree M<“. Let [ = [(i,7) = |i A j|; that is, [ is the largest
integer for which iy = jo, i1 = j1, ..., t4-1 = ji—1 hold (0 <1 < k). Then

P(icS, jeS) = P(z; € Xiyir ) forevery 0 <7 <1—1,

1, J1 € X(igyit_1)>

ir € X(ig,....ir_y) forevery [ +1 <7<k —1,

050050

and j. € X(j,

7777 jT—l

)foreveryl—i—lngk—l).
The random variables X; are independent, so this probability is

B (m>l m(m — ]_) <m>k—l—1 <m>k—l—1

C\M/) M(M—-1)\M M

m2k—I1-1 m — 1 m 2k—1
-(Go) == () 3

provided that | < k, that is, ¢ # j, but the upper estimate clearly holds in the case
i=7j (l=F) as well.
By (3.4), for any i of length k& we have

(AN, ifies

= (3.6)
"o ifigs.

Mk
Applying first that supp ur = Dy, is contained in U|i|:k P;, and then (3.6) and (3.5),
B ) =B ( [[lo =1 dinte) o))

) Z /Pi /Pj 2 — y| 7" dp(2) dpu(y)

lil=ljl=k
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= i:%::kE (/P /PJ_ |z — y| ™" dp(2) duk(y)>
— i§:kP(i €5, j€ebs) /P /Pj |z —y|™ (%)k (%)k dA(z) dA(y)
: ZIZJk ]TZ)%AM]' <%)2k /Pi /Pj |:E a y|_t d>\($) d)\(y)
- ¥ N e ol ) )
3 (%)Z S [ [ - awa)
= met wsd
lil=ljl=k
SZ(%) §|j Z / / 2 — gl dA(z) dA(y)
FFE
- Z (%) ) [ ] =urtaxma (37)

k l 00 l
M? M e
= : Cy <E) S l_EO Cy <E) d ! (t M m)

log m

where c(t, M, m) is finite whenever 2= "< 1, that is, t < TR

By Fatou’s lemma,
E li;n inf I (pug) < li;n infE I, () < c(t, M, m),

thus liminfy o I;(u) is almost surely finite.
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Since all the probability measures uy are supported on the same compact set Py,
every sequence of them has a weakly convergent subsequence. So we can choose a

sequence of integers k; such that
lim Iy (px;) = lign inf 7, (px)
J—00 —00

and that py, is weakly convergent. Let p = lim; . pig;-
Since supp pix; = Dy, and Dy D Dy D Dy D - -+, the weak limit p is supported
on [); Dy, = D. Applying Lemma 3.2.2,

Ii(p) < liminf Iy (pr;) = lilin inf Iy (ug),

J—00

which is almost surely finite. Therefore the compact set D almost surely carries a

measure p with finite t-energy, for any ¢t < llf)’g]\”} Thus the Hausdorff dimension of
the set D is at least llgg—]\"} almost surely. O
g

Remark 3.5.2. It is possible to choose the sets P; (i € M <) in such a way that the

logm
log M

surely.

dimensional Hausdorff measure of the random compact set D is zero almost

3.6 Proof of Theorem 3.1.4

If there exists an y € f(K) for which f~1(y) is of positive measure, then we can
choose a compact set A C f~(y) of Hausdorff dimension d (0 < d < 1), and
clearly f(A) = {y} has Hausdorff dimension 0. Thus we may assume that for every
y € f(K) the set f~!(y) has Lebesgue measure zero. Without loss of generality we
may suppose that \(K) = 1.

We will use the notation of §3.3. Put £ = f(K). For every i € M<* we will
define a compact non-trivial interval U; with endpoints in E. Informally speaking,
what we do is the following. We define Ujy to be the smallest interval which contains
E. If an interval is already defined, then its M subintervals (its children) are chosen
such that their preimages (with respect to f) have equal Lebesgue measure: % times
the Lebesgue measure of the preimage of the interval. Now we give a more precise
definition.

Define ¢ : f(K) — R as

Py) = AM{x e K f(x) <y}).
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Since the preimage of any point in f(K) has measure zero, v is a continuous increas-
ing function, and its range is the interval [0, \(K)] = [0, 1].

For an i € M= we define U; to be the compact interval with left endpoint

/il

max {y € F() - 0p) = 3 71

T=1

and right endpoint

i

min {y € f(K):¢(y) = j\/}lil +ZiT]\4_T }

=1

—_

It is obvious from the definition that

U, D U U,
reM
and )
MYU)) = A{z e K: f(z) e U;}) = Wik
It is clear that the intervals U; satisfy the assumptions of the upper estimate §3.4
with F = f(K).

Define P, = f~1(U;) for every i € M<“. We know that \(P;) = Ml If i and
J are incomparable, then U; and U; can have at most one point in common, thus
A(P; N Pj) = 0. Therefore the compact sets P; satisfy the assumptions of the lower
estimate §3.5.

Now let S be the random m-adic subtree of M<“, and define the random compact

sets
C.=J{Ui:ie S} (neN),
C=()Cu
neN
and

D,=|J{P:i€S} (neN),

D= (1 D,

neN

the same way as in §3.4 and §3.5. Notice that f~1(C) = D.
From Lemma 3.4.1 we know that C' C f(K) almost surely. From Proposi-
tion 3.4.2, C' = f(D) has Hausdorff dimension at most lloogg—;z dim f(K) almost surely.

logm

Tog 11 almost

From Theorem 3.5.1 we know that D has Hausdor{l dimension at least
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surely. Therefore there exists a compact set D C K for which both of the inequalities
dim f(D) < 2™ dim f(K) and dim D > 2™ hold.

log M log M
For d = 0 or d = 1 the statement of the theorem is trivial, so let 0 < d < 1 be

arbitrary. Let

logm
R = 2 < M
{logM s }

this is a countable dense set in (0,1). We can construct compact sets D, for every
r € R such that D, is of dimension at least r and f(D,) is of dimension at most
r-dim f(K). Let D = J,_, D,. Clearly D is a Borel set of dimension at least d, and
f(D) = U,y f(D;) is of dimension at most d - dim f(K). It is well known that D
contains compact subsets A,, of dimension at least d—1/n, and clearly we can require
that A,, have diameter at most 1/n. Let A be the closure of | J A,, then A\ J, 4,
is at most one point. Thus A C K, dim A = d, and clearly dim f(A) < d - f(A),

which proves the theorem. O

3.7 Generalization of Theorem 3.1.2 to Euclidean

spaces

In this section we will prove Theorem 3.1.5. As a first step, observe that Theo-

rem 3.1.4 implies the following.

Proposition 3.7.1. Let f : [0,1] — R be a Borel function. For every 0 < d <1
there exists a compact set A C [0,1] such that dim A = d and dim f(A) < d -
dim f([0, 1]). O

Now we change the domain of the function f.

Proposition 3.7.2. Let D C R be a Borel set and let f : D — R be Borel. For
every 0 < d < 1 there exists a Borel set A C D such that dim A = d - dim D and
dim f(A) < d-dim f(D).

Proof. The statement is trivial if dim D = 0, therefore suppose that dim D > 0.
Fix a positive number s < dim D. It is well-known (see e.g. [10]) that there exists
a compact set Dy C D for which dim Dy > s. Then there exist a positive constant ¢

and a probability measure v with supp v C Dy such that for every x,y € R we have

v(lz,y]) < clo —yl° (3.8)
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(see again [10]). Let us define the continuous function v : Dy — [0, 1] and the Borel
function y : [0, 1] — D by setting

Y(r) = v((—00,1]),

x(y) = min{z : Y (z) = y}.

Thus ¢ o x is the identity of [0,1]. The estimate (3.8) implies that 1) is a Holder

function of exponent s. Therefore for every set A C [0, 1],
dim x(A4) > s - dim A. (3.9)

Apply Proposition 3.7.1 to the Borel function f o x :[0,1] — R. We get that for
every 0 < d < 1 there exists a compact set A C [0, 1] such that

dmA=d and dimf(x(4)) <d-dim f(Ds) <d-dim f(D).
Put By = x(A). (This is a Borel set, since x is injective.) Applying (3.9) gives
dimBs >d-s and dim f(Bs) <d-dim f(D).

Now choose an increasing sequence (s,) of positive numbers for which s, —

dim D. From the above procedure we obtain Borel sets By, C D satisfying
dim B;, > d-s, and dim f(Bs,) <d-dim f(D).

Now any Borel subset of |, B, of dimension d - dim D is an appropriate choice for
A. Thus the proof is finished. O

The next lemma will be used in Chapter 4 as well.

Lemma 3.7.3. For every positive integer n there exists a Borel set E,, C [0,1) and
a Borel bijection p, : E, — [0,1)" C R"™ such that for every (Borel) set A C E,, we
have

Apn(A)) = A(A) and dim p,(A) =n - dim A,

Moreover, for every 0 < s <1 and A C E,,
MY (A) SH (pu(A)) < ¢, \H(A) (3.10)

for some positive constant c, s depending only on n and s.
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Proof. For x € [0,1) let di(z) € {0,1,...,9} (k > 1) denote the digits of = in the

decimal number system; that is,

r = de(a:) 107,

k>1

where liminfy . di(x) # 9. Let

E,={x€]0,1): Vje{0,1,...,n—1} liminfd,;_;(x) # 9},

ph(x) = dnij(x)- 107 (j€{0,1,...,n—1})

i>1
and

Pa(@) = (U (@), pa (), - .., (2)).
Then FE,, is a Borel set of Lebesgue measure 1, and p,, is a Borel bijection between
E, and [0,1)". It is easy to check that if i > 1 and 0 < k < 10" are integers, then

Prn MAaps
k kE+1
E,N|—, .

|:10nl 101% )

to a cube of the form

This implies that p,, preserves Lebesgue measure (that is, A(p,(A)) = A(A) for every
measurable set A C E,,); and also implies that (3.10) is satisfied. Then dimp, (A) =
n - dim A also holds. As for the details, see [11, Theorem 49] and its proof. O

It is easy to deduce the following statement from Lemma 3.7.3.

Lemma 3.7.4. For every positive integer n there exists a Borel set B,, C R and a
Borel bijection p,, : B, — R™ such that for every (Borel) set A C B,, we have

Apn(A)) = A(A) and dim p,(A) =n - dim A.
Moreover, for every 0 < s <1 and A C B,,
CnsH(A) < H(pa(A)) < ¢, 1 (A)

for some positive constant c, s depending only on n and s. O

Proof of Theorem 3.1.5. Suppose that D C R™ is a Borel set and f : D — R™ is
Borel measurable. Let d € [0, 1] be arbitrary. Let p, and p,, be as in Lemma 3.7.4.
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Apply Proposition 3.7.2 to the Borel set p, (D) C R and Borel mapping
P © f 0 Palysrpy : Pu (D) = ) (F(D)).
We obtain a Borel set A C p,*(D) such that
dim A =d-dimp,* (D) and dimp,'o fop,(A)<d-dimp,'(f(D)).
Using Lemma 3.7.4 four times we get that
dimp,(A) =d-dim(D) and dim f(p,(A)) <d-dim f(D)

hold for the Borel set p,(A) C D. O

Let B,, denote the g-algebra of Borel subsets of R”. Lemma 3.7.4 implies that
the generalization of Theorem 3.1.1 in R™ holds.

Theorem 3.7.5. For every 0 < s < t < n the measure spaces (R", B,, H*) and
(R™, B,,, H') are not isomorphic. Moreover, there does not exist a Borel bijection
f:R" = R" such that for any Borel set B C R",

0 < H(B) < oo+ 0<H(f(B)) < 0. O



Chapter 4

Borel maps and Hausdorft

Imeasures

In this chapter we generalize our results proved in §3 from Hausdorff dimension to
Hausdorff measures. We organize this chapter in a similar manner to the previous
one. First we define a tree (a ‘larger’ tree than that in §3) and a random subtree
in §4.1. Using this random subtree, we prove an upper estimate for the Hausdorff
measure of certain kind of random Cantor sets in §4.2. Using the same random
subtree, we prove a lower estimate for the Hausdorff pre-measures of certain kind
of random sets in §4.3. However, the main part of this proof (and some tedious
calculations) are postponed until §4.4. By combining these upper and lower estimates
we prove our main results in §4.5.

We suggest reading of the sections of this chapter in the order they are presented
here. However, since the sections are only loosely related, the reader may find other
orders more convenient. For example, the reader may start with §4.5 which contains
the main results. Those who like to start a proof at its formal beginning should
definitely read §4.4 prior to §4.3.

4.1 The random tree

Let us fix some real number 0 < s < 1. Let Ny, Ny, ... be positive integers which

tend to infinity sufficiently rapidly. Let

We will define an infinite rooted tree. Let V' be the set of ‘words’ v = (i, 14, ..., iy)
where i; € {0,1,...,N; —1} (1 < j <n), and n > 0. This n is called the length of
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v, which will be denoted by |v|. Note that by n = 0 we mean that ) € V.

We consider the natural tree structure on V. (Both the tree and its vertex set
will simply be denoted by V.) That is, () is the root, and vertices of the form
w = (i1,92,...,9,—1) and v = (i1, 142, ...,i,) (where n > 1) are connected. We adopt
the short notation v = wi,, in this case.

Let V,, denote the set of vertices on level n; that is,
Vo={veV:||=n}=]]{0,1,....N; - 1}.
j=1

Then |V,| = L, by (4.1). Let us also define Ny = Ly = 1; then |Vy| = Ly also holds.

For two vertices u,v € V we write u < v if v is a descendant of u in the tree;
that is, the unique (simple) path from the root to v contains u. We say that u and
v are incomparable if u £ v and v £ u.

We say that an edge is on level n if it connects vertices on level n —1 and level n.

Now we choose a random subtree S of this tree V' in the following way. Inde-
pendently for all edges in the tree, we choose each edge on level n with probability
pn = Ni71for every n > 1. Then let S be the set of vertices which are reachable
from the root using the chosen edges only. Then () € S always, and for a vertex
veV,

PveS)= Nt .. Nt =[50,

Set
Sp,={veSs,:|vJ]=n} (neN).

It is easy to check that E(|S,|) = L, L5 = L.

As we said at the very beginning of this section, we suppose that the sequence
(IV;) is increasing “sufficiently rapidly”. We do not need this property for the results
of §4.2, but this is crucial for our theorems in §4.3, §4.4 and §4.5. It would be incon-
venient to state here exactly how fast the sequence (INV;) should increase. Instead,
we will make the appropriate assumptions throughout §4.3 and §4.4. All these as-
sumptions can be written in the form of lower bounds N,, > ®(Ny, Na, ..., N, _1);
therefore they can be simultaneously satisfied.

Note that the number 0 < s < 1 is considered fixed throughout §4.2, §4.3 and
§4.4. The sequence (N;) depends on s.
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4.2 Upper estimate

Suppose that for each v € V a closed interval U, C [0,1] is given satisfying the

following conditions:
(1) if u <w, then U, C Uy;
(2) if v and u are incomparable, then U, and U, have at most one point in common.

Then using the random subtree S C V' (cf. §4.1) we define random compact sets
C,, as
Co=J{U, s ve S} (4.2)

and let .
C=()Cu (4.3)
n=1

Proposition 4.2.1. For the s-dimensional Hausdorff measure of the random set C

we have

EH(C) < 1.
Lemma 4.2.2. Almost surely lim,,_,., max,cg, |U,| = 0.

Proof. For each fixed n, the number of those intervals U, for which v € V,, and
|U,| > 9§ is at most 1/§. Hence the probability that there exists a v € S,, for which
|U,| > § tends to zero as n — oo. That is, the probability that max,cg, |U,| > 6
holds, tends to zero as n — oo. Keeping in mind that max,cg, |U,| is monotone
decreasing, this implies that lim, .., max,cgs, |U,| < § almost surely. Since this

holds for every 6 > 0, the proof is finished. O

Proof of Proposition 4.2.1. We will cover C' by the intervals U, (v € S,). We know

from Lemma 4.2.2 that lim,, .., max,cg, |U,| = 0 almost surely. This implies that

H*(C) < liminf Y |U,[*

n—oo

vESy
almost surely. Hence by Fatou’s lemma
EH*(C) < Eliminf ) ° |U,]* < liminfE ) |U,[*. (4.4)
n—oo Uesn n—oo erSn

Applying Jensen’s inequality to the concave function z — z® and using that
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> ey, [Us] <1, we obtain

E Z U] =E Z |Us|* Lyes, = Z |Uu|*P(v € Sy)

UESn vEVR veEVy
=LYl < (1 Y ) <1
vEVR vEVR
Combining this with (4.4) we obtain EH?*(C) < 1. O

4.3 Lower estimate

Suppose that for each v € V' a measurable set M, C [0, 1] is given satisfying the

following conditions:
(1) A(M,) = L;! for every v € V;,, n > 0;
(2) M, C M, if u>wv;
(3) MM, N M,) =0 if u and v are incomparable.

Using our random subtree S C V' (cf. §4.1), set
Dn:U{Mu Cu €Sy} (n € N).
These random measurable sets satisfy
0,1] DDy D>D1 DDy D ... (4.5)
Clearly EX(Dy) = > oy, P(v € Sp)MM,) = L L[t = L5t
Theorem 4.3.1. If the sets M, and D,, are defined as above, then
EHS5(D,) > 1—o0s(1),

where 0s(1) is a quantity which tends to zero as § — 0, but does not depend on n.

Remark 4.3.2. The constants involved in o05(1) are independent of the choice of the
sets M,; but they do depend on the choice of V.

Remark 4.3.3. The condition that the sets M, are contained in [0, 1] is not neces-

sary.
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Theorem 4.3.4. If the sets M, and D,, are defined as above, moreover, the sets M,
are compact, then
E H* ( N Dn> > 1.

This result should be contrasted with Remark 3.5.2. First we show that Theo-
rem 4.3.1 implies Theorem 4.3.4.

Proof of Theorem 4.3.4. 1f the sets M, are compact, then the sets D,, are also com-
pact. Then it is easy to check that (4.5) implies

n—oo

H;(ﬂDn> = lim H(D)
for every 6 > 0. From Theorem 4.3.1 we obtain
EH;(()Dn) = 1 0s(1).

As H*(A) > H3(A) for every set A, we conclude the proof. O

Proof of Theorem 4.3.1. When calculating Hausdorff measures (or pre-measures), we
may require that the covering intervals belong to some suitably chosen class Z. In
particular, let Z be the following class of closed subintervals of [0, 1]. Let Z contain

only intervals of lengths

%(Hi) (i=0,1,....r—1; r>10). (4.6)
For each such length [, let Z contain (say) [I~!log/™!| many intervals of length I,
which are ‘uniformly distributed’® in [0,1]. (Here logl™! could be anything which
tends to infinity sufficiently slowly as [ — 0.) Then it is easy to check that for all
e > 0 there exists § > 0 such that if J is an interval in [0, 1] of diameter at most 0,
then there exists an I € Z for which J C I and |I]/|J| < 1+¢. For aset A C [0, 1],
define

7

My (A) = inf{z Ll Ac UL |1l <6, I € I}.
Therefore for every € > 0,

Hsz(A) < (1+¢)"H5(A) (4.7)

!That is, the left endpoints form an arithmetic progression, the left endpoint of the first interval
is 0, and the right endpoint of the last interval is 1.
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if 9 is sufficiently small.
For each n we define a Borel measure p,, on the real line satisfying u(R\ D,,) = 0.
For a Borel set A C R let

a(A) = L (D, N A),
that is,
:un = L717,7$ ’ )\‘Dn

Since EA(D,,) = L7, we have

E 1,(0,1]) = 1. (4.8)

A possible approach to prove Theorem 4.3.1 could be the following. If we knew
that (almost surely) for every interval .J the estimate p,(J) < (1+4¢)|J|° holds (say),

then clearly for every covering of D,, by intervals J; we would have

ST 2 30004 ) 2 (1) (D)

and thus H: (D,) > (1 +¢) 'u,(D,). By taking expected values, we would obtain
EH: (D)) > (1+¢)~'. However, one can show that this approach is unable to yield
Theorem 4.3.1 in its full strength. Instead, we will show that those intervals J for
which p,,(J) > (1+¢)|J|* holds cover only a small portion of y, (in expected value).

More precisely we will show the following.
Lemma 4.3.5. For every € > 0 there exists 6 > 0 such that for every n we have

D EpnlI) Lyy> ol (4.9)

I1eT
IS

(In fact, § does not even depend on the choice of the sets M,.)

First let us finish the proof assuming Lemma 4.3.5. Let € > 0 be arbitrary, and
fix 0 so that both (4.9) and (4.7) hold.

Consider a family of (distinct) intervals J; € Z of diameters at most § covering
D,,. Then

Da) = pn({J ) sZun<J>

—ZWZuWW%W+ZW2hMMMW
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< Zﬂn(J)ﬂunuz»(He ks + (1 +¢€) ZU'

< Zﬂn L (n>a+eyre + (1 +¢) Z\J\ (4.10)

I1eT
11<s

Using the definition of Hj (D), (4.10) implies that

(1+¢e)H57z(Dn Z pin (1 I)>(1+e)|1]5-

I€T
[1]<6

Combining this with (4.7) we obtain

(1+e)""*H3 (D, Z pn (1 0)>(1+4e)[1]s -

I€T
[1]<6

Taking expected values and using (4.9) and (4.8) gives
(1+e)'"EHD,) >1—c.

From this one can deduce that EH3(D,) > 1 — 0s(1), where o05(1) tends to zero as
0 — 0 but does not depend on n. O

It remains to prove Lemma 4.3.5. First we give an informal overview of the proof.
Clearly it suffices to have a good upper estimate for E(,un(f) Ly (1> (14e) 1] ) for each
interval I € Z. It is not difficult to show that

E pn (1)
(1+¢)|1]*

is an upper estimate. This way the problem could be reduced to finding good upper
bounds for the second moment E yu,(7)?. However, it would turn out that even
the best possible estimates are too weak to imply Lemma 4.3.5. Instead, we will
estimate E(u, (1) 1,,,(1)>(14¢)7+) using the exponential moment Eexp(tu,(I)) (see
Lemma 4.3.7). To estimate this exponential moment, in fact we need to estimate
quantities like Eexp(t|B N S,|), where B C V,, is some set (which depends on I).
The next section (§4.4) is entirely devoted to the upper bounds of these quantities.
In this section we prove Lemma 4.3.5 using the results of §4.4.

First we need two more lemmas.
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Lemma 4.3.6. Let ¢ > 0,t > 1/¢c, and x > ¢. Then

Proof. As x > ¢, the right hand side is monotone increasing in t. Therefore we
may suppose that ¢ = 1/c. Then the inequality (after rearrangement) becomes
ex/c < e*/¢, which holds. O

Lemma 4.3.7. Let X be a real random variable, and ¢ > 0 a constant. Then

E etX

etc

EX]]-XZCS C

whenever t > 1/c. O

Proof of Lemma 4.5.5. We will use the results of §4.4. However, it is enough to read
Definition 4.4.1 and Corollary 4.4.12 to understand this proof.

First consider the case when n = 0. Since My C [0, 1] has Lebesgue measure 1,
and Dy = My always, we have jig = Aljp1. Then the left hand side of (4.9) is clearly
zero. Therefore we may suppose that n > 1. (In fact, for our purposes, it would be
enough to prove Lemma 4.3.5 for large integers n only.)

For each interval I € 7 we will estimate the corresponding term in (4.9) using
Lemma 4.3.7 and Corollary 4.4.12.

Fix an I € Z. There exist a unique integer m > 1 and a unique real number
1 < k < N,, such that |I| = kL. To I we associate a weight function b : V;, — [0, 1]
by setting

b(u) = NM,NI)L, (u € Vy).

Then b(V,,) = |I|L, = kL, L, and p,(I) = b(S,)L,* by the definition of x,. Using

Lemma 4.3.7 we obtain

Eexp(tin(D)

B (1) Vyniayserrmin: < Sty
~ Eexp(tb(S,)L,*)

_ n 1/mk,sL—s
exp(tel/mks L) ‘ "

61/m|]|8

whenever t > e~Y/™|I|=*, which holds if t > |I|~* = k5L?,. Substituting ¢L? into t

we obtain

E exp(tb(S,))
exp(tel/mksL s Ls)

E fia(D) Ly, (yset/ors < L
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whenever ¢t > k7°L; L°. Now we may use Corollary 4.4.12 and obtain
E (1) 1 < K gn-a-niem
fin (1) pn(I)>el/m| s = Z m .
We clearly have the same estimate for every interval in Z of the same length as

I. Since there are exactly ||I|'log|I|™'| = |k~ Ly, log(k™'L,,)| < k='L,,log L,,

many intervals in Z of length |I|, we obtain

k
E Eun(‘]) ﬂun(J)>el/m\J|S < L—gNg(l_S)/(Sm)k_le log Ly,
JeT m
| J|=kLy!
= 3N, 1=/ o0 [, (4.11)

From (4.6) it is easy to deduce that
{1J] : L)) <|J| < Nn L', J €Z}|<10(log Ny,)(log L)
Combining this with (4.11),

E E 1 (J) L, (nset/mpps < 30Nn_1(1_8)/(8m) (log Lm>2(log Ni)
JeT
Lt <|J|< N L}t

S 30Nn;(lfs)/(l6m)’
where the last inequality holds if we suppose that (NN;) is increasing sufficiently
rapidly.

Now let € > 0 be arbitrary. Let m* be a positive integer such that e'/™ < 1 +¢.
Then

Y. Em) Luwmsasar < ) o B 1y ysetsmpge

JeT m=m* JeT
| J|<Np* L% L' <|J|< N L
o0
E —(1=s)/(16m)

< 30N,
m=m*
k
< 1/m’,

where the last inequality holds if (1V;) is increasing sufficiently rapidly. Since 1/m* <
e!/™ —1 < e, we obtain (4.9) by choosing § = 2 N,,-L; }. O
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4.4 Estimates of the exponential moment

Before reading this section, we encourage the reader to consult §4.3 and especially
the informal overview of the proof of Lemma 4.3.5 on page 44. We will use the

notation and definitions of §4.1.

Definition 4.4.1. A weight function is a function b : V;, — [0, 1], where n > 1. For
A CV,, we write b(A) for Y _, b(v).

Definition 4.4.2. If b: V,, — [0,1] is an arbitrary weight function, and v € V' with
|v| < n, then we define b, : V,, — [0,1] as

b () b(x) ifx>w,
v \L) =
0 otherwise.

We define the weight function ¢, : V,, — {0, 1} as

() 1 ifx>w0,
cy(2) =
0 otherwise.

Then, for example, ¢,(V,,) = L‘_U‘an.

The theorems and proofs of this section are rather straightforward (though some
involve a lot of calculations). The only exception is probably the following Lemma.
(Finding this Lemma took the most time for the author when trying to prove The-

orem 4.3.1 and thus the main results of this chapter.)
Lemma 4.4.3. Let b : V,, — [0,1] be a weight function. Let 0 < h < n, v € V.

Then for every t > 0,

by (Vi) /co(Vn
E(etbv(sn) lve S < (E(em”(sn) v e Sh)) (V) /eu(V, ).

Proof. We prove the statement by backwards induction on h, starting from h = n.
If h = n, then the left hand side is e**) while the right hand side is

(etcv(v))bv(Vn)/cv(Vn) — etbv(v)

since ¢,(v) = ¢, (V) = 1.
Suppose now that 0 < h < n and the statement holds for h + 1. Let i €
{0,1,..., Nyr1 — 1} and apply the induction hypothesis to the vertex vi € Vj,,1. We
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obtain

bvi(vn)/cvi(vn)
E(e tui(Sn) | i € Shi1) < (E(etc“ Sn) | vi € Sh+1)> . (4.12)

Since 0 < by (V) /cwi(V) < 1, we may apply Jensen’s inequality to the concave

function z > zbvi(Va)/ewi(Va) o that it gives
(1 —p)l Jrpybm(vn)/cm(vn) < (<1 _ p)l _'_py)bvi(Vn)/cm(Vn) (4.13))

for arbitrary 0 < p < 1 and y > 0. Substituting p = N,fﬁ and y = E(etcvi(S") |vi €
Sp41) into (4.13) and then applying (4.12) gives

1— N+ N AE(e®5%) i € Syiq)

S S c bm(Vn)/cm(Vn)
< (1 Nh-& Nh_&E( tewi(Sn) | i € Sh+1)> .
Here the left hand side equals E(etb”(s’l) |ve Sh), and we can rewrite the right hand

side analogously to obtain

E(e50 v € $) < (B v e sh))b”(vn)/c”(v”).

(4.14)

Conditional on v € S),, the random variables ¢,;(.S,) are independent and they

have identical distribution, and ), ¢,; = ¢,. Therefore

Nh+1 1

E(etc”(sn) | v E Sh H E tevi(Sn) | v E Sh)

=0

= (E(e“vﬂ'(sﬂ v e Sh))

Nhi1

for every j € {0,1,..., Ny11 — 1}. This implies that (4.14) is equivalent to

bus (V) 0V
) . (4.15)

E( thvi(Sn) |U € Sh) < (E(etcv(sn) | NS Sh)

Conditional on v € Sy, the random variables b,;(.S,) are independent, and b, =
Zi by;. Therefore we have

Nps1—1
H E(etb“i(sn) | S Sh) = E(etbv(sn) | v E Sh)

1=0



4.4 Estimates of the exponential moment 49

Thus by multiplying (4.15) for all s € {0,1,..., N4 — 1} we obtain

by (Vi) /co (Vi
E(etbv(sn) v e Sh) < (E(emv(sﬂ)‘v c Sh)) (Va)/ (v)7

which is exactly what we wanted to prove. O

Lemma 4.4.4. Let b : 'V, — [0,1] be a weight function, and let 1 < m < n. Then
for every t > 0,

Ee™) <1 — Ly + L [ E(E™ ) |v € Su).

VEVim—1

Proof. We choose another random subtree of V' in the following way. For each level
1 < h < m—1, instead of choosing each edge with probability N; ! independently of
each other, we either choose all edges or choose none of them with probability N ;_1
and 1 — N,ffl, respectively. We do not modify anything else in the construction;
that is, the edges on levels > m are still chosen independently, and all events are
considered as independent unless otherwise stated. This way we obtain the random
sets Ry, C V}, of reachable vertices on level h (h > 0). Then for every positive integer

T clearly

Eb(S,)" = Y. b(ir)...b(i-)P(i, ... ir € S,)

< > b(in). ()P, .0 € Ry) = Eb(R,)".

UL yeeny i+ €V
This immediately gives
E e?(5n) < et (Fn) (4.16)
for t > 0. Clearly
Eef) =1 — 157 4+ L5 E(e™™) | Ry = V,y). (4.17)
Since b(R,) = >y, _, bu([n), we have by independence
E(etb(Rn) | Ry = me1) _ H E(etbv(Rn) | Ry = me1)- (4.18)
vEVm_1

Since E(etb”(R") | Rpp1 = Vm_l) = E(etb”(s’l) |v e Sm—l) for every v € V,,,_1, combin-
ing (4.16), (4.17) and (4.18) concludes the proof. O
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Corollary 4.4.5. Let b : V,, — [0,1] be a weight function, let 1 < m < n, and
uw € V1. Then for everyt > 0,

b(Vn)/cu(Va)
Ee®Sn) <1— L5 + L3 Y (E(etcu(sn) KOS Sm—1)> :

Proof. Combining Lemma 4.4.4 and Lemma 4.4.3 (for h = m — 1) gives

by (Vi) /v (V)
oo < 1= i T (B0 5a) 0.

Uemel

Since E(etC”(S”) v e Sm,l) = E(etc“(S") |u € Sm,l) for every v € V,,,_1, and b(V},) =
> b,(V,,), we obtain the corollary. O

’Uemel v

Remark 4.4.6. In some sense, Corollary 4.4.5 and the following Lemma 4.4.7 can

be considered as an analogue of Lemma 3.2.3 of Chapter 3.

Lemma 4.4.7. Let 1 < m <n, u € V,,,_1, and let ¢, be the weight function as in
Definition 4.4.2. Then

E (e () |y € S,_y) < exp(tLy L5 exp(2tL; L))

if 0 <t < LS L% and

Nm
E(e ) |u € Spy) < (1 — N;7U+ NS texp(tL, LY eXp(QtL;ilLfL)D

if0<t<L; L,°andl<m<n.

Proof. Form < h <n+ 1, set
ap = E(etC”(S") | NS Sh—l)

where v is an arbitrary vertex in Vj,_;. Using this notation, the first part of the
Lemma states that a,, < exp(tL,* L exp(2tL,*Ls)) if 0 <t < L3 L *.

Since ¢, = ), ¢y, clearly

Np—1

ap = H E(etcm(S") | NS Sh—l)

i=0
= (E(e“”o(s”) |v e Sh_1)>

N
_ (1 o N}L:‘fl + N];Gfl]E(ethO(Sn) |UO - Sh)) "

Np,
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_ (1 + N apg — 1)>N” (4.19)

< exp(Nj(aps1 — 1)) (4.20)

iftm<h<n.

We claim that the second part of the Lemma can be easily deduced from the
first part. Indeed, suppose that 1 < m < n. Then (4.19) implies that a, <
(1 — N5t + N57tq,,.1)¥=. Combine this inequality with the upper estimate for
amy1 given by the first part of the Lemma for m+1 in place of m. This gives exactly
the second part of the Lemma with the right condition for ¢.

To prove the first part of the Lemma, suppose that 0 < ¢ < L7 L°. We have to
show that a,, < exp(tL,,” L3 exp(2tL,*Ls)). Clearly

Ani1 = €. (4.21)
It is easy to check that
e —1<z(l+ux) (4.22)

for every 0 <z < 1.7. Therefore by (4.20),
an < exp(Nj(e' — 1)) < exp(Nit(1+1)), (4.23)

since clearly ¢t < L7 L-° <1 < 1.7 as m < n. We claim that in general

ap < exp <tL,:81LfL H(l + tLj_SLfL)yh) (4.24)

j=h
for every m < h < n + 1. First we prove the following.

Claim 4.4.8. Suppose that m < h <n. Then

A Zare L T+t 08)? " <Ly LY exp(2tL;,°L3).

j=h
Moreover, if h > m+ 1, then A, < 1.7 (provided that t < L} L. *).

Proof. We may choose the integers N; so large that 2V, * < 1/2 holds for every 1.
Clearly
Ap < LL;* L2 exp ( 3 tLj“*LZQj’h) .
j=h

Since the sequence (XV;) is monotone increasing, for j > h we clearly have L; >
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LhN,{J:]f. This implies that Lj_52j*h < L;*(2N, 5)~" for j > h. Therefore

h+1
An < 11 Ly exp (£ Ly YO (2N ) S HL0 L exp(2 L L),
j=h

where we used that 2V, 7, < 1/2.
If, in addition, h > m+1 and ¢t < L L hold, then from the previous arguments

we clearly have
Ap <tL, L} exp(2tL,° L)) < exp(2N,,7,) <exp(1/2) < 1.7. O

We would like to prove (4.24). Notice that for h = n+1 and h = n we are already
done by (4.21) and (4.23). Suppose that m < h < n — 1 and that (4.24) holds for
h + 1. Then combining this induction hypothesis with (4.22),

aps1 — 1 < exp(Apy1) =1 < App (1 + Apgr)

= (et T v erem?™ ) (Leenpeny T (renr)”™)
j=h+1 kil

< tL,;SL:;( IT ¢ +tL;8L;)2j*“>( I +tLj—8L;)2j*’”) (1+tL;"L%)
j=h+1 j=h+1

=L Ly [ +tL;°Le)* "
j=h

Note that here (the second part of) Claim 4.4.8 grants that A, < 1.7, which
means that (4.22) is satisfied. Thus from (4.20),

an < exp(Nj(arp = 1)) < exp <NﬁtL,:sL:; [Ta+ thL:;)Q”) ,
j=h

which (noticing that NjL,* = L, *,) proves (4.24).
Combining (4.24) and Claim 4.4.8 for h = m we obtain

am < exp(tL,” L} exp(2tL; L)),

which was to be proved. O

Lemma 4.4.9. Let 1 < m < n and let b : V, — [0,1] be a weight function with
b(V,) = kL, 'L, for some real number 1 < k < /log N,,. Then there exists some
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t > k%L L=° such that

m—n

E e1tb(Sn)
exp(tet/mks L sL?)

el/mps=ipl=s < gN-(1=s)/@m), (4.25)

Lemma 4.4.10. Let 1 < m < n and let b : V,, — [0,1] be a weight function with
b(V,)) = kL,'L,, for some real number \/log N,,, < k < NS Then there exists
somet > k=5L° L-° such that

mn

E 6tb(Sn)
exp(tel/mksL s Ls)

/Mg TILL < 8 (e Ne) (4.26)

Lemma 4.4.11. Let 1 < m < n and let b : V,, — [0,1] be a weight function with
b(V;,) = kL 'L, for some real number NTS%_S)/Q < k < N,,. Then there exists some
t > k5L L% such that

m-—n

F etb(Sn) 1 (=92
fmps=1pl=s < 3 (- L)N . 4.7
exp(teV/mks L_sL3) ‘ m = SXP 8m? " (4.27)

Corollary 4.4.12. Let n > 1, m > 1. Let b : V,, — [0,1] be a weight function
with b(V;,) = kL, 'L, for some real number 1 < k < N,,. Then there exists some
t > k=5L% L% such that

m—n

exp(te'/mks L. sLs)

el/mpsTiplos < g (me)/(8m) (4.28)

Proof. First assume that m < n. Then (4.28) is a clear consequence of Lemmas 4.4.9,

4.4.10, 4.4.11 provided that we suppose that (1V;) is increasing sufficiently rapidly.
Now assume that m > n + 1. Since b(S,) < b(V,), we have E(exp(tb(S,))) <

exp(tkL,'L,). Therefore the quotient on the left hand side of (4.28) is at most

exp(t(kL,,'L, — e"/"k*L,L%)). (4.29)

Since kL 'L, < Ny L 'L, = L' L, <1, we have kL 'L, < e"/™k*L-*L?. There-
fore (4.29) and thus the left hand side of (4.28) tend to zero as t — oco. From this
the Corollary follows. O

It remains to prove the three lemmas. We will always assume that ¢ > 0.

Proof of Lemma 4.4.9. The combination of Corollary 4.4.5 and (the second part of)
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Lemma 4.4.7 for some u € V,,,_; gives that

Rt <1 — 571 4 1oL (1-N '+ N exp(tL;fLflem;iﬂL%))]C

if t < L, L,*, since b(V,,)/cu(V;) = kL L,/ (L, L) = kN,,'. Therefore clearly

E e?*5) < (=N '+ Nt exp(tL;LsLieth;lilLi))k

(4.30)
ift <Ly L% Set
t=e Y@ (log NI=5)L5 L°.

We may clearly assume that the sequence (IV;) is increasing sufficiently rapidly to
ensure Ly L, * >t > Ly L °>Fk™°L; L, *° for this particular £. Now

2Ly, Ly, = 2¢7/®™ (log Ny ") Nopty < 2(log Np*) Nyt
we may assume that the right hand side is at most 1/(2m) and thus e*Fmiili <

e!/m)  Using this upper bound and (4.30), the left hand side of (4.25) can be

estimated as

(1_]\]’5 L N5 Lexp (e V@) (log N1-5)e 1/(2m))>k
exp( —1/@m) (log N1~ S)el/mks)

(1— Ng ™t + Ny INL )"

~ exp (61/(2m)(10g N%;s)ks)

ok

= (1—s)el/(2m)

N

< 61/m/{?8_1[171n_8

l/mksflLlfs
el/mps=ipl=s, (4.31)

We may suppose that v/log N,,, < =2 — log Ny, thus 2k < ek < NOT/6m) e may

also suppose that L,,_; < Nl/(gm) thus L1—5 < N(1 t+5)

we may continue (4.31) as

. Using these estimates,

1
< N0 g m st O Em) g 1) 8m) O

Proof of Lemma 4.4.10. We may use the inequality (4.30); that is,

B e < (1= Nyt N exp(tL, L)) (4.32)
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when ¢t < L7 | L.°. Set
1
L
log log N,,,

Clearly this ¢ has both the lower bound ¢t > k7*L? L* and the upper bound ¢ <

mn

Ly . L,® if we impose some mild conditions on the sequence (NN;). Therefore, by
using (4.32), the left hand side of (4.26) can be estimated as

_ (1 — N;jfl + Nﬁ;l exp((log N,.)/(loglog N,,) 62))k‘

< exp((log N,,)/(loglog N,,,) e!/mk#)

(1 _ N%—l + Ns;lNres/loglogNm)k
st/mks/loglog Nim

exp (kN;;—lef/loglogNm)

Nfﬂl/mks/ loglog N,

exp (Nr(:fl)/Qst/loglogNm)
< Nélbog Np)5/2/loglog N,

el/mk,s—lL}n—s

el/mk,s—lLin—s

el/mk,s—lL}n—s

el/mps=iples, (4.33)

s—1 e?
2 + log log Ny,

hence we may continue (4.33) as

We may clearly assume that < 0 and that loglog N,, < (log N,,)%4,

exp(1)
iy N(log Nm)s/4

s/4

e /M T LIS < 2N (s N et s < gV (om N L

Assuming that (N;) is increasing sufficiently rapidly we have L!~* < N,,, which

concludes the proof. O

Proof of Lemma 4.4.11. The combination of Corollary 4.4.5 and (the first part of)

Lemma 4.4.7 for some u € V,,,_; gives that

—8 S _1
B et(Sn) < 1 — L+ Lt (exp(tL;f, 1Lfle2th Ln))kNm

if t < L8 L;*, since b(V,)/cu(Vy) = kL 'L, /(L. | L,) = kN'. Therefore clearly

m-—n

E e < exp(kN,1tL;° L3 e2tbnLa) (4.34)
if t < L L% Set
1
t=-—LL"
dm

NE-9)/2

We may clearly assume that 4m < , therefore ¢ has the lower bound
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k=*L: L *°. Using (4.34) we may estimate the left hand side of (4.27) as

exp (kN te?/Um) /(4m))

€l/m/{?871L71n73

exp(e!/™ks/(4m))
1/(2m) 1/m
< exp (kN,f;le - kse—) el/mps=ipl=s, (4.35)
4m 4m

It is easy to check that e'/™ —e!/(2™) > 1/(2m). Since k < N,,, we have kN~ < k*,

and therefore s .
kN,f{le /(2m) B k:se /m . kS
4m 4m 8m

5
Using this inequality and that k > N},}_S)/Q, we can continue (4.35) as

” o an(l_sw B
< exp( — W)el/mks lL,ln < 3exp( — W)L}n )

Assuming that (NV;) is increasing sufficiently rapidly we have L!~* < N,,, which

concludes the proof. O

4.5 Main results

The first lemma is the only statement in this section which uses the concepts and
results of the other sections of this chapter; that is, the random subtree of §4.1, the

upper estimate of §4.2 and the lower estimate of §4.3.

4.5.1 Results on the real line

Lemma 4.5.1. Let K C R be a compact set of Lebesque measure 1, and let f :
K\ {max K} — [0,1] be a continuous function. Then for every 0 < s < 1, there
exists a compact set C C [0,1] such that

H(C) < H(F7(C)) (4.36)

where H*(C) < oo and H*(f~1(C)) > 0.

Remark 4.5.2. By requesting that H*(C') < oo and H*(f~'(C)) > 0, we exclude
the two possibilities 0 < 0 and co < oo in inequality (4.36). The Lemma would be

trivial if we did not exclude these possibilities. Note that we do not exclude the case

when 0 = H*(C) < H*(f1(C)) = .

Proof of Lemma 4.5.1. We may suppose that the preimage of each point has Lebesgue



4.5 Main results 57

measure zero, otherwise the statement is trivial (namely, one can choose C' to be a
single point the preimage of which is of positive Lebesgue measure).
We define a system of intervals in [0, 1] in the following way. Define ¢ : [0,1] — R

e(y) = A0, 9]))-

Hence ¢ is a continuous and increasing function, and its range is [0, 1].
Recall the tree V' and the random subtree S of §4.1. For each non-negative integer

nand v = (iy,...,4,) € V, define U, to be the closed interval with left endpoint
max<y € [0,1]: = —j}
{velo1:ew) >,

and right endpoint

min{y €0,1]: p(y) = Lin —i—il—j}

j=1 "7

Thus, for example, Uy = [max »~'(0), min ¢ ~'(1)]. Therefore for two vertices u and
v we have U, C U, if v < u; and U, and U, have at most one point in common if u

and v are incomparable. We also have
AfHU) = 1/Ly, (4.37)

for every v € V,.

Define the random compact sets C), as

C’n:U{UU v ES,}

and let .
C=()Cu
n=0

The intervals U, satisfy the assumptions of the upper estimate (§4.2). Hence from

Proposition 4.2.1 we obtain

EH(C) < 1. (4.38)

Set ¢ : K — [0,1] by
U(z) = AM(—o0, 2] N K).

Then 1 is a 1-Lipschitz function from K onto [0, 1] preserving the Lebesgue measure.
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For each v € V, set
M, =¢(f'(U,) U{max K}).

Then (4.37) implies that A(M,) = 1/L,, for every v € V,,. It is easy to check that
MM, N M,) = 0 if u and v are incomparable, and that M, C M, if v < u. It is
also easy to see that the sets f~1(U,) U {max K} are compact, thus the sets M, are
compact as well. Therefore the assumptions of the lower estimate (§4.3) are satisfied.
Set D, = U{M, : veS,}, and set D =, D,. We may apply Theorem 4.3.4

and obtain
EH*(D) > 1. (4.39)

Notice that D, = ¢ (f~!(C,) U {max K}). Since 1 is monotonic, there can be only
countably many points y € [0, 1] for which 1 ~!(y) is not a single point. This implies
that D and (), /71 (Cy) U {maxK}) = ¢(f1(C) U {max K}) can differ only
in countably many points. Since 1-Lipschitz functions do not increase Hausdorff

measures, from (4.39) we deduce
EH*(f~'(C)U{max K}) > 1.

Then we also have
EH*(f'(C)) > 1. (4.40)

From (4.38) we know that H*(C) is almost surely finite, and (4.38) and (4.40) imply
that
E(H(/71(C)) ~ H(C)) > 0.

Combining this with (4.40) gives that with positive probability all the inequalities
HE(C) < HA(fH(C)), H(C) < oo, H(fH(C)) >0 hold. O

Proposition 4.5.3. Let A C R be a Borel set of positive and finite Lebesqgue measure,
and let f : A — [0,1] be a Borel mapping. Then for every 0 < s < 1 there erists a
compact set C' C [0,1] such that H*(C) < oo, H*(f~*(C)) > 0 and

MA)H(C) < H(f7H(0)).

Proof. By applying a similarity transformation in the domain space, we may assume
without loss of generality that \(A) = 1.

By a repeated use of Luzin’s theorem we can find disjoint compact sets K; C A
(i =0,1,...) such that f is continuous on each K; and that ) >°  A(K;) = 1. By the
Lebesgue density theorem we may even suppose that the diameter of each K; is at

most twice its Lebesgue measure. Then we can find translation vectors ¢; € R such
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that Kz -+ tz C [O, 3], and that maX(Ki —+ tl) < min(KHl —+ th'Jrl). Put

[e.e]

K= U(Kz +t;).
i=0
Note that the closure of K" is K" U {sup K'}. Let ¢ : |J, K; — K’ be the unique
bijection for which | x, 1s Just the translation by ¢; for each i € N. Define g : K " —
[0,1] by g = fov~! Tt is easy to see that g is continuous. Thus we may apply
Lemma 4.5.1 to K = K’ U {sup K’} and the function g. We obtain a compact set
C C [0,1] such that H*(C) < H*(g(C)) where H*(C') < co and H*(g~'(C)) > 0.
Since Hausdorff measures are translation invariant and o-additive, the bijection v
preserves Hausdorff measures. Hence H*(¢'(C)) = H*(f~!(C)) and the proof is
finished. O

The following auxiliary lemma will be used in the proof of Theorem 4.5.5. Similar

statements surely exist in the literature, however, we could not find any reference.

Lemma 4.5.4. Let pi and v be atomless Borel measures on the unit circle T such
that 1 < p(T) < oo and p(T) < v(T). Then there exists a closed interval (an arc)
I C T such that u(I) =1 and v(I) > 1.

Proof. If u(T) = 1 then I can be chosen as T. Therefore we may assume that
p(T) > 1.

Suppose first that v(T) < oco. Fix some § > 0. We define a Borel measure fis
on T by setting ps = p + 0\, where A is the (normalized) Lebesgue measure on T.
Then ps(T) = pu(T)+ 6 and us possesses the property that every non-empty open set
has positive ps measure. For z € T define f(x) as the unique point in T for which
ps([z, f(x)]) = 1 holds. Thus f is a T — T homeomorphism. We claim that there
exists an interval Is C T for which v(Is5) > 1/(1 4 0) and ps(Is) = 1. Indeed, put

E={(z,y) €eT*:y €z, f(@)]} ={(z,y) e T>:z € [f(y), 4]}

Then
/T v(z, £ (2)]) dpis () = s x w(E) = / us([F~ (). ) doly) = / 1du(y) = v(T).

Therefore there exists some x € T such that v([z, f(z)]) us(T) > v(T). Then
v([z, f(z)]) > v(T)/(u(T) + ) > 1/(1 +0), and we can let I = [z, f(z)].
We can do the same and define I for all § > 0. We can choose a sequence 9,, — 0

such that [; converges to some closed interval I (meaning that the left endpoints
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converge to the left endpoint of I, and the right endpoints converge to the right
endpoint of 7). It is easy to check that p(I) = lim,, u(ls,) = lim, us, (I5,) = 1 and
also that v(I) = lim, v(15,) > lim, 1/(1+ d,,) = 1. Hence we are done with the case
v(T) < oo.

Now suppose that v(T) = oo. Since u(T) < oo, it is easy to cover T by finitely
many closed intervals [; such that p(I;) = 1 for every i. One of these intervals must

have infinite v measure, we can choose that as I. O

Theorem 4.5.5. Let f : [0,1] — [0,1] be Borel. Then for every 0 < s < 1 there
exists a compact set C' such that H*(C) < 1 and H*(f~1(C)) > 1.

Proof. This proof is based on a repeated use of Proposition 4.5.3. First we prove

that there exists a compact set C’ C [0, 1] such that
H(C') < oo, H(fHC))>1, and H(C) <H(fHC)). (4.41)

Suppose that such set C’ does not exist.

We will define compact sets Cy C [0, 1] for every positive integer k by a greedy
algorithm such that each f~!(C}) is of Lebesgue measure zero. Suppose that the
sets C; are already defined for i = 1,...,k — 1. (Note that this automatically holds
for k =1.) Put

A=\ s @),

this is a Borel set of Lebesgue measure 1. Apply Proposition 4.5.3 to the function
fla,. We conclude that there exists a compact set C, C [0, 1] such that

HA(Cy) < 00, H(Ay N F7HCy)) > 1/ny and HE(Ch) < H (A N f7Y(CL)) (4.42)

for some integer n;, > 2. Choose such a set C} for which we may choose n; to be

minimal. Our hypothesis that (4.41) cannot be satisfied implies that we must have
HE(fFHCy)) < 1. (4.43)

Therefore f~!(C}) is of Lebesgue measure zero.

It is easy to check that the sequence ny is monotone increasing. We claim that ny
stabilizes (that is, it does not tend to infinity). Indeed, let Ao, = [0, 1]\U;~, f~1(C)).
Apply Proposition 4.5.3 to the function f[4., to obtain a compact set Cy, C [0, 1]
such that

H(Cs) < 00, H¥ (Ao N fHCO%)) > 1/m and H*(Cs) < H (A N fHCy))
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for some positive integer m. It is easy to check n; < m holds for all k.
The sets AN f~1(C},) are pairwise disjoint. Let C' = C;U...UC,,. The previous

arguments imply that

H(FHC) Z e (U(A@- n f1<Ci))> =2 AN FTHG)) (a4

> 1. (4.45)

Vv
Sl

=1

From (4.42) and (4.43) we obtain

| A

Z Z S(A; N F7YCH)) < m. (4.46)

Combining (4.44) and (4.46) gives H*(C") < H*(f~*(C")). This, together with (4.45)
and (4.46) imply that our hypothesis that (4.41) cannot be satisfied was false, thus
there indeed exists a compact set C’ C [0, 1] such that (4.41) holds.

Now let C” C [0, 1] be a compact set such that (4.41) holds. If H*(C") < 1 then

we are done. Otherwise we define two Borel measures p and v on [0, 27) by setting
p(A) =H(C'NA) and v(A)=H'(f'(C'NA))

for every Borel set A C [0,27). The inequalities (4.41) imply that we may apply
Lemma 4.5.4 after identifying [0, 27) with T. We obtain two closed intervals I; C
[0,1] and Iy C [0, 1] (one of them may be empty) such that for C' = C' N (I, U I,) we
have H*(C) = 1 and H*(f~'(C)) > 1. This concludes the proof. O

From Theorem 4.5.5 we can easily deduce the following.

Theorem 4.5.6. Let f : [0,1] — [0, 1] be Borel measurable. Then for every( < s < 1
there exists a compact set C C [0,1] such that H*(C) =1 and H*(f(C)) < 1.

Proof. Let f : [0,1] — [0,1] be Borel measurable, and let 0 < s < 1. Apply-
ing Theorem 4.5.5 we obtain a compact set C' C [0,1] such that H*(C) < 1 and
H*(f~Y(C)) > 1. Then we can choose a compact set ¢’ C f~(C) such that
H*(C") = 1. Clearly H*(f(C")) < 1, thus the proof is finished. 0O

Remark 4.5.7. Many steps of the previous proofs could be simplified if one wanted
to prove only the following weaker version of Theorem 4.5.6. Let f : [0,1] — [0, 1]
be Borel measurable, let 0 < s < 1 and let € > 0. Then there exists a compact set
C C [0,1] such that H*(C') = 1 and H*(f(C)) < 1+¢. However, this weaker version
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would leave open the question whether there exists a Borel map f : [0, 1] — [0, 1] such
that H*(f(B)) > H*(B) for every Borel set B C [0, 1] satisfying 0 < H*(B) < oco.

Corollary 4.5.8. Let 0 < s < 1 and ¢ > 0, ¢ # 1 be fixzed. Then the measures
H* and ¢ - H* are not Borel isomorphic on [0,1]. (That is, there does not ezist a
Borel bijection f :[0,1] — [0,1] such that H*(B) = ¢ H*(f(B)) for every Borel set
B cC|0,1].) O

Remark 4.5.9. Obviously, H?® is Borel isomorphic to ¢ H® on the real line, as there

is a similarity which realizes the isomorphism.

Remark 4.5.10. Corollary 4.5.8 suggests an interesting ‘compactness’ property of
Borel measures. Let X be a Polish space, B the Borel o-algebra, and p an atomless
measure on B. Let us say that p is compressible if there exists a Borel map f : X — X
such that

p(B)

N(f_l(B)) < o

for every B € B. (There are many reasonable alternatives to this definition to
describe roughly the same phenomenon.) Then Theorem 4.5.5 implies that H® re-
stricted to [0, 1] (to the Borel subsets of [0, 1]) is not compressible. However, H® on
the real line is compressible (see Remark 4.5.9).

For o-finite measures there is a very simple characterization of compressibility.
If o is o-finite, then it is not compressible if and only if x is finite and non-zero;
that is, 0 < pu(X) < co. The non-trivial part of this statement follows from the well-
known isomorphism theorem of o-finite Borel measures; see for example [7, Theorem
17.41]. (That is, every atomless infinite o-finite Borel measure on a Polish space
is isomorphic to the Lebesgue measure on the real line, thus compressible.) Hence

compressibility can be interesting only for non-o-finite measures.

4.5.2 Results in Euclidean spaces

Proposition 4.5.11. Let A, B C R" be Borel sets satisfying 0 < \(A) = A\(B) < oo,
and let f : A — B be a Borel mapping. Let 0 < s < n. Then for every e > 0 there
exists a Borel set C' C B such that H*(C) < (1 +e)H*(f~1(C)), where H*(C) < oo
and H*(f~4(C)) > 0.

Lemma 4.5.12. Let F' C R" be a compact set of positive Lebesque measure, and let
0 > 0 be given. Let Q C R™ be an open cube of volume (1 + 0)A(F'). Then there
exists an injective Borel mapping ¢ : F' — @ which preserves Lebesque measure and

all Hausdorff measures.
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Proof. As Lebesgue and Hausdorff measures are isometry invariant, we may assume
without loss of generality that () is an axis-parallel cube of volume (1 + §)A(F). We
will show that F' can be divided into finitely many Borel subsets so that we can
choose 1) to be a translation on each of these subsets. Since Lebesgue and Hausdorff
measures are translation invariant and additive, this will give the proof.

Let r > 0 be some small number, and consider a covering of R"” by grid cubes
[0,7)" + rz, where z € Z™. For sufficiently small r, the compact set F' intersects
at most A(F)r~"(1+ d/2) grid cubes. Therefore these grid cubes can be translated
to fit in the cube @ (if r is again sufficiently small compared to §). From this we

conclude that the sought injective Borel mapping ¢ : F' — () exists. O

Remark 4.5.13. The proof of Proposition 4.5.11 is based on Proposition 4.5.3, using
Lemma 3.7.3 and Lemma 4.5.12. If in the statement of Proposition 4.5.11 we allowed
1+¢€ to be some large constant depending on n and s, then the proof would be rather
straightforward (but still lengthy). However, to get 1+ ¢, first we have to find a way
to iterate f in some sense before reducing the problem to the one dimensional case
(that is, Proposition 4.5.3).

Proposition 4.5.11 should be true even for ¢ = 0, but the author does not know

how to prove that, and we will not need that for the applications.

Proof of Proposition 4.5.11. Consider n and s fixed. Let ¢, s be the constant given
by Lemma 3.7.3. Let £ > 0 be so large that

keinel > 2. (4.47)

There are two possibilities.

(i) Either there exists a Borel set A’ C A such that

A(AT) > RA(F(AY));
(i) or for every Borel set B’ C R™,

MfTHB)) < kX(B). (4.48)

First we deal with case (i). We do not need the extra e in the Proposition in
this case. We can choose a compact set A, C A’ such that f restricted to A, is
continuous and that

A(AL) > BA(S(A) = RA(f(AL). (4.49)
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Let f. be the restriction of f to A,.

Let us fix some small 6 > 0. Let Q4 be an open cube of volume (1+J)A(A.), and
QB be an open cube of volume (1 + §)A(A,)/k. Using Lemma 4.5.12 (and (4.49)),
fix injective Borel functions ¢4 : A, — Q4 and ¥p : f.(A,) — @Qp preserving
Lebesgue and Hausdorff measures. Let s4 : Q4 — (0,1)" and sg : Qp — (0,1)"
be surjective similarity transformations. Also consider the Borel set E,, C [0,1) and
Borel bijection p,, : E, — [0,1)" given by Lemma 3.7.3. Let g be a Borel mapping
from p,*(sa(va(AL))) C[0,1) to [0,1) defined by

g=p, ospotpo fioyyosy op,.

Applying Proposition 4.5.3 to the function g and dimension s/n gives a compact set
C" C [0, 1] such that

vy (54(a(A)) " HI(CT) < 1 (g7HCN), (4.50)
where H*/"(C") < oo and H*/"(g~'(C")) > 0. It is easy to check that
Apn ' (s4(¥a(A)) = (1+0)IAA)TIMAL) = (1+0) 7" (4.51)
We define a Borel set
C =g osp' 0pa(C') C fu(AL).
Then

H(C) < H (55! (Pa(C"))) < M@p)*" H*(pa(C))
(@)™ ey H(C") = (14 0)™ (MA)/R)" e JHM(CT) - (4.52)

IN

where the third inequality was obtained by (3.10). On the other hand,

g7 H(C") = p, (sa@al£H(ON)),

and thus

H (g7 H(C) < e M (sa(Wal(£71(C)) =t MQa) ™" H (Wa(f,1(C)))
= i AQa) M HA(FH(C))
= L (L4 0) ™/ NA) TR (f71(C)). (4.53)
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Combining (4.50) with (4.51), (4.52) and (4.53) gives that
(1+38)"*/"k*"ep JH(C) < HE(£1(O)), (4.54)

where H*(C') < oo and H*(f;1(C)) > 0. We may assume that § < 1, thus from
(4.47) we obtain (1 + 5)*3/”163/”0%75 > 1. Therefore (4.54) implies

H(C) < H(fH(C) < H(f7H(O)),
since f, was just a restriction of f. Hence we are done with case (i).

Now let us assume that the second case holds: for every Borel set B’ C R",
AF(BY) < IA(B).

Let N be some large positive integer depending on € > 0 given in the Proposition.
Let 6 > 0 be very small depending on N. (The right choice of these constants will
become clear during the proof.)

Let A, be a compact subset of A such that A(A,) = (1 — J)A(A), and B, be a
compact subset of B such that A\(B,) = (1 — §)\(A). Let @ C R™ be an open cube
of volume A(A). Using Lemma 4.5.12, fix injective Borel functions ¥4 : A, — @ and
Yp @ B, — @ which preserve Lebesgue and Hausdorff measures. We define a Borel
map

g:a(An f7Y(BY)) — Q

by setting
g=tnof ol (4.55)

Let D = ¢4(A. N f~1(B,)) be the domain of g. Note that D C Q. We claim that

this domain is in fact a large portion of the cube (). Indeed,

A(D) = MA.N f7Y(B.))
= MAN fTH(B\ B.)) > MAL) = AM(f7Y(B\ B.))
> AA,) — ENB\ B.) = (1 — §)A(A) — kA(A)

(1= (k+1)8)AA) = (1 — (k + DONQ). (4.56)

Since ¥4 and ¥ p are Lebesgue measure preserving (where they are defined), it is
easy to check that (4.48) implies that A(g~*(B’)) < kA(B’) for all Borel sets B’ C R™.

For each positive integer j we have

Mg (Q\ D)) < KAQ\ D) < K (k + 1)0M(Q)
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by (4.56). Therefore

(U (Q\ D) ) <EN(k+1)0MQ) (4.57)

since k > 2 by (4.47). Set
D'=Dng Y(D)ng 3(D)n...ng V(D).
The set D' is the largest domain on which ¢" is defined. It is easy to check that

=D\ (¢ (Q\D)Ug*(Q\D)U...Uug " V(Q\D)).
The estimate (4.57) implies that A\(D') > A(D) — kN (k + 1)0A(Q). Combining this

with (4.56), for sufficiently small § we have

AD) = AQ)/2. (4.58)

Now consider a surjective similarity map sg : @ — (0,1)". Let E,, C [0,1) and
o B, — [0,1)" be the Borel set and the bijection of Lemma 3.7.3. We define a

function
b py (s(D') — [0,1)
by setting
h:pglosQogNosélopn.

Applying Proposition 4.5.3 to the function h and dimension s/n gives a compact set
C" C [0, 1] such that

Mo (s(D) " RO < M (HC), (4.59)
where H*/"(C") < oo and H*¥/"(h~1(C")) > 0. Clearly A(p,'(so(D"))) = Asg(D")) =
AMQ)TIND') > 1/2 by (4.58).

Define the Borel set C" = sél(pn(C')). Then
H(C") < MQ)"H (pa(C)) < MQ)™ e L H™(C). (4.60)

Since h1(C") = p, ' (so(g7N(C"))), we have

R (hTHE) < el M (s(g ™™ (CM)) = e MQ) /M H(g™N(C). (4.61)
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Combining (4.59) with (4.60) and (4.61) gives that
H(C") < 22 W),

where H*(C") < oo and H*(g ™ (C"”)) > 0. Then there must exist some j €
{0,1,..., N — 1} such that

H (g™ (C")) < (26,2 1 (g~ UHI(C")

and that H*(g77(C")) < oo and H*(g~U*+D(C")) > 0 (as easily verified). Set C" =
g7 (C") for such a j. We may choose N large enough (at the beginning of the proof)
to ensure (2¢,2)"/Y < (1+¢). Thus

H(C™) < (1+¢e)H (g H(C™) (4.62)

and H*(C") < oo and H*(g~*(C")) > 0. Recall that the domain of g = 1go f o,
is D =1a(A. N f71(B,)), see (4.55). Therefore we have

g (C") = balA N fH (W (C)).

Setting C' = 5" (C™) gives g~(C") = (A, N f71(C)). Since ¥4 and 5 preserve
Hausdorff measures, (4.62) implies that

HE(C) < HH(C") < (1+ &) H (AN FHO) < (1+e) H(FH(C)).

From the previous arguments it is also clear that H*(C') < co and H*(f~(C)) > 0,
therefore the proof is finished. O

By applying suitable similarity transformations in the domain and range spaces,

it is easy to deduce the following generalization of Proposition 4.5.11.

Proposition 4.5.14. Let A, B C R" be Borel sets of positive and finite Lebesque
measures, and let f : A — B be a Borel mapping. Let 0 < s < n. Then for every
e > 0 there exists a Borel set C' C B such that

MA)PH(C) < (1+2) MB) H(f(C)),

where H*(C') < oo and H*(f~(C)) > 0. O

Theorem 4.5.15. Let D C R"™ be Borel and let f : D — R™ be a Borel mapping.
Let 0 < s < n be fized. If f does not decrease the H® measure of any sets, then it
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does not decrease the Lebesque measure either. That is, if we have
H*(A) < H(f(A))
for every Borel set A C D, then

AA) < A(f(4))

for every Borel set A C D.

Remark 4.5.16. It is easy to check that Theorem 4.5.15 can be equivalently for-
mulated in the following way. Let D C R™ be Borel and let f : D — R™ be a Borel
mapping. Let 0 < s < n be fixed. If we have H*(f~'(B)) < H*(B) for every Borel
set B C R™, then we also have A\(f~(B)) < A(B) for every Borel set B C R".

Proof of Theorem 4.5.15. Suppose to the contrary that there exists a Borel set A C
D such that \M(A) > A(f(A)). We may suppose that A(A) < oo, otherwise we may
work with a subset of A instead. There exist an expanding similarity ¢) of R™ and a
Borel set B D 1(f(A)) such that A\(B) = A(A). Let € > 0 be so small that (1+¢)/*
is smaller than the similarity ratio of ¢). Applying Proposition 4.5.11 to the function
Yo fl,: A— B gives us a Borel set C' such that

H(C) < (1 +e)H((fla) (7 H(C)))
(1+eH (AN f(H(C)))
< (A+ea)H(f (v HO)), (4.63)

where H*(C) < oo and H*(f~ (¢ ~1(C))) > 0.
Let C" = ¢ 1(C). Then H*(C) > (1 + e)H*(C") or H*(C") = 0. In either case,
from (4.63) we obtain
H(C) <H(fH(C).
This contradicts the assumptions of the theorem for the Borel set f~1(C") € D. O

The author would like to thank David Preiss for some remarks which were essen-

tial for proving the following theorem.

Theorem 4.5.17. Let f: D — R" be a Borel mapping on a Borel set D C R", and
let 0 < s < n be fivred. If f does not increase the H®* measure of any sets, then it

does not increase the Lebesque measure either. That is, if

H*(A) = H*(f(A)) (4.64)
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for every Borel set A C D, then

AA) = A(f(4))

for every Borel set A C D.

Proof. Suppose to the contrary that there exists a Borel set A C D for which
AMA) < A(f(A)). Here f(A) is analytic and therefore Lebesgue measurable. The
Borel function f|4 is not necessarily invertible, however, we would like to take at
least some partial inverse of it. As David Preiss pointed out, we can always take a
Lebesgue measurable function g : f(A) — A such that f o g is the identity. This
follows, for example, from the uniformization theorem of Jankov and von Neumann
[7, Theorem 18.1].

Let us choose Borel sets A" D A and B C f(A) such that 0 < A(A") < A(B) < o0
and that g|p is Borel. (By Luzin’s theorem, we could even require that B is compact
and ¢g|p is continuous.) Applying Proposition 4.5.14 to g|p : B — A’ gives us a Borel
set C' C A’ such that

MB) H(C) < (1+¢) MA) 1 ((9]5) (), (4.65)

where H*(C) < oo and H*((g|5)"*(C)) > 0. Since fog is the identity, (g]5) ' (C) C
f(C). We may choose ¢ so small that (1+¢)A(A")* < A(B)?, and then (4.65) implies
that

H(C) <H(f(C)),

which contradicts (4.64). O

Remark 4.5.18. The analogue of Remark 4.5.16 does not apply to Theorem 4.5.17.
In fact, if we have a Borel mapping f : D — R™ on a Borel set D C R", and
He(f~1(B)) > H*(B) for every Borel set B C f(D), then we cannot conclude that
A f7YB)) > X\(B) for every Borel set B C f(D). See Example 4.5.19 for a hint. See
also Claim 4.5.20.

Example 4.5.19. Let f :[0,1) — [0,1) be the mapping f(x) = {2z} (where {} de-
notes fractional part). Then f preserves the Lebesque measure, but does not preserve

H® measures; that is,

but
H(f71(B)) = 2""H*(B)

for every Borel set B C [0,1), for every 0 < s < 1. O
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Claim 4.5.20. There exists a continuous function f : R — R such that f~'(x) has

Hausdorff dimension 1 for every x € R.

Sketch of proof. It is easy to construct a compact set A C R of Hausdorff dimension
1 such that A — A is nowhere dense. Then it is not hard to deduce that there exists
a compact uncountable set P C R such that A+ p; and A+ ps are disjoint whenever
p1,p2 € P are distinct. Fix a continuous surjective function g : P — [0,1]. Let
fo: A+ P — [0,1] be the function defined by fo(a + p) = g(p) (a € A, p € P).
This function is well-defined and continuous. Moreover, for every x € [0, 1], the set
fo'(z) contains a translated copy of A thus it is of Hausdorff dimension 1. It is easy

to extend fy to R so that it possesses all the desired properties. O

Theorem 4.5.21. Letn > 1 and let f : R™ — R™ be a Borel bijection. If f preserves
the s-dimensional Hausdorff measure for some 0 < s < n, then it also preserves the

Lebesque measure. That is, if

for every measurable set B C R™.

Proof. This is immediate from Theorem 4.5.15 and Theorem 4.5.17. Note that since
f is injective, we do not need the uniformization theorem of Jankov and von Neumann
this time. O
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Summary

Geometric measure theory is concerned with investigating subsets of Euclidean spaces
from measure theoretical point of view. Its basic tool is the Hausdorff measure. As
it is well-known, for every 0 < s < n there exists a measure H®, the so-called
s-dimensional Hausdorff measure on R". Therefore, it is a fundamental question
whether Hausdorff measures of different dimensions can be Borel isomorphic. This
was an unsolved problem for several years, attributed to B. Weiss and popularized
by D. Preiss.

Related to this problem, M. Elekes raised two questions which belong to the topic
of restriction theorems.

In Chapter 2 we answer the questions of M. Elekes by showing that for every
Lebesgue measurable function f : [0, 1] — R there exists a compact set C' C [0, 1] of
Hausdorff dimension 1/2 such that f|c is of bounded variation; and we also prove
that there exist compact sets C,, C [0, 1] of Hausdorff dimension 1 —« such that f|c,
is Holder-a (0 < o < 1). By the results of M. Elekes, these dimension bounds are
sharp.

In Chapter 3 we solve the above mentioned problem of D. Preiss and B. Weiss by
showing that Hausdorff measures of different dimensions are not Borel isomorphic.
In fact, we show that for every Borel measurable function f : R — R and for every
0 < s < 1 there exists a compact set C' of Hausdorff dimension s such that f(C) is
of Hausdorff dimension at most s.

The proof of this theorem is based on two types of random constructions. One
of them can be used to obtain a random Cantor set of dimension at most s almost
surely; and the other to obtain a random compact set of dimension at least s almost
surely.

In Chapter 4 we prove a quantitative sharp version of the previous result. Let
f:10,1] — [0,1] be Borel. Then for every 0 < s < 1 there exists a compact set C
such that H*(C) = 1 and H*(f(C)) < 1. This result implies that the measures H*
and ¢ - H?® (where ¢ > 0, ¢ # 1) on the unit interval [0, 1] are not Borel isomorphic.

Among others, we also prove the following consequences. Let f: D — R" be a
Borel mapping on a Borel set D C R", and let 0 < s < n. If f does not increase the
‘H? measure of any sets, then it does not increase the Lebesgue measure either.

Let f:R™ — R" be a Borel bijection. If f preserves the s-dimensional Hausdorff

measure for some 0 < s < n, then it also preserves the Lebesgue measure.



Magyar nyelvi osszefoglalas

A geometriai mértékelmélet foként az euklideszi terek részhalmazait vizsgalja mér-
tékelméleti szempontbdl. E vizsgdlatok alapvetd eszkoze a Hausdorff-mérték.
Ismert, hogy minden 0 < s < n szamhoz tartozik egy H°® mérték, az un. s-
dimenzios Hausdorff-mérték. Ezért alapvetoen fontos annak az eldontése, hogy
ezek a mértékek ténylegesen kiilonboznek-e, avagy lehetnek-e kiilonbozé dimenzids
Hausdorff-mértékek Borel-izomorfak. Ezt a hossz idon keresztiil megoldatlan prob-
lémat B. Weiss vetette fel és D. Preiss népszertsitette.

Ehhez a problémahoz kapcsolédik Elekes Marton két kérdése fiiggvények meg-
szoritasairol.

A 2. fejezetben megvalaszoljuk Elekes Marton kérdéseit megmutatva, hogy min-
den f :]0,1] — R Lebesgue-mérhet$ fiiggvényhez létezik egy olyan 1/2 Hausdorff-
dimenziés C' C [0, 1] kompakt halmaz, hogy f|c korldtos valtozasi; valamint minden
0 < a < 1 szamhoz létezik egy olyan 1 — o Hausdorff-dimenziés C,, C [0, 1] kompakt
halmaz, hogy f|c, Holder-a. Elekes Marton eredményei szerint ezek a tételek nem
javithatok.

A 3. fejezetben megvalaszoljuk D. Preiss és B. Weiss kérdését: megmutatjuk,
hogy kiilonb6z6 dimenzids Hausdorff-mértékek nem lehetnek Borel-izomorfak. Valo-
jaban azt bizonyitjuk, hogy minden f : R — R Borel-mérheto fiiggvényhez és minden
0 < s < 1 szamhoz 1étezik egy C' kompakt halmaz, amelynek Hausdorff-dimenzi6ja
s, és amelyre f(C) Hausdorff-dimenzidja legfeljebb s.

E tétel bizonyitdsa kétfajta véletlen konstrukcién alapszik. Az egyik olyan véletlen
Cantor-halmazokat ad, melyek dimenziéja majdnem biztosan legfeljebb s. A masikkal
pedig olyan véletlen kompakt halmazok kaphatok, amelyek dimenziéja majdnem biz-
tosan legalabb s.

A 4. fejezetben az el6z8 eredményt élesitjiitk. Legyen f : [0,1] — [0, 1] Borel-
mérhet6é. Ekkor minden 0 < s < 1 szdmhoz létezik egy C' C [0, 1] kompakt halmaz,
hogy H*(C) =1 és H*(f(C)) < 1. Ebbdl a tételbdl kovetkezik, hogy a H® és ¢ - H*
mértékek (ahol ¢ > 0 és ¢ # 1) a [0, 1] intervallumon nem Borel-izomorfak.

Az el6z6bol tovabbi tételeket is levezetiink. Legyen f : D — R"™ Borel-mérhet6
a D C R" Borel-halmazon, és legyen 0 < s < n. Ha f nem ndoveli egyetlen halmaz
H?-mértékét sem, akkor nem noveli egyetlen halmaz Lebesgue-mértékét sem.

Végil megmutatjuk, hogy ha egy f : R®" — R" Borel-bijekcié megérzi az s-
dimenziés Hausdorff-mértéket valamely 0 < s < n-re (vagyis H-mértéktartd), akkor

a Lebesgue-mértéket is megorzi.
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