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Chapter 1

Introduction

1.1 The questions

It was an unsolved problem for several years whether Hausdorff measures of different

dimensions can be Borel isomorphic. This problem was attributed to B. Weiss and

was popularized by D. Preiss. Let B denote the Borel σ-algebra of R, and let Hd

denote the d-dimensional Hausdorff measure; then the exact question reads as follows.

Question 1. Let 0 ≤ s, t ≤ 1 and s 6= t.

(i) Can the measure spaces (R,B,Hs) and (R,B,Ht) be isomorphic?

(ii) Does there exist a Borel bijection f : R → R such that for every Borel set B,

0 < Hs(B) <∞ ⇐⇒ 0 < Ht(f(B)) <∞?

The two parts are not equivalent but it is easy to see that a negative answer to

(ii) implies a negative answer to (i).

It is important to make the distinction that we are looking for Borel isomorphisms

only. M. Elekes [4] proved that if we assume the continuum hypothesis then the

measure spaces (R, MHs, Hs) and (R, MHt , Ht) are isomorphic whenever s, t ∈
(0, 1), where MHd denotes the σ-algebra of the sets which are measurable with

respect to Hd.

Remark 1.1.1. In fact, the bijection f : R → R that M. Elekes constructed (as-

suming the continuum hypothesis) satisfies that

• if B ⊂ R is Borel and Hs(B) <∞, then f(B) is Borel and Hs(B) = Ht(f(B));

• if f(B) is Borel and Ht(f(B)) <∞, then B is Borel and Hs(B) = Ht(f(B)).

However, this map f is not Borel measurable.
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M. Elekes, aiming to solve the original problem (Question 1), raised the following

question [4].

Question 2. Let 0 < α < 1. Can we find for every Borel (or continuous, or typical

continuous) function f : [0, 1] → R a Borel set B ⊂ [0, 1] of positive Hausdorff

dimension such that f restricted to B is Hölder continuous of exponent α?

How is this question related to the previous one? Suppose that we have an

answer to Question 2 saying that (for some fixed α) for every Borel function f there

exists a Borel set B of dimension β such that f is Hölder-α on B. As it is well-

known, this implies that f(B) has dimension at most β/α. It is easy to see that this

would answer (both parts of) Question 1 in the negative for those s and t for which

0 ≤ s < β < β/α < t ≤ 1 holds.

According to a theorem of P. Humke and M. Laczkovich [6], a typical continuous

function f : [0, 1] → R is not monotonic on any set of positive Hausdorff dimension.

Since every function of bounded variation is the sum of two monotonic functions,

this theorem motivated M. Elekes to raise an analogue of Question 2.

Question 3. Can we find for every Borel (or continuous, or typical continuous)

function f : [0, 1] → R a Borel set B ⊂ [0, 1] of positive Hausdorff dimension such

that f restricted to B is of bounded variation? Can we even find such a set of

dimension 1/2?

This problem has also been circulated by D. Preiss, and a similar question was

already asked by P. Humke and M. Laczkovich, see also Z. Buczolich [2, 3].

M. Elekes gave partial answers to Question 3 and Question 2 in [4]. He proved

that a typical continuous function f : [0, 1] → R is not of bounded variation on

any set of Hausdorff dimension larger than 1/2. Regarding Question 2, he also gave

an upper bound for the possible dimension by showing that for every 0 < α ≤ 1,

a typical continuous function is not Hölder-α on any set of dimension larger than

1 − α.

1.2 Restrictions of functions

We answer Question 2 and Question 3 by proving the following theorems. (In this

chapter all theorems are numbered as they will appear in the following chapters.)

Theorem 2.1.1. Let f : [0, 1] → R be Lebesgue measurable. Then there exists

a compact set C ⊂ [0, 1] of Hausdorff dimension 1/2 such that f |C is of bounded

variation.
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Theorem 2.1.2. Let f : [0, 1] → R be Lebesgue measurable and let 0 < α < 1. Then

there exists a compact set C ⊂ [0, 1] of Hausdorff dimension 1 − α such that f |C is

a Hölder-α function.

That is, the dimension bounds found by M. Elekes are sharp.

These theorems will be proved in Chapter 2. To prove Theorem 2.1.1, first we will

define discrete Hausdorff pre-measures on Z (the integers). Using this notion we will

be able to formalize and solve a discrete (quantitative) version of the problem. Then

suitable limit theorems will yield Theorem 2.1.1. It is possible to prove Theorem 2.1.2

in exactly the same way. However, we will present a simple proof instead, using a

theorem of P. Mattila about Hausdorff dimensions of plane sections.

We will also mention some generalizations of Theorems 2.1.1 and 2.1.2.

Remark 1.2.1. Theorems 2.1.1 and 2.1.2 belong to the family of restriction the-

orems. The setting of a restriction theorem usually is the following. Given some

function f from some class X, one tries to find a large set A such that f |A belongs

to some other (nice) class Y . Here largeness usually means that A is infinite, un-

countable, perfect, not porous, or A is of positive measure or of second category. It is

interesting that for the above questions of M. Elekes, the proper notion of largeness is

Hausdorff dimension. We refer to the survey article of J. B. Brown [1] on restriction

theorems and to the references therein.

Remark 1.2.2. Notice that if A ⊂ R and f : A → R is a given function, then

there exists a function g : R → R extending f (that is, g|A = f) such that the total

variation of g and f are equal and that f is Hölder-α if and only if g is Hölder-α

(0 < α ≤ 1). (Given f , one can easily define g on the closure of A, and then the linear

extension works.) This yields that for every function f : [0, 1] → R and β ∈ [0, 1]

the following are equivalent:

(i) there exists a set A of dimension at least β such that f |A is of bounded variation;

(ii) there exists a function g : [0, 1] → R of bounded variation such that the set

[f = g] (that is, {x : f(x) = g(x)}) has dimension at least β.

The same equivalence holds for the Hölder-α property. Thus Questions 3 and 2 and

Theorems 2.1.1 and 2.1.2 could have been formulated equivalently corresponding to

(ii) as well.
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1.3 Borel maps and Hausdorff dimension

As explained above, Theorem 2.1.2 gives some partial results on the isomorphism

problem of Hausdorff measures (Question 1). For example, applying the theorem for

α = 2/3 implies that the Hausdorff measures of dimension 1/3−ε and 1/2+ε cannot

be Borel isomorphic. However, this approach does not seem to answer Question 1 in

its full generality.

In Chapter 3 we will show the following.

Theorem 3.1.2. Let 0 ≤ d ≤ 1 and let f : R → R be Borel measurable. Then there

exists a compact set C of Hausdorff dimension d such that f(C) is of Hausdorff

dimension at most d.

Clearly, this theorem immediately implies that the Hausdorff measures of dif-

ferent dimensions cannot be Borel isomorphic; that is, we answer (both parts of)

Question 1 in the negative. The proof of Theorem 3.1.2 is based on two types of

random constructions. One of them can be used to obtain a random Cantor set of

dimension at most d almost surely; and the other to obtain a random compact set

of dimension at least d almost surely.

We will also prove the following generalization of Theorem 3.1.2.

Theorem 3.1.5. Let D ⊂ R
n be a Borel set and let f : D → R

m be Borel measurable.

Then for every 0 ≤ d ≤ 1 there exists a Borel set A ⊂ D such that dimA = d ·dimD

and dim f(A) ≤ d · dim f(D).

1.4 Borel maps and Hausdorff measures

After we have shown that Hausdorff measures of different dimensions are not Borel

isomorphic, another question arises. Can it happen that Hs and 2 ·Hs are Borel iso-

morphic? That is, does there exist a Borel bijection f such that 2·Hs(B) = Hs(f(B))

for every Borel set B? Of course, if we consider R (and R → R Borel bijections), then

the answer is positive: similarities of ratio 21/s realize the isomorphism. However, if

we consider the unit interval [0, 1] only, then the question is highly non-trivial. We

will answer this question in Chapter 4 by showing the following.

Theorem 4.5.6. Let f : [0, 1] → [0, 1] be Borel measurable. Then for every 0 < s < 1

there exists a compact set C ⊂ [0, 1] such that Hs(C) = 1 and Hs(f(C)) ≤ 1.

The proof of this theorem is similar to the proof of Theorem 3.1.2. That is, we

will use two types of random constructions. However, to prove that the random
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set produced by one of the constructions is sufficiently large, requires much more

effort than in the analogous proof in Chapter 3. This is the reason why we discuss

Theorem 3.1.2 separately, despite the fact that Theorem 4.5.6 is a stronger statement.

In Chapter 4 we will also prove several related theorems. Among others, we

will show that if f : R
n → R

n is a Borel bijection which preserves the s-dimensional

Hausdorff measure (for some 0 < s < n), then it also preserves the Lebesgue measure

(Theorem 4.5.21).

1.5 Notation and definitions

We say that the real function f is of bounded variation on the set A if f restricted

to A is a function of bounded variation. We say that the real function f is Hölder

continuous of exponent α (or briefly Hölder-α) on the set A if f |A is Hölder-α; that

is, there exists a real number B > 0 such that for every x, y ∈ A, |f(x) − f(y)| ≤
B|x− y|α.

Given ∅ 6= A ⊂ R and f : A → R, we denote the total variation of f by Var f ;

that is,

Var f = sup

{

n−1
∑

i=1

|f(xi+1) − f(xi)| : n ≥ 1, x1 < x2 < . . . < xn, xi ∈ A

}

.

Given ∅ 6= A ⊂ R and f : A→ R, we say that f ∈ B-Hölderα if

∀x, y ∈ A |f(x) − f(y)| ≤ B|x− y|α.

The word “typical” is used in the Baire category sense.

For x ∈ R, we denote by ⌈x⌉ the ceiling of x, that is, the smallest integer not

smaller than x.

We denote by N the set of non-negative integers. As usual in set theory, we

identify each n ∈ N with the set of its predecessors: n = {0, 1, . . . , n− 1}.
The Lebesgue measure on R and on any Euclidean space R

n will be denoted by

λ. It will be always clear from the context which Lebesgue measure we are using.

We denote the diameter of a set U ⊂ R
n by diamU .

Let Hs
∞(A) denote the s-dimensional Hausdorff pre-measure of the set A ⊂ R;

that is,

Hs
∞(A) = inf

{

∞
∑

i=1

(diam Ii)
s : A ⊂

∞
⋃

i=1

Ii

}

.
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Let Hs(A) denote the s-dimensional Hausdorff measure of A ⊂ R
n; that is,

Hs(A) = lim
δց0

Hs
δ(A),

where

Hs
δ(A) = inf

{

∞
∑

i=1

(diamUi)
s : A ⊂

∞
⋃

i=1

Ui, diamUi ≤ δ

}

.

The Hausdorff dimension of a set A is then defined as

dimA = inf{s > 0 : Hs(A) = 0}.

By dimension we always mean the Hausdorff dimension.

We call an interval non-trivial if it has positive length. The diameter of an interval

I will sometimes be denoted by |I|. However, for finite sets S, |S| will denote the

number of elements of S. For multi-indices i, |i| will denote the length of i. The

intended interpretation will be always clear from the context.

If µ is a Borel measure on R, we will denote its support by supp µ; that is,

supp µ = {x ∈ R : ∀ r > 0 µ((x− r, x+ r)) > 0}.

We say that µ is supported on K if supp µ ⊂ K.

Probability will be denoted by P. The expected value of a random variable X will

be denoted by EX or E(X). Conditional expectation will be denoted by E(X|A)

(where A is an event of positive probability). We denote the indicator variable by 1;

that is, 1A = 1 if the event A is satisfied and zero otherwise.

Let f : D → R
m be an injective map defined on D ⊂ R

n. For any set A ⊂ R
n,

we define f(A) to be f(A ∩ D). (If we regard f as (f−1)−1, this is the generally

accepted notation.)

Let µ be a Borel measure on R
n (for example λ or Hs). Let D ⊂ R

n be a Borel

set, and let f : D → R
n be a Borel mapping. We say that f preserves the measure µ,

if for every Borel set B ⊂ f(D) we have µ(f−1(B)) = µ(B). (Note that this implies

that we have µ(f−1(B)) ≤ µ(B) for every Borel set B ⊂ R
n.)

We will use many times in our proofs (without explicitly stating) that the image

of a Borel set by a Borel mapping is analytic, thus Lebesgue and Hs-measurable.

We will also use the fact that the image of a Borel set by an injective Borel mapping

is Borel. We will also need that if A ⊂ R
n is analytic and Hs(A) > 1, then there

exists a compact set C ⊂ A such that Hs(C) = 1. See [10, Theorem 8.13] or [5,

Theorem 471S].



Chapter 2

Hölder restrictions and restrictions

of bounded variation

2.1 Outline

As we stated in the Introduction (§1.2), our goal here is to answer Question 2 and

Question 3 by proving the following theorems.

Theorem 2.1.1. Let f : [0, 1] → R be Lebesgue measurable. Then there exists

a compact set C ⊂ [0, 1] of Hausdorff dimension 1/2 such that f |C is of bounded

variation.

Theorem 2.1.2. Let f : [0, 1] → R be Lebesgue measurable and let 0 < α < 1. Then

there exists a compact set C ⊂ [0, 1] of Hausdorff dimension 1 − α such that f |C is

a Hölder-α function.

From the results of M. Elekes [4] it follows that these theorems are sharp.

The chapter will be organized as follows. First, in §2.2, we define discrete Haus-

dorff pre-measures on the integers. Using this notion we formalize and solve a dis-

crete (quantitative) version of Theorem 2.1.1 in §2.3. Then in §2.4 we prove suitable

“limit theorems”, and finally deduce Theorem 2.1.1. In §2.5 we present a simple

proof of Theorem 2.1.2, using a theorem of P. Mattila about Hausdorff dimensions

of plane sections. Finally, in §2.6, we mention a variant of Theorem 2.1.1 regarding

generalized variations and we extend our theorems to Euclidean spaces.

We note that Theorem 2.1.2 can be proved in exactly the same way as Theo-

rem 2.1.1. Such a proof of Theorem 2.1.2 (and the proof of Theorem 2.1.1 presented

here) can be found in [9].
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2.2 Discrete Hausdorff pre-measure

We define the discrete Hausdorff pre-measure on the subsets of the set of integers

Z. The covering sets will be intervals I ⊂ Z, and here by interval we mean a set of

finitely many consecutive integers. By |I| we denote the number of elements of I.

Let d(X, Y ) denote the usual distance of X and Y (X, Y ⊂ R). If X or Y is

empty, then we define their distance to be ∞.

Definition 2.2.1. Let 0 < s ≤ 1. The discrete Hausdorff pre-measure of dimension

s is the function µs : P(Z) → [0,∞] defined by

µs(A) = min
{

∑

I∈I

|I|s : I is a collection of intervals of Z such that A ⊂
⋃

I
}

.

It is reasonable to call µs a pre-measure since it is subadditive.

Lemma 2.2.2. Let 0 < s ≤ 1 and A,B ⊂ Z. Then

µs(A ∪B) ≤ µs(A) + µs(B).

We also have a lower bound of µs(A ∪ B).

Lemma 2.2.3. Let 0 < s ≤ 1 and A,B ⊂ Z. Then

µs(A ∪B) ≥ min
(

d(A,B)s, µs(A) + µs(B)
)

.

Proof. Consider a covering of A∪B by intervals of integers. If there is an interval of

size at least d(A,B) then the inequality clearly holds. Suppose that every interval

is of size at most d(A,B). Then each interval can intersect either A or B but not

both, so we can split the covering into two parts to cover A and to cover B, which

corresponds to the case µs(A ∪ B) ≥ µs(A) + µs(B).

The following statement connects µs to the (real) Hausdorff pre-measure Hs
∞.

Lemma 2.2.4. Let 0 < s ≤ 1. For a set A ⊂ Z, let us define

A∗ def
=
⋃

i

{

[i, i+ 1
2
] : i ∈ A

}

.

Then

Hs
∞(A∗) ≤ µs(A) ≤ 2s · Hs

∞(A∗).
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Proof. We may suppose that A is finite (that is, bounded), otherwise Hs
∞(A∗) =

µs(A) = ∞.

We immediately obtain the inequality Hs
∞(A∗) ≤ µs(A) if we change each cover-

ing interval I ⊂ Z of A to the interval [min I, max I + 1].

Since A∗ is compact, it is enough to consider finite coverings of A∗ with closed

intervals to calculate Hs
∞(A∗). Notice that we may suppose that the covering in-

tervals are disjoint, since (a + b)s ≤ as + bs for every a, b ≥ 0. Hence we may also

suppose that all the intervals covering A∗ are of the form [n, n + l + 1
2
] (of length

l + 1
2
) for some integer n and l ∈ N. Hence one can cover A by the corresponding

intervals {n, n+1, . . . , n+ l} of size l+ 1. Since (l+1)s ≤ 2s(l+ 1
2
)s for every l ∈ N,

we obtain the inequality µs(A) ≤ 2s · Hs
∞(A∗).

Definition 2.2.5. Let A ⊂ Z. We say that a mapping ϕ : A→ Z is non-contractive

if |ϕ(x) − ϕ(y)| ≥ |x− y| for every x, y ∈ A.

In the sequel we will use the following observation many times.

Lemma 2.2.6. If ϕ : A→ Z is non-contractive, then µs(ϕ(A)) ≥ µs(A).

The proof is left to the reader.

2.3 Bounded variation — discrete version

2.3.1 Overview of the proof

Before we start we give an informal overview of the proof of Theorem 2.1.1.

So let f : [0, 1] → R be measurable. Then f is continuous on some compact set

of positive measure. Let us just suppose that f is continuous on the whole interval

[0, 1], it will not make much difference. We would like to prove that f possesses the

property that there exists a set C ⊂ [0, 1] of large dimension such that f |C has finite

variation. The key observation is that this property (or at least a quantitative version

of this property) goes through uniform convergence. That is, if some (not necessarily

continuous) functions fn converge uniformly to f , and there exist compact sets Cn

such that

Hs
∞(Cn) ≥ ε and Var fn|Cn

≤ B

for some ε > 0 and finite B, then there exists a compact set C such that

Hs
∞(C) ≥ ε and Var f |C ≤ B. (2.1)
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(Note that Hs
∞(C) > 0 implies that the dimension of C is at least s.) Hence it is

enough to show that this (quantitative) property holds for a dense family of functions.

We choose the family of those functions g : [0, 1] → R which are piecewise constant

on the intervals [ i
n
, i+1

n
) (i = 0, . . . , n− 1). But for simplicity, we will deal with the

discrete functions h : n→ R related to g by h(i) = g( i
n
) (i = 0, . . . , n− 1).

Now it is not difficult (using Lemma 2.2.4) to relate the following two statements:

(i) there exists a compact set C ⊂ [0, 1] such that Hs
∞(C) is large and Var g|C is

small;

(ii) there exists a set A ⊂ n such that µs(A) is large and Varh|A is small.

Thus we only need to show that statement (ii) (after properly formulated) holds

for all n and all functions h : n → R, when s = 1/2. (Unfortunately, we can show

this for any fixed s < 1/2 only, but this will be enough to prove Theorem 2.1.1.)

In some sense, the proof will go by induction on n. This statement is what we will

formulate precisely and prove in this section.

2.3.2 Formalizing the discrete problem

In the following definition n is a positive integer, B is a positive real number, and

s, α ∈ (0, 1].

Definition 2.3.1.

b(n,B, s) = min
f :n→[0,1]

max
A⊂n

{

µs(A) : Var f |A ≤ B
}

.

Notice that b is monotone increasing both in n and in B. Clearly, b(n,B, s) ≥ 1

for all n, since the µs-measure of a single point is 1.

The discrete analogue of Theorem 2.1.1 is the following.

Theorem 2.3.2. For every 0 < s < 1/2 and B > 0,

inf
n≥1

b(n,B, s)

ns
> 0.

Note that the denominator ns is present because, when we exchange a function

g : [0, 1] → R for the function h : n→ R (as in the informal overview at the beginning

of this section), there is a scaling by a factor of n, and this changes s-dimensional

measures by a factor of ns.
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2.3.3 Solution of the discrete problem

First we state and prove two main “induction steps”, and then what remains, will

be just calculations.

Lemma 2.3.3. Fix a positive integer K. Then for every s < 1/2 and B > 0

b(n,KB +K − 1, s) ≥ min
( (

n
4K

)s
, K · b(⌈ n

2K
⌉, B, s)

)

for every n ∈ N large enough (depending only on K).

Proof. Let us choose K intervals of integers I1, . . . , IK inside n = {0, 1, . . . , n− 1} of

size
⌈

n
2K

⌉

such that the distance of any two of them is at least n
4K

; clearly this can

be done if n is sufficiently large (depending on K).

Fix any function f : n→ [0, 1]. We have to find a set A ⊂ n of large µs-measure

such that Var f |A ≤ KB + K − 1. For each interval Ij, consider the function f |Ij
.

Since |Ij| = ⌈ n
2K

⌉, by the definition of b(⌈ n
2K

⌉, B, s) we can find a set Aj ⊂ Ij such

that

Var f |Aj
≤ B and µs(Aj) ≥ b(⌈ n

2K
⌉, B, s).

Put A = ∪K
j=1Aj. Applying Lemma 2.2.3 inductively to the sets Aj we get

µs(A) ≥ min
( (

n
4K

)s
, K · b(⌈ n

2K
⌉, B, s)

)

. (2.2)

Since Var f |A ≤ ∑K
j=1 Var f |Aj

+ (K − 1) ≤ KB + K − 1, (2.2) instantly gives

Lemma 2.3.3.

Lemma 2.3.4. For each positive integer L,

b(n,B, s) ≥ b(⌈n
L
⌉, BL, s).

Proof. Fix any function f : n → [0, 1]. We have to find a set A ⊂ n such that

Var f |A ≤ B and that µs(A) ≥ b(⌈n
L
⌉, BL, s). For each i ∈ L let

Si = {x ∈ n : i
L
≤ f(x) ≤ i+1

L
}.

There exists an i ∈ L such that |Si| ≥ ⌈n
L
⌉; let S be a subset of this Si of size exactly

|S| = ⌈n
L
⌉. Let ϕ : |S| → S be the enumeration of S; that is, ϕ is the monotone

increasing bijection from |S| to S. Thus ϕ is a non-contractive mapping. Define

g : |S| → [0, 1] by setting

g(x) = L ·
(

f(ϕ(x)) − i
L

)

. (2.3)
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By the definition of b(|S|, BL, s), there exists a set T ⊂ |S| such that

µs(T ) ≥ b(|S|, BL, s) and Var g|T ≤ BL.

Using Lemma 2.2.6 and (2.3),

µs(ϕ(T )) ≥ µs(T ) ≥ b(|S|, BL, s) and Var f |ϕ(T ) = 1
L
· Var g|T ≤ B.

Thus A can be chosen as ϕ(T ), which proves this Lemma.

Proof of Theorem 2.3.2. We consider s < 1/2 to be fixed. Let K be a sufficiently

large positive integer, in fact, let K > 22sK2s hold. First we will prove the Theorem

for B = 2K − 1.

Let us apply Lemma 2.3.3 with B = 1. We obtain an N ∈ N such that for all

n ≥ N ,

b(n, 2K − 1, s) ≥ min
( (

n
4K

)s
, K · b(⌈ n

2K
⌉, 1, s)

)

.

Now apply Lemma 2.3.4 to the right hand side with L = 2K − 1. We obtain

b(n, 2K − 1, s) ≥ min
( (

n
4K

)s
, K · b(⌈ ⌈ n

2K
⌉

2K − 1
⌉, 2K − 1, s)

)

(n ≥ N).

Since b is monotone increasing in its first coordinate,

b(n, 2K − 1, s) ≥ min
( (

n
4K

)s
, K · b(⌈ n

2K(2K−1)
⌉, 2K − 1, s)

)

(n ≥ N). (2.4)

Fix an arbitrary positive integer n0, and define the sequence

ni+1 = ⌈ ni

2K(2K−1)
⌉ (i ∈ N). (2.5)

Let j be the smallest nonnegative integer for which either

b(nj , 2K − 1, s) ≥
( nj

4K

)s

or nj ≤ N holds. Thus from (2.4) we obtain

b(ni, 2K − 1, s) ≥ K · b(ni+1, 2K − 1, s) (0 ≤ i < j), (2.6)

and

b(nj , 2K − 1, s) ≥
( nj

4KN

)s
, (2.7)

since if nj ≤ N , then the right hand side is smaller than 1, which is a trivial lower
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bound. Thus from (2.6) and (2.7) we get

b(n0, 2K − 1, s) ≥ Kj ·
( nj

4KN

)s
.

Using (2.5) we obtain the lower bound

b(n0, 2K − 1, s) ≥ Kj ·
( nj

4KN

)s ≥ Kj ·
(

1
4KN

)s
ns

0

(

1
2K(2K−1)

)js

=
(

1
4KN

)s
ns

0

(

K
2sKs(2K−1)s

)j ≥
(

1
4KN

)s
ns

0 (2.8)

provided that K
2sKs(2K−1)s > 1, which clearly holds since K was chosen so that K >

22sK2s holds. Since n0 was arbitrary, from (2.8) we immediately obtain that

inf
n≥1

b(n, 2K − 1, s)

ns
≥
(

1
4KN

)s
> 0. (2.9)

Now let B > 0 be arbitrary. Let L ∈ N be so large that BL ≥ 2K − 1 holds. Using

Lemma 2.3.4, the fact that b is monotone increasing in its second coordinate, and

then (2.9),

inf
n≥1

b(n,B, s)

ns
≥ inf

n≥1

b(⌈n
L
⌉, BL, s)
ns

≥ inf
n≥1

b(⌈n
L
⌉, 2K − 1, s)

ns

≥ inf
n′≥1

b(n′, 2K − 1, s)

(n′L)s
> 0.

2.4 Bounded variation — the continuous case

2.4.1 Limit theorems

The informal overview in §2.3.1 contains a precise statement (2.1) about uniform

convergence. We will not prove that statement for two reasons. On the one hand,

it is not sufficient for us, because we also have to deal with functions f : [0, 1] → R

which are not continuous, just measurable. On the other hand, we do not need the

statement in this generality, since it is more convenient to prove a similar theorem

for some specific sequence fn only.

Let K ⊂ R be compact, and let f : K → R be continuous. Let

Kn =
⋃

{

[ i
n
, i+1

n
] : K ∩ [ i

n
, i+1

n
] 6= ∅, i ∈ Z

}

,
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and define fn : Kn → R by setting

fn(x) = f
(

min(K ∩ [ i
n
, i+1

n
])
)

where i is the largest integer for which x ∈ [ i
n
, i+1

n
] ⊂ Kn holds. Thus fn is constant

on each of the intervals [ i
n
, i+1

n
).

For X ⊂ R, let B(X, r) denote the r-neighborhood of the set X.

Lemma 2.4.1. Let 0 < s ≤ 1. Suppose that Cn ⊂ Kn are compact sets with

Hs
∞(Cn) ≥ ε (n ∈ N) for some ε > 0. Let C be an accumulation point of (Cn) in the

Hausdorff metric. Then C ⊂ K and Hs
∞(C) ≥ ε.

Proof. Since lim supKn
def
=
⋂

N

⋃∞
n=N Kn = K, C ⊂ K is trivial. Suppose to the

contrary that Hs
∞(C) < ε. Then there exists an r > 0 such that Hs

∞(B(C, r)) < ε

also holds. There exists an n such that Cn ⊂ B(C, r) (since C is an accumulation

point), which contradicts the fact that Hs
∞(Cn) ≥ ε.

Lemma 2.4.2. Suppose that Cn ⊂ Kn are compact sets such that Var fn|Cn
≤ B for

some B ≥ 0. Let C be an accumulation point of (Cn) in the Hausdorff metric. Then

Var f |C ≤ B also holds.

Proof. We know from the previous proof that C ⊂ K. Let nj be a sequence of

integers such that Cnj
→ C in the Hausdorff metric. Let x1 < x2 < . . . < xk be

points in C. Let ε > 0 be arbitrary. There exist an n = nj and δ > 0 such that

C ⊂ B(Cn, δ) and |f(x) − f(y)| < ε if |x− y| < δ + 1
n

(x, y ∈ K).

Let yi ∈ Cn be such that |xi − yi| < δ (i = 1, . . . , k) and y1 ≤ y2 ≤ · · · ≤ yk. By

the definition of fn, there exist zi ∈ K such that fn(yi) = f(zi) and |zi − yi| ≤ 1
n

(i = 1, . . . , k).

Since |zi − xi| < δ + 1
n
, we have |f(zi) − f(xi)| < ε. Using that Var fn|Cn

≤ B,

we have

B ≥
k−1
∑

i=1

|fn(yi) − fn(yi+1)| =

k−1
∑

i=1

|f(zi) − f(zi+1)|,

and thus
k−1
∑

i=1

|f(xi) − f(xi+1)| ≤ B + 2kε.

This holds for all ε > 0, therefore the total variation of f |C is at most B.

Note that the sets Cn in the previous lemmas are all contained in a compact

interval, hence the sequence (Cn) has an accumulation point in the Hausdorff metric.
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2.4.2 Proof of Theorem 2.1.1

Proposition 2.4.3. Let K ⊂ R be a compact set of positive Lebesgue measure, let

f : K → R be continuous, and let s < 1/2, B > 0. There exists a compact set

C ⊂ K of Hausdorff dimension at least s such that Var f |C ≤ B.

Proof. We may suppose without loss of generality that f(K) ⊂ [0, 1]. Let Kn and

fn be defined as above.

Recall that we denote the Lebesgue measure by λ. Let λn = n · λ(Kn); this is a

positive integer. Then

Kn =

[

ϕn(0)

n
,
ϕn(0) + 1

n

]

∪ . . . ∪
[

ϕn(λn − 1)

n
,
ϕn(λn − 1) + 1

n

]

for some integers ϕn(0) < ϕn(1) < . . . < ϕn(λn − 1). Note that ϕn : λn → Z is a

non-contractive mapping. Define the function gn : λn → [0, 1] by setting

gn(k) = fn(ϕn(k)
n

) (k ∈ λn). (2.10)

Let us apply Theorem 2.3.2 to the functions gn. We obtain some ε > 0 and subsets

An ⊂ λn such that µs(An) ≥ λs
nε ≥ λ(K)snsε and Var gn|An

≤ B.

Let Cn = n−1 · (ϕn(An))∗ (see the definition of ∗ in Lemma 2.2.4), thus Cn ⊂ Kn.

It is easy to see that we have Var fn|Cn
= Var gn|An

≤ B. From Lemma 2.2.4 we

obtain

Hs
∞(Cn) = n−sHs

∞((ϕn(An))∗) ≥ n−s2−sµs(ϕn(An)),

and since ϕn is a non-contractive mapping we get from Lemma 2.2.6 that

Hs
∞(Cn) ≥ n−s2−sµs(An) ≥ n−s2−sλ(K)snsε = λ(K)s2−sε.

Now choose an accumulation point C of (Cn). We immediately see from Lemma 2.4.1

that C ⊂ K, Hs
∞(C) ≥ λ(K)s2−sε > 0, thus the Hausdorff dimension of C is at least

s; and from Lemma 2.4.2 we conclude that Var f |C ≤ B.

Now we are ready to prove our main theorem about bounded variation.

Proof of Theorem 2.1.1. There exists a compact set K ⊂ [0, 1] of positive Lebesgue

measure such that f |K is continuous. We may suppose that every non-empty intersec-

tion of K with an open interval has positive Lebesgue measure, since we may remove

those non-empty intersections from K which are of Lebesgue measure zero (and we

need to remove only countably many). Therefore we may use Proposition 2.4.3 not

only for K, but for any non-empty portion of K.
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Let x ∈ K, and let xn ց x be a strictly decreasing sequence in K converging fast

enough to ensure
∞
∑

n=1

sup
y∈[x,xn]∩K

|f(y) − f(x)| ≤ 1.

For each positive integer n, let us apply Proposition 2.4.3 to the function f restricted

to K ∩ [x2n+2, x2n] to obtain a compact set Cn ⊂ K ∩ [x2n+2, x2n] of dimension at

least 1/2 − 1/n such that Var f |Cn ≤ 2−n. Let C be the closure of
⋃

n Cn (which is
⋃

n Cn ∪ {x}). Thus C is of dimension at least 1/2 and Var f |C ≤ 1 +
∑

n 2−n = 2.

We may choose a compact subset of C of dimension exactly 1/2 (see e.g. [10]),

which concludes the proof.

2.5 Hölder restrictions

2.5.1 Overview of the proof

We give an informal outline of the proof of Theorem 2.1.2.

Let 1 ≤ q < p be integers. A theorem of Mattila states that if A ⊂ R
p is an

analytic set and Hs(A) > 0, then we can find “many” q-dimensional planes W ⊂ R
p

such that dim(A ∩W ) ≥ s+ q − p.

Let m < n and let f : R
n → R

m be Borel measurable. Let A ⊂ R
n × R

m

be the graph of f . Then clearly Hn(A) > 0. Applying the previous theorem with

p = n + m and q = n, we obtain an affine mapping ϕ : R
n → R

m such that

dim(A ∩ graphϕ) ≥ n + n − (n + m) = n − m. This implies that f is actually

linear (affine) restricted to a set of dimension n−m. Thus f is Lipschitz on a set of

dimension n−m.

We can transform this result to the case of R → R functions. It is possible to

map a “large portion” of R to a “large portion” of R
n by a Hölder-1/n mapping

such that its inverse is Hölder-n (see §2.5.2 and Claim 2.5.1). Now let us pretend

that there is a Hölder-1/n mapping pn : R → R
n such that its inverse is Hölder-n,

and that there is an analogous map pm : R → R
m. Let g : R → R be an arbitrary

Borel function. Set f = pm ◦ g ◦ p−1
n , this is an R

n → R
m map. Apply the previous

result to f . Since f is Lipschitz on some C ⊂ R
n of dimension n −m, the function

g = p−1
m ◦ f ◦ pn must be Hölder-m/n on the set p−1

n (C) of dimension 1 −m/n.

A suitable approximation of any number 0 < α < 1 by fractions m/n would give

Theorem 2.1.2.
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2.5.2 Preliminaries

Let us recall some notions about self-similar sets. We say that a non-empty compact

set F ⊂ R
n is a self-similar set satisfying the strong separation condition if there

exist contractive similarities ϕi : R
n → R

n (i = 1, 2, . . . , k), k ≥ 2, such that

F = ϕ1(F ) ∪∗ ϕ2(F ) ∪∗ . . . ∪∗ ϕk(F ),

where ∪∗ denotes disjoint union. If the similarity ratio of ϕi is denoted by ri, then the

Hausdorff dimension s of F is determined by the well-known equation (see e.g. [10])

k
∑

i=1

rs
i = 1.

It is also known that Hs(F ) is positive and finite. Setting Ωk = {1, 2, . . . , k}N (the

coding space), we can define the coding map π : Ωk → F by

π((i0, i1, . . .)) = lim
m→∞

ϕi0 ◦ ϕi1 ◦ · · · ◦ ϕim(0).

Now let 0 < ε < 1, and let n ≥ 1 be an integer. Let r be such that

2nr1−ε = 1 (2.11)

holds. Then r < 1/2n. For i = 1, . . . , 2n we define similarities ϕi : R → R by setting

ϕi(x) = rx+
1 − r

2n − 1
(i− 1) (i = 1, . . . , 2n).

Then ϕi([0, 1]) are disjoint compact intervals in [0, 1]. Let En,ε be the self-similar set

generated by the similarities ϕ1, ϕ2, . . . , ϕ2n ; that is,

En,ε = ϕ1(En,ε) ∪∗ ϕ2(En,ε) ∪∗ . . . ∪∗ ϕ2n(En,ε) ⊂ [0, 1].

From equation (2.11) we conclude that the Hausdorff dimension of En,ε is 1 − ε.

We also define a self-similar set in R
n. Taking a direct product of the self-similar

set E1,ε ⊂ [0, 1], let

Fn,ε =

n
∏

i=1

E1,ε ⊂ [0, 1]n

Then Fn,ε is also self-similar, and its Hausdorff dimension is n(1 − ε). Clearly Fn,ε

can be generated by 2n similarities of scaling ratio r1/n.
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Claim 2.5.1. There exists a bijection pn : En,ε → Fn,ε such that pn is Hölder-1/n

and its inverse is Hölder-n.

Proof. The self-similar sets En,ε and Fn,ε have the same coding space Ω2n . It is easy

to verify that pn = πF ◦ π−1
E satisfies the requirements where πF and πE are the

coding maps of Fn,ε and En,ε, respectively.

Claim 2.5.2. There exists a monotonic continuous surjective function g : En,ε →
[0, 1] such that g is Hölder-(1 − ε).

Proof. We leave the proof to the reader.

2.5.3 Proofs

Recall that we say that f ∈ B-Hölderα (where B > 0) if |f(x) − f(y)| ≤ B|x − y|α
for every x and y in the domain of f .

Proposition 2.5.3. Let K ⊂ [0, 1] be a compact set of positive Lebesgue measure,

and let f : K → R be continuous. Let 0 < α < 1, and s < 1 − α. There exists a

compact set C ⊂ K of Hausdorff dimension at least s such that f |C ∈ 1-Hölderα.

Proof. There exists a compact set K ′ ⊂ K of positive Lebesgue measure such that

f(K ′) ⊂ [y, y + 1] for some y ∈ R. Therefore we may suppose without loss of

generality that f(K) ⊂ [0, 1].

Choose positive integers 1 ≤ m < n and some 0 < ε < 1 such that

(1 − ε)m/n ≥ α and 1 − ε−m/n ≥ s. (2.12)

Let c > 0 be sufficiently small (depending on n, m, and ε).

Let µ be the Borel measure obtained by restricting H1−ε to the self-similar set

En,ε. Then 0 < µ(R) <∞. Let G = {(x, y) ∈ R
2 : x+ y ∈ K}. Since λ(K) > 0, an

application of Fubini’s theorem yields that

∫

R

µ(K + t) dλ(t) = λ× µ(G) =

∫

R

λ(K + t) dµ(t) > 0.

Therefore there exists some t ∈ R such that µ(K + t) > 0. We may suppose without

loss of generality that in fact t = 0; that is, µ(K) > 0. Then H1−ε(K ∩ En,ε) > 0.

Let g : Em,ε → [0, 1] be the function given by Claim 2.5.2. Let h : [0, 1] → Em,ε be

a Borel function such that g ◦h is the identity. Then h◦f |K∩En,ε : K∩En,ε → Em,ε is

a Borel mapping. Since H1−ε(K ∩En,ε) > 0, by Luzin’s theorem [12, Theorem 2.24]
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there exists a compact set D ⊂ K ∩En,ε of positive H1−ε measure such that h ◦ f |D
is continuous.

Let pn : En,ε → Fn,ε and pm : Em,ε → Fm,ε be the mappings given by Claim 2.5.1.

Let Dn = pn(D) ⊂ Fn,ε; this is a compact set. We define a continuous function

ψ : Dn → Fm,ε ⊂ R
m by setting

ψ = pm ◦ h ◦ f |D ◦ p−1
n |Dn. (2.13)

Since the mapping pn is Hölder-1/n and its inverse is Hölder-n, from H1−ε(D) > 0

we obtain Hn(1−ε)(Dn) > 0. Define the compact set

A = graphψ = {(x, ψ(x)) ∈ R
n+m : x ∈ Dn}.

As the projection of A to R
n is Dn, we clearly have Hn(1−ε)(A) > 0. A theorem

of Mattila [10, Theorem 10.10] implies that for almost every n-plane in R
n+m there

exists a parallel n-plane W such that A∩W has Hausdorff dimension at least n(1−
ε) + n − (n +m) = n(1 − ε) −m. In fact, there exists an affine map ϕ : R

n → R
m

with Lipschitz constant at most c such that W = graphϕ satisfies that dimA∩W ≥
n(1 − ε) −m.

Let Cn = {x ∈ Dn : ψ(x) = ϕ(x)} (a compact set). Since A ∩ graphϕ is a

Lipschitz (affine) image of Cn, we clearly have dimCn ≥ n(1 − ε) − m. Clearly

ψ|Cn = ϕ|Cn is a Lipschitz function with constant at most c.

From (2.13) it is easy to deduce that

f |D = g ◦ (h ◦ f |D) = g ◦ p−1
m ◦ ψ ◦ pn|D.

Since pn is Hölder-1/n, the map p−1
m is Hölder-m, the function g is Hölder-(1−ε), and

ψ|Cn is Lipschitz, we obtain that f |D is a Hölder function with exponent (1− ε)m/n

on the compact set C
def
= p−1

n (Cn) ⊂ D. That is, f |C is a Hölder function with

exponent (1 − ε)m/n. Moreover, the Hölder constant for this exponent is clearly at

most 1 if c is sufficiently small (compared to the Hölder constant of pn, p
−1
m and g for

the appropriate exponents). As dimCn ≥ n(1−ε)−m, we have dimC ≥ 1−ε−m/n.

Therefore, using (2.12), we obtain that f |C ∈ 1-Hölderα and dimC ≥ s.

Proof of Theorem 2.1.2. There exists a compact set K ⊂ [0, 1] of positive Lebesgue

measure such that f |K is continuous. We may suppose that every non-empty intersec-

tion of K with an open interval has positive Lebesgue measure, since we may remove

those non-empty intersections from K which are of Lebesgue measure zero (and we

need to remove only countably many). Therefore we may use Proposition 2.5.3 not
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only for K, but for any non-empty portion of K.

Let us apply Proposition 2.5.3 for some 0 < s < 1 − α to obtain a compact

set C ′ ⊂ K of dimension at least s such that f |C′ ∈ 1-Hölderα. Choose a strictly

decreasing sequence (xn) in C ′. Thus f is also Hölder-α with constant at most 1 on

the sequence (xn). For each positive integer n, let εn > 0 be very small. Now for each

positive integer n apply Proposition 2.5.3 to f restricted to K ∩ [xn − εn, xn + εn].

We obtain compact sets Cn ⊂ K ∩ [xn −εn, xn +εn] of dimension at least 1−α−1/n

such that f |Cn ∈ 1-Hölderα. Let C be the closure of
⋃

nCn. Thus C is of dimension

at least 1−α. It is clear that if the numbers εn are chosen to be small enough, then

C =
⋃

n Cn ∪ {lim xn}, and from the continuity of f , that f |C ∈ 2-Hölderα.

We may choose a compact subset of C of dimension exactly 1−α, which concludes

the proof.

2.6 Generalizations and open questions

Definition 2.6.1. The β-variation of a function f : A → R (or f : A → R
m) is

defined as

sup
{

n−1
∑

i=1

|f(xi+1) − f(xi)|β : x1 < x2 < . . . < xn, xi ∈ A
}

.

Closely following the methods used in the proofs of Theorem 2.3.2 and The-

orem 2.1.1, one can generalize these theorems to bounded β-variations instead of

bounded 1-variation.

Theorem 2.6.2. Let f : [0, 1] → R be Lebesgue measurable, β > 0. There exists a

compact set C ⊂ [0, 1] of Hausdorff dimension β
1+β

such that f has finite β-variation

on C.

This result is sharp. Indeed, the methods of M. Elekes used in [4] can also be

generalized to show that a typical continuous function has infinite β-variation on any

set of dimension larger than β
1+β

.

Using standard techniques it is straightforward to generalize Theorem 2.6.2 and

Theorem 2.1.2 to higher dimensional Euclidean spaces. (Namely, we can exploit the

fact that it is possible to map a “large portion” of R to a “large portion” of R
n by

a Hölder-1/n mapping such that its inverse is Hölder-n; see Claim 2.5.1.)

Theorem 2.6.3. Let f : R → R
m be Lebesgue measurable, β > 0. There exists a

compact set C ⊂ R of Hausdorff dimension β
m+β

such that f has finite β-variation

on C.
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Theorem 2.6.4. Let f : R
n → R

m be Lebesgue measurable and let 0 < α < n
m

.

There exists a compact set C ⊂ R
n of Hausdorff dimension n −mα such that f is

Hölder-α on C.

These theorems (that is, the stated dimensions) are again sharp for all β, m and

n.

We have shown that every R → R Borel function is of bounded variation on some

compact set of Hausdorff dimension 1/2. However, we do not know anything about

the possible (1/2-dimensional) Hausdorff measure of such sets.

Question 4. Can we find for every Borel function f : [0, 1] → R a Borel set B of

positive 1/2-dimensional Hausdorff measure such that f restricted to B is of bounded

variation?

A slightly more general variant is the following.

Question 5. Does there exist a Borel function f : [0, 1] → R such that if f is

of bounded variation on some Borel set B, then B has zero/finite/σ-finite 1/2-

dimensional Hausdorff measure?

The analogous questions for the Hölder-α property are also open.



Chapter 3

Borel maps and Hausdorff

dimension

3.1 Outline

Our main aim in this chapter is to solve a problem of D. Preiss and B. Weiss (Ques-

tion 1) as discussed in the Introduction (§1.3).

Theorem 3.1.1. For every 0 ≤ s < t ≤ 1 the measure spaces (R, B, Hs) and

(R, B, Ht) are not isomorphic. Moreover, there does not exist a Borel bijection

f : R → R such that for any Borel set B ⊂ R,

0 < Hs(B) <∞ ⇐⇒ 0 < Ht(f(B)) <∞. (3.1)

Later we will also prove the analogous result in R
n (see Theorem 3.7.5).

Theorem 3.1.2. Let f : R → R be Borel (or Lebesgue) measurable. For every

0 ≤ d ≤ 1 there exists a compact set A ⊂ R such that dimA = d and dim f(A) ≤ d.

Theorem 3.1.2 clearly implies Theorem 3.1.1. Indeed, let f be Borel measurable

and choose a d for which s < d < t. By applying Theorem 3.1.2 we obtain a compact

set A of dimension d with dim f(A) ≤ d. Since s < d, there exists a Borel subset B of

A for which 0 < Hs(B) < ∞ (see e.g. [10]). Now f(B) ⊂ f(A), so it has dimension

at most d, which implies that Ht(f(B)) = 0. So f cannot be an isomorphism of the

measure spaces (R, B, Hs) and (R, B, Ht), and cannot satisfy (3.1) either.

To prove Theorem 3.1.2 it is clearly enough to show the following.

Theorem 3.1.3. Suppose that K is a compact set of positive Lebesgue measure, and

f : K → R is continuous. For every 0 ≤ d ≤ 1 there exists a compact set A ⊂ K of

Hausdorff dimension d such that f(A) has Hausdorff dimension at most d.
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In fact, we will prove the following stronger theorem.

Theorem 3.1.4. Suppose that K is a compact set of positive Lebesgue measure and

f : K → R is continuous. For every 0 ≤ d ≤ 1 there exists a compact set A ⊂ K of

Hausdorff dimension d such that f(A) has Hausdorff dimension at most d·dim f(K).

We outline the proof of this theorem. First, in §3.2 we prove some auxiliary

lemmas. In §3.3 we define a random subtree of a specific rooted tree. Using this

random subtree we construct random Cantor sets in §3.4 and prove an upper esti-

mate for their dimension. In §3.5 we construct random compact sets and prove a

lower estimate for their dimension using energy integrals. Then in §3.6 we prove

Theorem 3.1.4 as follows: for the given K and continuous function f : K → R, we

apply the former construction in the range space and the latter in the domain space

in such a way that they produce a set A with the desired property.

Then, using straightforward techniques, we will deduce the following generaliza-

tion of Theorem 3.1.2 from Theorem 3.1.4 in §3.7.

Theorem 3.1.5. Let D ⊂ R
n be a Borel set and let f : D → R

m be Borel measurable.

Then for every 0 ≤ d ≤ 1 there exists a Borel set A ⊂ D such that dimA = d ·dimD

and dim f(A) ≤ d · dim f(D).

Remark 3.1.6. We can state Theorem 3.1.2 (almost) equivalently in the following

form. If f : R → R is Borel measurable and 0 ≤ d ≤ 1, then there exists a compact

set B ⊂ R such that dimB = d and dim f−1(B) ≥ d. We might ask if there is a set

B ⊂ R such that dimB = d and dim f−1(B) ≤ d. However, this is far from true. In

Chapter 4 we present a continuous real function f such that f−1(x) is of dimension

1 for every x ∈ R, see Claim 4.5.20.

All results of this chapter were published in [8] with essentially the same proof.

However, in [8] first we give an easier upper estimate (similar to §4.2) which is

sufficient to prove Theorem 3.1.3 but not Theorem 3.1.4. We also have a strong upper

estimate in [8] which is sufficient to prove Theorem 3.1.4 (and thus Theorem 3.1.5)

as well. In fact, it turned out that this argument contained some (minor) error. Here

we only give this stronger upper estimate correcting also the error made in [8].

3.2 Preliminaries

Notation. For a Borel measure µ on R, let It(µ) denote the t-dimensional energy

of µ; that is, It(µ) =
∫∫

|x − y|−t dµ(x) dµ(y). For Borel measures µk (k ∈ N) and

µ, µk → µ denotes that µk weakly converges to µ.
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The following statements are probably well-known.

Lemma 3.2.1. Suppose that µ and µk (k ∈ N) are probability measures on R such

that µk → µ. Then µk × µk → µ× µ.

Proof. We have to show that for every compactly supported continuous function

h : R
2 → R,

∫

R2 h d(µk × µk) →
∫

R2 h d(µ× µ). Clearly it is enough to show this for

a dense subset of the compactly supported continuous functions. It is well known

that functions of the form

n
∑

i=1

fi(x)gi(y) (f, g : R → R continuous functions with compact support)

are dense, so it is enough to check that

∫

R2

f(x)g(y) d(µk × µk) →
∫

R2

f(x)g(y)d(µ× µ).

By Fubini,

∫

R2

f(x)g(y) d(µk × µk) =

∫

R

f(x) dµk(x)

∫

R

g(y) dµk(y)

which tends to

∫

R

f(x) dµ(x)

∫

R

g(y) dµ(y) =

∫

R

f(x)g(y) d(µ× µ)

as k → ∞, using µk → µ and Fubini again.

Lemma 3.2.2. Suppose that µk (k ∈ N) are probability measures on R supported on

[−R,R] for some R > 0. If µk → µ then It(µ) ≤ lim inf It(µk).

Proof. Let ϕ be a compactly supported continuous function on the plane which

equals 1 on the square [−R,R]2 and for which 0 ≤ ϕ(x, y) ≤ 1 everywhere. For each

positive integer i define hi : R
2 → R by setting

hi(x, y) = ϕ(x, y) · min(|x− y|−t, i).

Using Lemma 3.2.1 we have

∫

hi(x, y) dµ dµ = lim
k

∫

hi(x, y) dµk dµk

≤ lim inf
k→∞

∫

|x− y|−t dµk dµk = lim inf
k→∞

It(µk).
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The support of µ× µ is in [−R,R]2 since µk is supported on [−R,R] for all k, so we

have

lim
i→∞

∫

hi(x, y) dµ(x) dµ(y) =

∫

|x− y|−t dµ(x) dµ(y) = It(µ).

Thus It(µ) ≤ lim infk→∞ It(µk).

Lemma 3.2.3. Let 0 < t < 1, let A be a compact set in R and let I = [0, λ(A)].

Then

∫

A

∫

A

|x− y|−t dλ(x) dλ(y) ≤
∫

I

∫

I

|x− y|−t dλ(x) dλ(y) = ctλ(A)2−t

where ct is a constant depending only on t.

Proof. Define the function ϕ : A→ [0, λ(A)] by setting

ϕ(x) = λ
(

(−∞, x] ∩ A
)

.

Using first the fact that ϕ is 1-Lipschitz and then that it is a measure preserving

transformation between λ|A and λ|I , we obtain

∫

A

∫

A

|x− y|−t dλ(x) dλ(y) ≤
∫

A

∫

A

|ϕ(x) − ϕ(y)|−t dλ(x) dλ(y)

=

∫

I

∫

I

|x− y|−t dλ(x) dλ(y) =

∫

[0,1]

∫

[0,1]

|λ(A)x′ − λ(A)y′|−t λ(A)2 dλ(x′) dλ(y′)

= λ(A)2−t

∫

[0,1]

∫

[0,1]

|x′ − y′|−t dλ(x′) dλ(y′) = ctλ(A)2−t

where ct is finite if t < 1.

3.3 The random tree

Let M ≥ 3 and m be integers with 2 ≤ m ≤M − 1. Let

M<ω = {(i0, i1, . . . , in−1) : n ∈ N, iτ ∈ {0, 1, . . . ,M − 1} = M}.

We will consider M<ω as a set of multi-indices and also as the M-adic tree with root

∅, where every node has M children. For an i ∈M<ω let |i| denote the length of the

multi-index; that is, the level of the node i.

For i, j ∈M<ω we write i ≤ j if j is a descendant of i in the tree. We say that i

and j are incomparable if i 6≤ j and j 6≤ i. If i = (i0, i1, . . . , in−1) ∈M<ω and r ∈M ,

we adopt the notation ir = (i0, i1, . . . , in−1, r).
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We will use the notation i∧ j for the node which is the nearest common ancestor

of i and j; that is, i ∧ j is the longest multi-index for which i ∧ j ≤ i and i ∧ j ≤ j

hold.

Now we choose a “random m-adic subtree” S of M<ω in the following way. Let

Xi (i ∈ M<ω) be independent random variables with uniform distribution over the

set of m-element subsets of M . That is, for each set T ⊂ {0, 1, . . . ,M − 1} of m

elements,

P(Xi = T ) =
1
(

M
m

) .

Define the random subtree as

S = {(i0, i1, . . . , in−1) ∈M<ω : iτ ∈ X(i0,i1,...,iτ−1) for every 0 ≤ τ ≤ n− 1}.

So ∅ ∈ S, and for each i ∈ S exactly m children of i are in S. It is easy to see that

|{i ∈ S : |i| = n}| = mn

for every n ∈ N, and

P(i ∈ S) =
(m

M

)|i|

. (3.2)

Set

Sn = {i ∈ S : |i| = n} (n ∈ N).

3.4 Upper estimate

Let E ⊂ R be a compact set. Suppose that for each i ∈M<ω a compact non-trivial

interval Ui ⊂ R is given satisfying the following conditions:

(1) the endpoints of Ui lie in E;

(2) for every node i and its child ir (r ∈M) we have Uir ⊂ Ui; and

(3) for every node i and for every two distinct r, r′ ∈M , the intervals Uir and Uir′

can have at most one point in common.

In fact (3) implies that if i and j are incomparable nodes, then Ui and Uj can have

at most one point in common.

Using our random subtree S ⊂ M<ω (see §3.3), we define random compact sets

Cn as

Cn =
⋃

{Ui | i ∈ Sn}.
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Then U∅ = C0 ⊃ C1 ⊃ C2 ⊃ · · · . Put

C =
⋂

n

Cn.

Lemma 3.4.1. Almost surely C ⊂ E.

Proof. It is easy to check that limn→∞ maxi∈Sn |Ui| = 0 implies that C ⊂ E.

From the properties of the intervals Ui we know that

∑

|i|=n

|Ui| ≤ diam E

for every n. Therefore for each fixed n, the number of those intervals Ui for which

|i| = n and |Ui| ≥ δ is at most (diam E)/δ. Hence the probability that there exists an

i ∈ Sn for which |Ui| ≥ δ holds, tends to zero as n→ ∞. That is, the probability that

maxi∈Sn |Ui| ≥ δ holds, tends to zero as n→ ∞. Keeping in mind that maxi∈Sn |Ui| is
monotone decreasing, this implies that limn→∞ maxi∈Sn |Ui| ≤ δ almost surely. Since

this holds for every δ > 0, the proof is finished.

Proposition 3.4.2. The random compact set C defined above has Hausdorff dimen-

sion at most log m
log M

dimE almost surely.

Proof. Let t > dimE be arbitrary and let 0 < ε < |U∅|t be sufficiently small. Then

Ht(E) = 0 (this makes sense even if t > 1). Therefore we can choose a finite

collection of open intervals I covering the compact set E such that
∑

I∈I |I|t < ε.

Clearly, we may suppose that I is minimal in the sense that no interval is covered

by the others. Then we can split I into two collections I ′ and I ′′ such that both of

them contains disjoint intervals only.

Let

I1 = {I ∈ I | ∃ i ∈M<ω Ui ⊂ I}

and I2 = I \ I1.

Let I ∈ I1 be arbitrary. Let j(I) be a smallest multi-index for which Uj(I) ⊂ I

holds; that is, Ui 6⊂ I if |i| < |j(I)|. Since ε < |U∅|t, we cannot have U∅ ⊂ I, thus

|j(I)| ≥ 1.

If for three multi-indices i, i′, i′′ of length |j(I)|−1 all the corresponding intervals

Ui, Ui′ , Ui′′ intersected I, then at least one of them would be contained in I, which

is impossible. Therefore at most two intervals Ui (with |i| = |j(I)| − 1) can intersect

I, hence by (3.2)

P(C ∩ I 6= ∅) ≤ 2
(m

M

)|j(I)|−1

.
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Now let I ∈ I2. Let N be a (large) positive integer. Then there can be at most

two intervals Ui for which |i| = N and Ui ∩ I 6= ∅. Using (3.2) this implies that

P(C ∩ I 6= ∅) ≤ 2
(m

M

)N

.

Since this holds for all N , we obtain P(C ∩ I 6= ∅) = 0.

Since the intervals I ∈ I ′ are disjoint, the nodes j(I) (when I ∈ I1 ∩ I ′) form an

anti-chain in M<ω; that is, none of them is an ancestor of any other. Thus

∑

I∈I1∩I′

1

M |j(I)|
≤ 1.

The same inequality holds for the intervals in I1 ∩ I ′′, therefore

∑

I∈I1

1

M |j(I)|
≤ 2. (3.3)

Let s = log m
log M

· t, hence s < t and mt/s = M .

By Lemma 3.4.1, C ⊂ E almost surely. Therefore, almost surely, C can be

covered by those intervals I ∈ I which intersect C. From the previous arguments

we obtain

E(Hs
∞(C)) ≤ E

(

∑

I∈I

|I|s 1C∩I 6=∅

)

=
∑

I∈I

P(C ∩ I 6= ∅)|I|s

=
∑

I∈I1

P(C ∩ I 6= ∅)|I|s

≤
∑

I∈I1

2
(m

M

)|j(I)|

|I|s

≤ 2c
∑

I∈I1

(

m|j(I)|t/s |I|t
)s/t

cM |j(I)|
,

where we choose c so that
∑

I∈I1

1
cM |j(I)| = 1 holds, hence c ≤ 2 by (3.3). Applying

Jensen’s inequality to the concave function x 7→ xs/t and using mt/s = M we obtain

E(Hs
∞(C)) ≤ 2c

∑

I∈I1

(

m|j(I)|t/s |I|t
)s/t

cM |j(I)|
≤ 2c

(

∑

I∈I1

m|j(I)|t/s |I|t
cM |j(I)|

)s/t
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= 2c

(

∑

I∈I1

|I|t
c

)s/t

= 2c1−s/t

(

∑

I∈I1

|I|t
)s/t

≤ 4

(

∑

I∈I1

|I|t
)s/t

≤ 4εs/t.

Because ε can be chosen arbitrarily small, we obtain E(Hs
∞(C)) = 0 and thus

Hs
∞(C) = 0 almost surely. Therefore dimC ≤ s almost surely. This holds for every

s > log m
log M

dimE, since t > dimE was arbitrary. So the dimension of C is at most
log m
log M

dimE almost surely.

3.5 Lower estimate

Suppose that for each i ∈M<ω a compact set Pi ⊂ R is given satisfying the following

conditions:

(1) λ(Pi) = M−|i|;

(2) for every node i and its child ir (r ∈M) we have Pir ⊂ Pi;

(3) for every node i and for every two distinct r, r′ ∈M the intersection of Pir and

Pir′ is of Lebesgue measure zero.

In fact (3) implies that if i and j are incomparable then λ(Pi ∩ Pj) = 0.

Using our random subtree S ⊂ M<ω (see §3.3), we define random compact sets

Dn as

Dn =
⋃

{Pi | i ∈ Sn}.

Then P∅ = D0 ⊃ D1 ⊃ D2 ⊃ · · · . Put

D =
⋂

n

Dn.

Theorem 3.5.1. The random compact set D defined above has Hausdorff dimension

at least log m
log M

almost surely.

Proof. We define random Borel measures µk on R by setting

µk(A) = λ(A ∩Dk)

(

M

m

)k

,
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for every Borel set A ⊂ R, or equivalently,

µk =

(

M

m

)k

λ|Dk
(k ∈ N). (3.4)

Hence µk is a probability measure with support Dk ⊂ P∅.

Let 0 < t < log m
log M

be fixed. We would like to give an upper bound for the

expected value of the t-energy of µk. To do this at first we need to calculate some

basic probability. We know that P(i ∈ S) =
(

m
M

)|i|
for every i ∈ M<ω. How much

is P(i ∈ S, j ∈ S) if |i| = |j| = k? Recall that i ∧ j denotes the nearest common

ancestor of i and j in the tree M<ω. Let l = l(i, j) = |i ∧ j|; that is, l is the largest

integer for which i0 = j0, i1 = j1, . . . , il−1 = jl−1 hold (0 ≤ l ≤ k). Then

P(i ∈ S, j ∈ S) = P

(

iτ ∈ X(i0,...,iτ−1) for every 0 ≤ τ ≤ l − 1,

il, jl ∈ X(i0,...,il−1),

iτ ∈ X(i0,...,iτ−1) for every l + 1 ≤ τ ≤ k − 1,

and jτ ∈ X(j0,...,jτ−1) for every l + 1 ≤ τ ≤ k − 1
)

.

The random variables Xi are independent, so this probability is

=
(m

M

)l m(m− 1)

M(M − 1)

(m

M

)k−l−1 (m

M

)k−l−1

=
(m

M

)2k−l−1 m− 1

M − 1
≤
(m

M

)2k−l

(3.5)

provided that l < k, that is, i 6= j, but the upper estimate clearly holds in the case

i = j (l = k) as well.

By (3.4), for any i of length k we have

µk|Pi
=







(

M
m

)k
λ|Pi

if i ∈ S

0 if i 6∈ S.
(3.6)

Applying first that supp µk = Dk is contained in
⋃

|i|=k Pi, and then (3.6) and (3.5),

E It(µk) = E

(∫∫

|x− y|−t dµk(x) dµk(y)

)

= E





∑

|i|=|j|=k

∫

Pi

∫

Pj

|x− y|−t dµk(x) dµk(y)




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=
∑

|i|=|j|=k

E

(

∫

Pi

∫

Pj

|x− y|−t dµk(x) dµk(y)

)

=
∑

|i|=|j|=k

P(i ∈ S, j ∈ S)

∫

Pi

∫

Pj

|x− y|−t

(

M

m

)k (
M

m

)k

dλ(x) dλ(y)

≤
∑

|i|=|j|=k

(m

M

)2k−|i∧j|
(

M

m

)2k ∫

Pi

∫

Pj

|x− y|−t dλ(x) dλ(y)

=
∑

|i|=|j|=k

(

M

m

)|i∧j| ∫

Pi

∫

Pj

|x− y|−t dλ(x) dλ(y)

=
k
∑

l=0

(

M

m

)l
∑

h
|h|=l

∑

i,j
h=i∧j

|i|=|j|=k

∫

Pi

∫

Pj

|x− y|−t dλ(x) dλ(y)

≤
k
∑

l=0

(

M

m

)l
∑

h
|h|=l

∑

i,j
h≤i∧j

|i|=|j|=k

∫

Pi

∫

Pj

|x− y|−t dλ(x) dλ(y)

=
k
∑

l=0

(

M

m

)l
∑

h
|h|=l

∫

Ph

∫

Ph

|x− y|−t dλ(x) dλ(y). (3.7)

Using Lemma 3.2.3 (and the constant ct therein) we may continue (3.7) as

≤
k
∑

l=0

(

M

m

)l
∑

h
|h|=l

ctλ(Ph)
2−t

=

k
∑

l=0

(

M

m

)l
∑

h
|h|=l

ct

(

1

M l

)2−t

=

k
∑

l=0

(

M

m

)l

M lct

(

1

M l

)2−t

=

k
∑

l=0

ct

(

M t

m

)l

≤
∞
∑

l=0

ct

(

M t

m

)l
def
= c(t,M,m),

where c(t,M,m) is finite whenever M t

m
< 1, that is, t < log m

log M
.

By Fatou’s lemma,

E lim inf
k→∞

It(µk) ≤ lim inf
k→∞

E It(µk) ≤ c(t,M,m),

thus lim infk→∞ It(µk) is almost surely finite.



3.6 Proof of Theorem 3.1.4 32

Since all the probability measures µk are supported on the same compact set P∅,

every sequence of them has a weakly convergent subsequence. So we can choose a

sequence of integers kj such that

lim
j→∞

It(µkj
) = lim inf

k→∞
It(µk)

and that µkj
is weakly convergent. Let µ = limj→∞ µkj

.

Since supp µkj
= Dkj

and D0 ⊃ D1 ⊃ D2 ⊃ · · · , the weak limit µ is supported

on
⋂

j Dkj
= D. Applying Lemma 3.2.2,

It(µ) ≤ lim inf
j→∞

It(µkj
) = lim inf

k→∞
It(µk),

which is almost surely finite. Therefore the compact set D almost surely carries a

measure µ with finite t-energy, for any t < log m
log M

. Thus the Hausdorff dimension of

the set D is at least log m
log M

almost surely.

Remark 3.5.2. It is possible to choose the sets Pi (i ∈M<ω) in such a way that the
log m
log M

dimensional Hausdorff measure of the random compact set D is zero almost

surely.

3.6 Proof of Theorem 3.1.4

If there exists an y ∈ f(K) for which f−1(y) is of positive measure, then we can

choose a compact set A ⊂ f−1(y) of Hausdorff dimension d (0 ≤ d ≤ 1), and

clearly f(A) = {y} has Hausdorff dimension 0. Thus we may assume that for every

y ∈ f(K) the set f−1(y) has Lebesgue measure zero. Without loss of generality we

may suppose that λ(K) = 1.

We will use the notation of §3.3. Put E = f(K). For every i ∈ M<ω we will

define a compact non-trivial interval Ui with endpoints in E. Informally speaking,

what we do is the following. We define U∅ to be the smallest interval which contains

E. If an interval is already defined, then its M subintervals (its children) are chosen

such that their preimages (with respect to f) have equal Lebesgue measure: 1
M

times

the Lebesgue measure of the preimage of the interval. Now we give a more precise

definition.

Define ψ : f(K) → R as

ψ(y) = λ({x ∈ K : f(x) ≤ y}).
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Since the preimage of any point in f(K) has measure zero, ψ is a continuous increas-

ing function, and its range is the interval [0, λ(K)] = [0, 1].

For an i ∈M<ω we define Ui to be the compact interval with left endpoint

max
{

y ∈ f(K) : ψ(y) =

|i|
∑

τ=1

iτ−1

M τ

}

and right endpoint

min
{

y ∈ f(K) : ψ(y) =
1

M |i|
+

|i|
∑

τ=1

iτ−1

M τ

}

.

It is obvious from the definition that

Ui ⊃
⋃

r∈M

Uir

and

λ(f−1(Ui)) = λ({x ∈ K : f(x) ∈ Ui}) =
1

M |i|
.

It is clear that the intervals Ui satisfy the assumptions of the upper estimate §3.4

with E = f(K).

Define Pi = f−1(Ui) for every i ∈ M<ω. We know that λ(Pi) = M−|i|. If i and

j are incomparable, then Ui and Uj can have at most one point in common, thus

λ(Pi ∩ Pj) = 0. Therefore the compact sets Pi satisfy the assumptions of the lower

estimate §3.5.

Now let S be the random m-adic subtree of M<ω, and define the random compact

sets

Cn =
⋃

{Ui : i ∈ Sn} (n ∈ N),

C =
⋂

n∈N

Cn,

and

Dn =
⋃

{Pi : i ∈ Sn} (n ∈ N),

D =
⋂

n∈N

Dn,

the same way as in §3.4 and §3.5. Notice that f−1(C) = D.

From Lemma 3.4.1 we know that C ⊂ f(K) almost surely. From Proposi-

tion 3.4.2, C = f(D) has Hausdorff dimension at most log m
log M

dim f(K) almost surely.

From Theorem 3.5.1 we know that D has Hausdorff dimension at least log m
log M

almost
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surely. Therefore there exists a compact set D ⊂ K for which both of the inequalities

dim f(D) ≤ log m
log M

dim f(K) and dimD ≥ log m
log M

hold.

For d = 0 or d = 1 the statement of the theorem is trivial, so let 0 < d < 1 be

arbitrary. Let

R =

{

logm

logM
: 2 ≤ m < M

}

,

this is a countable dense set in (0, 1). We can construct compact sets Dr for every

r ∈ R such that Dr is of dimension at least r and f(Dr) is of dimension at most

r ·dim f(K). Let D =
⋃

r<dDr. Clearly D is a Borel set of dimension at least d, and

f(D) =
⋃

r<d f(Dr) is of dimension at most d · dim f(K). It is well known that D

contains compact subsets An of dimension at least d−1/n, and clearly we can require

that An have diameter at most 1/n. Let A be the closure of
⋃

nAn, then A \⋃nAn

is at most one point. Thus A ⊂ K, dimA = d, and clearly dim f(A) ≤ d · f(A),

which proves the theorem.

3.7 Generalization of Theorem 3.1.2 to Euclidean

spaces

In this section we will prove Theorem 3.1.5. As a first step, observe that Theo-

rem 3.1.4 implies the following.

Proposition 3.7.1. Let f : [0, 1] → R be a Borel function. For every 0 ≤ d ≤ 1

there exists a compact set A ⊂ [0, 1] such that dimA = d and dim f(A) ≤ d ·
dim f([0, 1]).

Now we change the domain of the function f .

Proposition 3.7.2. Let D ⊂ R be a Borel set and let f : D → R be Borel. For

every 0 ≤ d ≤ 1 there exists a Borel set A ⊂ D such that dimA = d · dimD and

dim f(A) ≤ d · dim f(D).

Proof. The statement is trivial if dimD = 0, therefore suppose that dimD > 0.

Fix a positive number s < dimD. It is well-known (see e.g. [10]) that there exists

a compact set Ds ⊂ D for which dimDs > s. Then there exist a positive constant c

and a probability measure ν with supp ν ⊂ Ds such that for every x, y ∈ R we have

ν([x, y]) ≤ c |x− y|s (3.8)
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(see again [10]). Let us define the continuous function ψ : Ds → [0, 1] and the Borel

function χ : [0, 1] → Ds by setting

ψ(x) = ν
(

(−∞, x]
)

,

χ(y) = min{x : ψ(x) = y}.

Thus ψ ◦ χ is the identity of [0, 1]. The estimate (3.8) implies that ψ is a Hölder

function of exponent s. Therefore for every set A ⊂ [0, 1],

dimχ(A) ≥ s · dimA. (3.9)

Apply Proposition 3.7.1 to the Borel function f ◦ χ : [0, 1] → R. We get that for

every 0 ≤ d ≤ 1 there exists a compact set A ⊂ [0, 1] such that

dimA = d and dim f(χ(A)) ≤ d · dim f(Ds) ≤ d · dim f(D).

Put Bs = χ(A). (This is a Borel set, since χ is injective.) Applying (3.9) gives

dimBs ≥ d · s and dim f(Bs) ≤ d · dim f(D).

Now choose an increasing sequence (sn) of positive numbers for which sn →
dimD. From the above procedure we obtain Borel sets Bsn ⊂ D satisfying

dimBsn ≥ d · sn and dim f(Bsn) ≤ d · dim f(D).

Now any Borel subset of
⋃

nBsn of dimension d · dimD is an appropriate choice for

A. Thus the proof is finished.

The next lemma will be used in Chapter 4 as well.

Lemma 3.7.3. For every positive integer n there exists a Borel set En ⊂ [0, 1) and

a Borel bijection pn : En → [0, 1)n ⊂ R
n such that for every (Borel) set A ⊂ En we

have

λ(pn(A)) = λ(A) and dim pn(A) = n · dimA.

Moreover, for every 0 ≤ s ≤ 1 and A ⊂ En,

cn,sHs(A) ≤ Hsn(pn(A)) ≤ c−1
n,sHs(A) (3.10)

for some positive constant cn,s depending only on n and s.
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Proof. For x ∈ [0, 1) let dk(x) ∈ {0, 1, . . . , 9} (k ≥ 1) denote the digits of x in the

decimal number system; that is,

x =
∑

k≥1

dk(x) · 10−k,

where lim infk→∞ dk(x) 6= 9. Let

En = {x ∈ [0, 1) : ∀ j ∈ {0, 1, . . . , n− 1} lim inf
i→∞

dni−j(x) 6= 9},

pj
n(x) =

∑

i≥1

dni−j(x) · 10−i (j ∈ {0, 1, . . . , n− 1})

and

pn(x) = (p0
n(x), p1

n(x), . . . , pn−1
n (x)).

Then En is a Borel set of Lebesgue measure 1, and pn is a Borel bijection between

En and [0, 1)n. It is easy to check that if i ≥ 1 and 0 ≤ k < 10ni are integers, then

pn maps

En ∩
[

k

10ni
,
k + 1

10ni

)

to a cube of the form
n−1
∏

j=0

[

kj

10i
,
kj + 1

10i

)

.

This implies that pn preserves Lebesgue measure (that is, λ(pn(A)) = λ(A) for every

measurable set A ⊂ En); and also implies that (3.10) is satisfied. Then dim pn(A) =

n · dimA also holds. As for the details, see [11, Theorem 49] and its proof.

It is easy to deduce the following statement from Lemma 3.7.3.

Lemma 3.7.4. For every positive integer n there exists a Borel set Bn ⊂ R and a

Borel bijection pn : Bn → R
n such that for every (Borel) set A ⊂ Bn we have

λ(pn(A)) = λ(A) and dim pn(A) = n · dimA.

Moreover, for every 0 ≤ s ≤ 1 and A ⊂ Bn,

cn,sHs(A) ≤ Hsn(pn(A)) ≤ c−1
n,sHs(A)

for some positive constant cn,s depending only on n and s.

Proof of Theorem 3.1.5. Suppose that D ⊂ R
n is a Borel set and f : D → R

m is

Borel measurable. Let d ∈ [0, 1] be arbitrary. Let pn and pm be as in Lemma 3.7.4.
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Apply Proposition 3.7.2 to the Borel set p−1
n (D) ⊂ R and Borel mapping

p−1
m ◦ f ◦ pn|p−1

n (D) : p−1
n (D) → p−1

m (f(D)).

We obtain a Borel set A ⊂ p−1
n (D) such that

dimA = d · dim p−1
n (D) and dim p−1

m ◦ f ◦ pn(A) ≤ d · dim p−1
m (f(D)).

Using Lemma 3.7.4 four times we get that

dim pn(A) = d · dim(D) and dim f(pn(A)) ≤ d · dim f(D)

hold for the Borel set pn(A) ⊂ D.

Let Bn denote the σ-algebra of Borel subsets of R
n. Lemma 3.7.4 implies that

the generalization of Theorem 3.1.1 in R
n holds.

Theorem 3.7.5. For every 0 ≤ s < t ≤ n the measure spaces (Rn, Bn, Hs) and

(Rn, Bn, Ht) are not isomorphic. Moreover, there does not exist a Borel bijection

f : R
n → R

n such that for any Borel set B ⊂ R
n,

0 < Hs(B) <∞ ⇐⇒ 0 < Ht(f(B)) <∞.



Chapter 4

Borel maps and Hausdorff

measures

In this chapter we generalize our results proved in §3 from Hausdorff dimension to

Hausdorff measures. We organize this chapter in a similar manner to the previous

one. First we define a tree (a ‘larger’ tree than that in §3) and a random subtree

in §4.1. Using this random subtree, we prove an upper estimate for the Hausdorff

measure of certain kind of random Cantor sets in §4.2. Using the same random

subtree, we prove a lower estimate for the Hausdorff pre-measures of certain kind

of random sets in §4.3. However, the main part of this proof (and some tedious

calculations) are postponed until §4.4. By combining these upper and lower estimates

we prove our main results in §4.5.

We suggest reading of the sections of this chapter in the order they are presented

here. However, since the sections are only loosely related, the reader may find other

orders more convenient. For example, the reader may start with §4.5 which contains

the main results. Those who like to start a proof at its formal beginning should

definitely read §4.4 prior to §4.3.

4.1 The random tree

Let us fix some real number 0 < s < 1. Let N1, N2, . . . be positive integers which

tend to infinity sufficiently rapidly. Let

Ln = N1N2 · · ·Nn (n = 1, 2, . . .). (4.1)

We will define an infinite rooted tree. Let V be the set of ‘words’ v = (i1, i2, . . . , in)

where ij ∈ {0, 1, . . . , Nj − 1} (1 ≤ j ≤ n), and n ≥ 0. This n is called the length of
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v, which will be denoted by |v|. Note that by n = 0 we mean that ∅ ∈ V .

We consider the natural tree structure on V . (Both the tree and its vertex set

will simply be denoted by V .) That is, ∅ is the root, and vertices of the form

u = (i1, i2, . . . , in−1) and v = (i1, i2, . . . , in) (where n ≥ 1) are connected. We adopt

the short notation v = uin in this case.

Let Vn denote the set of vertices on level n; that is,

Vn = {v ∈ V : |v| = n} =

n
∏

j=1

{0, 1, . . . , Nj − 1}.

Then |Vn| = Ln by (4.1). Let us also define N0 = L0 = 1; then |V0| = L0 also holds.

For two vertices u, v ∈ V we write u ≤ v if v is a descendant of u in the tree;

that is, the unique (simple) path from the root to v contains u. We say that u and

v are incomparable if u 6≤ v and v 6≤ u.

We say that an edge is on level n if it connects vertices on level n−1 and level n.

Now we choose a random subtree S of this tree V in the following way. Inde-

pendently for all edges in the tree, we choose each edge on level n with probability

pn = N s−1
n for every n ≥ 1. Then let S be the set of vertices which are reachable

from the root using the chosen edges only. Then ∅ ∈ S always, and for a vertex

v ∈ Vn,

P(v ∈ S) = N s−1
1 · · ·N s−1

n = Ls−1
n .

Set

Sn = {v ∈ Sn : |v| = n} (n ∈ N).

It is easy to check that E(|Sn|) = LnL
s−1
n = Ls

n.

As we said at the very beginning of this section, we suppose that the sequence

(Ni) is increasing “sufficiently rapidly”. We do not need this property for the results

of §4.2, but this is crucial for our theorems in §4.3, §4.4 and §4.5. It would be incon-

venient to state here exactly how fast the sequence (Ni) should increase. Instead,

we will make the appropriate assumptions throughout §4.3 and §4.4. All these as-

sumptions can be written in the form of lower bounds Nn ≥ Φ(N1, N2, . . . , Nn−1);

therefore they can be simultaneously satisfied.

Note that the number 0 < s < 1 is considered fixed throughout §4.2, §4.3 and

§4.4. The sequence (Ni) depends on s.
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4.2 Upper estimate

Suppose that for each v ∈ V a closed interval Uv ⊂ [0, 1] is given satisfying the

following conditions:

(1) if u ≤ v, then Uv ⊂ Uu;

(2) if v and u are incomparable, then Uv and Uu have at most one point in common.

Then using the random subtree S ⊂ V (cf. §4.1) we define random compact sets

Cn as

Cn =
⋃

{Uv : v ∈ Sn}, (4.2)

and let

C =

∞
⋂

n=1

Cn. (4.3)

Proposition 4.2.1. For the s-dimensional Hausdorff measure of the random set C

we have

EHs(C) ≤ 1.

Lemma 4.2.2. Almost surely limn→∞ maxv∈Sn |Uv| = 0.

Proof. For each fixed n, the number of those intervals Uv for which v ∈ Vn and

|Uv| ≥ δ is at most 1/δ. Hence the probability that there exists a v ∈ Sn for which

|Uv| ≥ δ tends to zero as n → ∞. That is, the probability that maxv∈Sn |Uv| ≥ δ

holds, tends to zero as n → ∞. Keeping in mind that maxv∈Sn |Uv| is monotone

decreasing, this implies that limn→∞ maxv∈Sn |Uv| ≤ δ almost surely. Since this

holds for every δ > 0, the proof is finished.

Proof of Proposition 4.2.1. We will cover C by the intervals Uv (v ∈ Sn). We know

from Lemma 4.2.2 that limn→∞ maxv∈Sn |Uv| = 0 almost surely. This implies that

Hs(C) ≤ lim inf
n→∞

∑

v∈Sn

|Uv|s

almost surely. Hence by Fatou’s lemma

EHs(C) ≤ E lim inf
n→∞

∑

v∈Sn

|Uv|s ≤ lim inf
n→∞

E

∑

v∈Sn

|Uv|s. (4.4)

Applying Jensen’s inequality to the concave function x 7→ xs and using that
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∑

v∈Vn
|Uv| ≤ 1, we obtain

E

∑

v∈Sn

|Uv|s = E

∑

v∈Vn

|Uv|s 1v∈Sn =
∑

v∈Vn

|Uv|s P(v ∈ Sn)

= Ls−1
n

∑

v∈Vn

|Uv|s ≤ Ls
n

(

L−1
n

∑

v∈Vn

|Uv|
)s

≤ 1.

Combining this with (4.4) we obtain EHs(C) ≤ 1.

4.3 Lower estimate

Suppose that for each v ∈ V a measurable set Mv ⊂ [0, 1] is given satisfying the

following conditions:

(1) λ(Mv) = L−1
n for every v ∈ Vn, n ≥ 0;

(2) Mu ⊂Mv if u ≥ v;

(3) λ(Mu ∩Mv) = 0 if u and v are incomparable.

Using our random subtree S ⊂ V (cf. §4.1), set

Dn =
⋃

{Mu : u ∈ Sn} (n ∈ N).

These random measurable sets satisfy

[0, 1] ⊃ D0 ⊃ D1 ⊃ D2 ⊃ . . . . (4.5)

Clearly Eλ(Dn) =
∑

v∈Vn
P(v ∈ Sn)λ(Mv) = LnL

s−1
n L−1

n = Ls−1
n .

Theorem 4.3.1. If the sets Mv and Dn are defined as above, then

EHs
δ(Dn) ≥ 1 − oδ(1),

where oδ(1) is a quantity which tends to zero as δ → 0, but does not depend on n.

Remark 4.3.2. The constants involved in oδ(1) are independent of the choice of the

sets Mv; but they do depend on the choice of V .

Remark 4.3.3. The condition that the sets Mv are contained in [0, 1] is not neces-

sary.
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Theorem 4.3.4. If the sets Mv and Dn are defined as above, moreover, the sets Mv

are compact, then

EHs
(

⋂

n

Dn

)

≥ 1.

This result should be contrasted with Remark 3.5.2. First we show that Theo-

rem 4.3.1 implies Theorem 4.3.4.

Proof of Theorem 4.3.4. If the sets Mv are compact, then the sets Dn are also com-

pact. Then it is easy to check that (4.5) implies

Hs
δ

(

⋂

n

Dn

)

= lim
n→∞

Hs
δ(Dn)

for every δ > 0. From Theorem 4.3.1 we obtain

EHs
δ

(

⋂

n

Dn

)

≥ 1 − oδ(1).

As Hs(A) ≥ Hs
δ(A) for every set A, we conclude the proof.

Proof of Theorem 4.3.1. When calculating Hausdorff measures (or pre-measures), we

may require that the covering intervals belong to some suitably chosen class I. In

particular, let I be the following class of closed subintervals of [0, 1]. Let I contain

only intervals of lengths

1

2r

(

1 +
i

r

)

(i = 0, 1, . . . , r − 1; r ≥ 10). (4.6)

For each such length l, let I contain (say) ⌊l−1 log l−1⌋ many intervals of length l,

which are ‘uniformly distributed’1 in [0, 1]. (Here log l−1 could be anything which

tends to infinity sufficiently slowly as l → 0.) Then it is easy to check that for all

ε > 0 there exists δ > 0 such that if J is an interval in [0, 1] of diameter at most δ,

then there exists an I ∈ I for which J ⊂ I and |I|/|J | < 1 + ε. For a set A ⊂ [0, 1],

define

Hs
δ,I(A) = inf

{

∑

i

|Ii|s : A ⊂
⋃

i

Ii, |Ii| ≤ δ, Ii ∈ I
}

.

Therefore for every ε > 0,

Hs
δ,I(A) ≤ (1 + ε)sHs

δ(A) (4.7)

1That is, the left endpoints form an arithmetic progression, the left endpoint of the first interval

is 0, and the right endpoint of the last interval is 1.
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if δ is sufficiently small.

For each n we define a Borel measure µn on the real line satisfying µ(R\Dn) = 0.

For a Borel set A ⊂ R let

µn(A) = L1−s
n · λ(Dn ∩ A),

that is,

µn = L1−s
n · λ|Dn.

Since Eλ(Dn) = Ls−1
n , we have

Eµn([0, 1]) = 1. (4.8)

A possible approach to prove Theorem 4.3.1 could be the following. If we knew

that (almost surely) for every interval J the estimate µn(J) ≤ (1+ε)|J |s holds (say),

then clearly for every covering of Dn by intervals Ji we would have

∑

|Ji|s ≥
∑

(1 + ε)−1µn(Ji) ≥ (1 + ε)−1µn(Dn)

and thus Hs
∞(Dn) ≥ (1 + ε)−1µn(Dn). By taking expected values, we would obtain

EHs
∞(Dn) ≥ (1+ ε)−1. However, one can show that this approach is unable to yield

Theorem 4.3.1 in its full strength. Instead, we will show that those intervals J for

which µn(J) > (1+ ε)|J |s holds cover only a small portion of µn (in expected value).

More precisely we will show the following.

Lemma 4.3.5. For every ε > 0 there exists δ > 0 such that for every n we have

∑

I∈I
|I|≤δ

Eµn(I)1µn(I)>(1+ε)|I|s < ε. (4.9)

(In fact, δ does not even depend on the choice of the sets Mv.)

First let us finish the proof assuming Lemma 4.3.5. Let ε > 0 be arbitrary, and

fix δ so that both (4.9) and (4.7) hold.

Consider a family of (distinct) intervals Ji ∈ I of diameters at most δ covering

Dn. Then

µn(Dn) = µn

(

⋃

i

Ji

)

≤
∑

i

µn(Ji)

=
∑

i

µn(Ji)1µn(Ji)>(1+ε)|Ji|s +
∑

i

µn(Ji)1µn(Ji)≤(1+ε)|Ji|s
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≤
∑

i

µn(Ji)1µn(Ji)>(1+ε)|Ji|s + (1 + ε)
∑

i

|Ji|s

≤
∑

I∈I
|I|≤δ

µn(I)1µn(I)>(1+ε)|I|s + (1 + ε)
∑

i

|Ji|s. (4.10)

Using the definition of Hs
δ,I(Dn), (4.10) implies that

(1 + ε)Hs
δ,I(Dn) ≥ µn(Dn) −

∑

I∈I
|I|≤δ

µn(I)1µn(I)>(1+ε)|I|s .

Combining this with (4.7) we obtain

(1 + ε)1+sHs
δ(Dn) ≥ µn(Dn) −

∑

I∈I
|I|≤δ

µn(I)1µn(I)>(1+ε)|I|s .

Taking expected values and using (4.9) and (4.8) gives

(1 + ε)1+s
EHs

δ(Dn) ≥ 1 − ε.

From this one can deduce that EHs
δ(Dn) ≥ 1 − oδ(1), where oδ(1) tends to zero as

δ → 0 but does not depend on n.

It remains to prove Lemma 4.3.5. First we give an informal overview of the proof.

Clearly it suffices to have a good upper estimate for E
(

µn(I)1µn(I)>(1+ε)|I|s
)

for each

interval I ∈ I. It is not difficult to show that

Eµn(I)2

(1 + ε)|I|s

is an upper estimate. This way the problem could be reduced to finding good upper

bounds for the second moment Eµn(I)2. However, it would turn out that even

the best possible estimates are too weak to imply Lemma 4.3.5. Instead, we will

estimate E
(

µn(I)1µn(I)>(1+ε)|I|s
)

using the exponential moment E exp(tµn(I)) (see

Lemma 4.3.7). To estimate this exponential moment, in fact we need to estimate

quantities like E exp(t|B ∩ Sn|), where B ⊂ Vn is some set (which depends on I).

The next section (§4.4) is entirely devoted to the upper bounds of these quantities.

In this section we prove Lemma 4.3.5 using the results of §4.4.

First we need two more lemmas.
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Lemma 4.3.6. Let c > 0, t ≥ 1/c, and x ≥ c. Then

x ≤ etx

etc
c.

Proof. As x ≥ c, the right hand side is monotone increasing in t. Therefore we

may suppose that t = 1/c. Then the inequality (after rearrangement) becomes

ex/c ≤ ex/c, which holds.

Lemma 4.3.7. Let X be a real random variable, and c > 0 a constant. Then

EX1X≥c ≤
E etX

etc
c

whenever t ≥ 1/c.

Proof of Lemma 4.3.5. We will use the results of §4.4. However, it is enough to read

Definition 4.4.1 and Corollary 4.4.12 to understand this proof.

First consider the case when n = 0. Since M∅ ⊂ [0, 1] has Lebesgue measure 1,

and D0 = M∅ always, we have µ0 = λ|[0,1]. Then the left hand side of (4.9) is clearly

zero. Therefore we may suppose that n ≥ 1. (In fact, for our purposes, it would be

enough to prove Lemma 4.3.5 for large integers n only.)

For each interval I ∈ I we will estimate the corresponding term in (4.9) using

Lemma 4.3.7 and Corollary 4.4.12.

Fix an I ∈ I. There exist a unique integer m ≥ 1 and a unique real number

1 ≤ k < Nm such that |I| = kL−1
m . To I we associate a weight function b : Vn → [0, 1]

by setting

b(u) = λ(Mu ∩ I)Ln (u ∈ Vn).

Then b(Vn) = |I|Ln = kL−1
m Ln and µn(I) = b(Sn)L−s

n by the definition of µn. Using

Lemma 4.3.7 we obtain

Eµn(I)1µn(I)>e1/m|I|s ≤
E exp(tµn(I))

exp(te1/m|I|s)e
1/m|I|s

=
E exp(tb(Sn)L−s

n )

exp(te1/mksL−s
m )

e1/mksL−s
m

whenever t ≥ e−1/m|I|−s, which holds if t ≥ |I|−s = k−sLs
m. Substituting tLs

n into t

we obtain

Eµn(I)1µn(I)>e1/m|I|s ≤
E exp(tb(Sn))

exp(te1/mksL−s
m Ls

n)
e1/mksL−s

m
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whenever t ≥ k−sLs
mL

−s
n . Now we may use Corollary 4.4.12 and obtain

Eµn(I)1µn(I)>e1/m|I|s ≤
k

Lm
3N−(1−s)/(8m)

m .

We clearly have the same estimate for every interval in I of the same length as

I. Since there are exactly ⌊|I|−1 log |I|−1⌋ = ⌊k−1Lm log(k−1Lm)⌋ ≤ k−1Lm logLm

many intervals in I of length |I|, we obtain

∑

J∈I
|J |=kL−1

m

Eµn(J)1µn(J)>e1/m|J |s ≤
k

Lm

3N−(1−s)/(8m)
m k−1Lm logLm

= 3N−(1−s)/(8m)
m logLm. (4.11)

From (4.6) it is easy to deduce that

∣

∣

{

|J | : L−1
m ≤ |J | < NmL

−1
m , J ∈ I

}∣

∣ ≤ 10(logNm)(logLm).

Combining this with (4.11),

∑

J∈I
L−1

m ≤|J |<NmL−1
m

Eµn(J)1µn(J)>e1/m|J |s ≤ 30N−(1−s)/(8m)
m (logLm)2(logNm)

≤ 30N−(1−s)/(16m)
m ,

where the last inequality holds if we suppose that (Ni) is increasing sufficiently

rapidly.

Now let ε > 0 be arbitrary. Let m∗ be a positive integer such that e1/m∗
< 1 + ε.

Then

∑

J∈I
|J |<Nm∗L−1

m∗

Eµn(J)1µn(J)>(1+ε)|J |s ≤
∞
∑

m=m∗

∑

J∈I
L−1

m ≤|J |<NmL−1
m

Eµn(J)1µn(J)>e1/m|J |s

≤
∞
∑

m=m∗

30N−(1−s)/(16m)
m

≤ 1/m∗,

where the last inequality holds if (Ni) is increasing sufficiently rapidly. Since 1/m∗ ≤
e1/m∗ − 1 < ε, we obtain (4.9) by choosing δ = 1

2
Nm∗L−1

m∗ .
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4.4 Estimates of the exponential moment

Before reading this section, we encourage the reader to consult §4.3 and especially

the informal overview of the proof of Lemma 4.3.5 on page 44. We will use the

notation and definitions of §4.1.

Definition 4.4.1. A weight function is a function b : Vn → [0, 1], where n ≥ 1. For

A ⊂ Vn, we write b(A) for
∑

v∈A b(v).

Definition 4.4.2. If b : Vn → [0, 1] is an arbitrary weight function, and v ∈ V with

|v| ≤ n, then we define bv : Vn → [0, 1] as

bv(x) =







b(x) if x ≥ v,

0 otherwise.

We define the weight function cv : Vn → {0, 1} as

cv(x) =







1 if x ≥ v,

0 otherwise.

Then, for example, cv(Vn) = L−1
|v|Ln.

The theorems and proofs of this section are rather straightforward (though some

involve a lot of calculations). The only exception is probably the following Lemma.

(Finding this Lemma took the most time for the author when trying to prove The-

orem 4.3.1 and thus the main results of this chapter.)

Lemma 4.4.3. Let b : Vn → [0, 1] be a weight function. Let 0 ≤ h ≤ n, v ∈ Vh.

Then for every t ≥ 0,

E
(

etbv(Sn) | v ∈ Sh

)

≤
(

E
(

etcv(Sn) | v ∈ Sh

)

)bv(Vn)/cv(Vn)

.

Proof. We prove the statement by backwards induction on h, starting from h = n.

If h = n, then the left hand side is etbv(v), while the right hand side is

(etcv(v))bv(Vn)/cv(Vn) = etbv(v)

since cv(v) = cv(Vn) = 1.

Suppose now that 0 ≤ h < n and the statement holds for h + 1. Let i ∈
{0, 1, . . . , Nh+1 − 1} and apply the induction hypothesis to the vertex vi ∈ Vh+1. We
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obtain

E
(

etbvi(Sn) | vi ∈ Sh+1

)

≤
(

E
(

etcvi(Sn) | vi ∈ Sh+1

)

)bvi(Vn)/cvi(Vn)

. (4.12)

Since 0 ≤ bvi(Vn)/cvi(Vn) ≤ 1, we may apply Jensen’s inequality to the concave

function x 7→ xbvi(Vn)/cvi(Vn) so that it gives

(1 − p)1 + p ybvi(Vn)/cvi(Vn) ≤
(

(1 − p)1 + p y
)bvi(Vn)/cvi(Vn)

(4.13)

for arbitrary 0 < p < 1 and y > 0. Substituting p = N s−1
h+1 and y = E

(

etcvi(Sn) | vi ∈
Sh+1

)

into (4.13) and then applying (4.12) gives

1 −N s−1
h+1 +N s−1

h+1E
(

etbvi(Sn) | vi ∈ Sh+1

)

≤
(

1 −N s−1
h+1 +N s−1

h+1E
(

etcvi(Sn) | vi ∈ Sh+1

)

)bvi(Vn)/cvi(Vn)

.

Here the left hand side equals E
(

etbvi(Sn) | v ∈ Sh

)

, and we can rewrite the right hand

side analogously to obtain

E
(

etbvi(Sn) | v ∈ Sh

)

≤
(

E
(

etcvi(Sn) | v ∈ Sh

)

)bvi(Vn)/cvi(Vn)

. (4.14)

Conditional on v ∈ Sh, the random variables cvi(Sn) are independent and they

have identical distribution, and
∑

i cvi = cv. Therefore

E
(

etcv(Sn) | v ∈ Sh

)

=

Nh+1−1
∏

i=0

E
(

etcvi(Sn) | v ∈ Sh

)

=
(

E
(

etcvj(Sn) | v ∈ Sh

)

)Nh+1

for every j ∈ {0, 1, . . . , Nh+1 − 1}. This implies that (4.14) is equivalent to

E
(

etbvi(Sn) | v ∈ Sh

)

≤
(

E
(

etcv(Sn) | v ∈ Sh

)

)bvi(Vn)/cv(Vn)

. (4.15)

Conditional on v ∈ Sh, the random variables bvi(Sn) are independent, and bv =
∑

i bvi. Therefore we have

Nh+1−1
∏

i=0

E
(

etbvi(Sn) | v ∈ Sh

)

= E
(

etbv(Sn) | v ∈ Sh

)

.
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Thus by multiplying (4.15) for all i ∈ {0, 1, . . . , Nh+1 − 1} we obtain

E
(

etbv(Sn) | v ∈ Sh

)

≤
(

E
(

etcv(Sn) | v ∈ Sh

)

)bv(Vn)/cv(Vn)

,

which is exactly what we wanted to prove.

Lemma 4.4.4. Let b : Vn → [0, 1] be a weight function, and let 1 ≤ m ≤ n. Then

for every t ≥ 0,

E etb(Sn) ≤ 1 − Ls−1
m−1 + Ls−1

m−1

∏

v∈Vm−1

E
(

etbv(Sn) | v ∈ Sm−1

)

.

Proof. We choose another random subtree of V in the following way. For each level

1 ≤ h ≤ m−1, instead of choosing each edge with probability N s−1
h independently of

each other, we either choose all edges or choose none of them with probability N s−1
h

and 1 − N s−1
h , respectively. We do not modify anything else in the construction;

that is, the edges on levels ≥ m are still chosen independently, and all events are

considered as independent unless otherwise stated. This way we obtain the random

sets Rh ⊂ Vh of reachable vertices on level h (h ≥ 0). Then for every positive integer

τ clearly

E b(Sn)τ =
∑

i1,...,iτ∈Vn

b(i1) . . . b(iτ )P(i1, . . . , iτ ∈ Sn)

≤
∑

i1,...,iτ∈Vn

b(i1) . . . b(iτ )P(i1, . . . , iτ ∈ Rn) = E b(Rn)τ .

This immediately gives

E etb(Sn) ≤ E etb(Rn) (4.16)

for t ≥ 0. Clearly

E etb(Rn) = 1 − Ls−1
m−1 + Ls−1

m−1E
(

etb(Rn) |Rm−1 = Vm−1

)

. (4.17)

Since b(Rn) =
∑

v∈Vm−1
bv(Rn), we have by independence

E
(

etb(Rn) |Rm−1 = Vm−1

)

=
∏

v∈Vm−1

E
(

etbv(Rn) |Rm−1 = Vm−1

)

. (4.18)

Since E
(

etbv(Rn) |Rm−1 = Vm−1

)

= E
(

etbv(Sn) | v ∈ Sm−1

)

for every v ∈ Vm−1, combin-

ing (4.16), (4.17) and (4.18) concludes the proof.
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Corollary 4.4.5. Let b : Vn → [0, 1] be a weight function, let 1 ≤ m ≤ n, and

u ∈ Vm−1. Then for every t ≥ 0,

E etb(Sn) ≤ 1 − Ls−1
m−1 + Ls−1

m−1

(

E
(

etcu(Sn) | u ∈ Sm−1

)

)b(Vn)/cu(Vn)

.

Proof. Combining Lemma 4.4.4 and Lemma 4.4.3 (for h = m− 1) gives

E etb(Sn) ≤ 1 − Ls−1
m−1 + Ls−1

m−1

∏

v∈Vm−1

(

E
(

etcv(Sn) | v ∈ Sm−1

)

)bv(Vn)/cv(Vn)

.

Since E
(

etcv(Sn) | v ∈ Sm−1

)

= E
(

etcu(Sn) | u ∈ Sm−1

)

for every v ∈ Vm−1, and b(Vn) =
∑

v∈Vm−1
bv(Vn), we obtain the corollary.

Remark 4.4.6. In some sense, Corollary 4.4.5 and the following Lemma 4.4.7 can

be considered as an analogue of Lemma 3.2.3 of Chapter 3.

Lemma 4.4.7. Let 1 ≤ m ≤ n, u ∈ Vm−1, and let cu be the weight function as in

Definition 4.4.2. Then

E
(

etcu(Sn) | u ∈ Sm−1

)

≤ exp
(

tL−s
m−1L

s
n exp(2tL−s

m Ls
n)
)

if 0 ≤ t ≤ Ls
mL

−s
n ; and

E
(

etcu(Sn) | u ∈ Sm−1

)

≤
(

1 −N s−1
m +N s−1

m exp
(

tL−s
m Ls

n exp(2tL−s
m+1L

s
n)
)

)Nm

if 0 ≤ t ≤ Ls
m+1L

−s
n and 1 ≤ m < n.

Proof. For m ≤ h ≤ n + 1, set

ah = E
(

etcv(Sn) | v ∈ Sh−1

)

where v is an arbitrary vertex in Vh−1. Using this notation, the first part of the

Lemma states that am ≤ exp
(

tL−s
m−1L

s
n exp(2tL−s

m Ls
n)
)

if 0 ≤ t ≤ Ls
mL

−s
n .

Since cv =
∑

i cvi, clearly

ah =

Nh−1
∏

i=0

E
(

etcvi(Sn) | v ∈ Sh−1

)

=
(

E
(

etcv0(Sn) | v ∈ Sh−1

)

)Nh

=
(

1 −N s−1
h +N s−1

h E
(

etcv0(Sn) | v0 ∈ Sh

)

)Nh
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=
(

1 +N s−1
h (ah+1 − 1)

)Nh

(4.19)

≤ exp
(

N s
h(ah+1 − 1)

)

(4.20)

if m ≤ h ≤ n.

We claim that the second part of the Lemma can be easily deduced from the

first part. Indeed, suppose that 1 ≤ m < n. Then (4.19) implies that am ≤
(1 − N s−1

m + N s−1
m am+1)

Nm . Combine this inequality with the upper estimate for

am+1 given by the first part of the Lemma for m+1 in place of m. This gives exactly

the second part of the Lemma with the right condition for t.

To prove the first part of the Lemma, suppose that 0 ≤ t ≤ Ls
mL

−s
n . We have to

show that am ≤ exp
(

tL−s
m−1L

s
n exp(2tL−s

m Ls
n)
)

. Clearly

an+1 = et. (4.21)

It is easy to check that

ex − 1 ≤ x(1 + x) (4.22)

for every 0 ≤ x ≤ 1.7. Therefore by (4.20),

an ≤ exp
(

N s
n(et − 1)

)

≤ exp
(

N s
nt(1 + t)

)

, (4.23)

since clearly t ≤ Ls
mL

−s
n ≤ 1 < 1.7 as m ≤ n. We claim that in general

ah ≤ exp

(

tL−s
h−1L

s
n

n
∏

j=h

(1 + tL−s
j Ls

n)2j−h

)

(4.24)

for every m ≤ h ≤ n+ 1. First we prove the following.

Claim 4.4.8. Suppose that m ≤ h ≤ n. Then

Ah
def
= tL−s

h−1L
s
n

n
∏

j=h

(1 + tL−s
j Ls

n)2j−h ≤ tL−s
h−1L

s
n exp(2tL−s

h Ls
n).

Moreover, if h ≥ m+ 1, then Ah ≤ 1.7 (provided that t ≤ Ls
mL

−s
n ).

Proof. We may choose the integers Ni so large that 2N−s
i ≤ 1/2 holds for every i.

Clearly

Ah ≤ tL−s
h−1L

s
n exp

(

n
∑

j=h

tL−s
j Ls

n2j−h
)

.

Since the sequence (Ni) is monotone increasing, for j ≥ h we clearly have Lj ≥
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LhN
j−h
h+1 . This implies that L−s

j 2j−h ≤ L−s
h (2N−s

h+1)
j−h for j ≥ h. Therefore

Ah ≤ tL−s
h−1L

s
n exp

(

tL−s
h Ls

n

∞
∑

j=h

(2N−s
h+1)

j−h
)

≤ tL−s
h−1L

s
n exp(2tL−s

h Ls
n),

where we used that 2N−s
h+1 ≤ 1/2.

If, in addition, h ≥ m+1 and t ≤ Ls
mL

−s
n hold, then from the previous arguments

we clearly have

Ah ≤ tL−s
m Ls

n exp(2tL−s
m+1L

s
n) ≤ exp(2N−s

m+1) ≤ exp(1/2) ≤ 1.7.

We would like to prove (4.24). Notice that for h = n+1 and h = n we are already

done by (4.21) and (4.23). Suppose that m ≤ h ≤ n − 1 and that (4.24) holds for

h+ 1. Then combining this induction hypothesis with (4.22),

ah+1 − 1 ≤ exp(Ah+1) − 1 ≤ Ah+1(1 + Ah+1)

=
(

tL−s
h Ls

n

n
∏

j=h+1

(1 + tL−s
j Ls

n)2j−h−1
)(

1 + tL−s
h Ls

n

n
∏

j=h+1

(1 + tL−s
j Ls

n)2j−h−1
)

≤ tL−s
h Ls

n

(

n
∏

j=h+1

(1 + tL−s
j Ls

n)2j−h−1
)(

n
∏

j=h+1

(1 + tL−s
j Ls

n)2j−h−1
)

(

1 + tL−s
h Ls

n

)

= tL−s
h Ls

n

n
∏

j=h

(1 + tL−s
j Ls

n)2j−h

.

Note that here (the second part of) Claim 4.4.8 grants that Ah+1 ≤ 1.7, which

means that (4.22) is satisfied. Thus from (4.20),

ah ≤ exp
(

N s
h(ah+1 − 1)

)

≤ exp

(

N s
htL

−s
h Ls

n

n
∏

j=h

(1 + tL−s
j Ls

n)2j−h

)

,

which (noticing that N s
hL

−s
h = L−s

h−1) proves (4.24).

Combining (4.24) and Claim 4.4.8 for h = m we obtain

am ≤ exp
(

tL−s
m−1L

s
n exp(2tL−s

m Ls
n)
)

,

which was to be proved.

Lemma 4.4.9. Let 1 ≤ m ≤ n and let b : Vn → [0, 1] be a weight function with

b(Vn) = kL−1
m Ln for some real number 1 ≤ k ≤ √

logNm. Then there exists some
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t ≥ k−sLs
mL

−s
n such that

E etb(Sn)

exp(te1/mksL−s
m Ls

n)
e1/mks−1L1−s

m ≤ 3N−(1−s)/(8m)
m . (4.25)

Lemma 4.4.10. Let 1 ≤ m ≤ n and let b : Vn → [0, 1] be a weight function with

b(Vn) = kL−1
m Ln for some real number

√
logNm ≤ k ≤ N

(1−s)/2
m . Then there exists

some t ≥ k−sLs
mL

−s
n such that

E etb(Sn)

exp(te1/mksL−s
m Ls

n)
e1/mks−1L1−s

m ≤ 8N−(log Nm)s/4+1
m . (4.26)

Lemma 4.4.11. Let 1 ≤ m ≤ n and let b : Vn → [0, 1] be a weight function with

b(Vn) = kL−1
m Ln for some real number N

(1−s)/2
m ≤ k ≤ Nm. Then there exists some

t ≥ k−sLs
mL

−s
n such that

E etb(Sn)

exp(te1/mksL−s
m Ls

n)
e1/mks−1L1−s

m ≤ 3 exp
(

− N
s(1−s)/2
m

8m2

)

Nm. (4.27)

Corollary 4.4.12. Let n ≥ 1, m ≥ 1. Let b : Vn → [0, 1] be a weight function

with b(Vn) = kL−1
m Ln for some real number 1 ≤ k ≤ Nm. Then there exists some

t ≥ k−sLs
mL

−s
n such that

E etb(Sn)

exp(te1/mksL−s
m Ls

n)
e1/mks−1L1−s

m ≤ 3N−(1−s)/(8m)
m . (4.28)

Proof. First assume thatm ≤ n. Then (4.28) is a clear consequence of Lemmas 4.4.9,

4.4.10, 4.4.11 provided that we suppose that (Ni) is increasing sufficiently rapidly.

Now assume that m ≥ n + 1. Since b(Sn) ≤ b(Vn), we have E
(

exp(tb(Sn))
)

≤
exp(tkL−1

m Ln). Therefore the quotient on the left hand side of (4.28) is at most

exp
(

t(kL−1
m Ln − e1/mksL−s

m Ls
n)
)

. (4.29)

Since kL−1
m Ln ≤ NmL

−1
m Ln = L−1

m−1Ln ≤ 1, we have kL−1
m Ln < e1/mksL−s

m Ls
n. There-

fore (4.29) and thus the left hand side of (4.28) tend to zero as t → ∞. From this

the Corollary follows.

It remains to prove the three lemmas. We will always assume that t ≥ 0.

Proof of Lemma 4.4.9. The combination of Corollary 4.4.5 and (the second part of)
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Lemma 4.4.7 for some u ∈ Vm−1 gives that

E etb(Sn) ≤ 1 − Ls−1
m−1 + Ls−1

m−1

(

1 −N s−1
m +N s−1

m exp(tL−s
m Ls

ne
2tL−s

m+1Ls
n)
)k

if t ≤ Ls
m+1L

−s
n , since b(Vn)/cu(Vn) = kL−1

m Ln/(L
−1
m−1Ln) = kN−1

m . Therefore clearly

E etb(Sn) ≤
(

1 −N s−1
m +N s−1

m exp(tL−s
m Ls

ne
2tL−s

m+1Ls
n)
)k

(4.30)

if t ≤ Ls
m+1L

−s
n . Set

t = e−1/(2m)(logN1−s
m )Ls

mL
−s
n .

We may clearly assume that the sequence (Ni) is increasing sufficiently rapidly to

ensure Ls
m+1L

−s
n ≥ t ≥ Ls

mL
−s
n ≥ k−sLs

mL
−s
n for this particular t. Now

2tL−s
m+1L

s
n = 2e−1/(2m)(logN1−s

m )N−s
m+1 ≤ 2(logN1−s

m )N−s
m+1;

we may assume that the right hand side is at most 1/(2m) and thus e2tL−s
m+1Ls

n ≤
e1/(2m). Using this upper bound and (4.30), the left hand side of (4.25) can be

estimated as

≤

(

1 −N s−1
m +N s−1

m exp
(

e−1/(2m)(logN1−s
m )e1/(2m)

)

)k

exp
(

e−1/(2m)(logN1−s
m )e1/mks

) e1/mks−1L1−s
m

≤
(

1 −N s−1
m +N s−1

m N1−s
m

)k

exp
(

e1/(2m)(logN1−s
m )ks

) e1/mks−1L1−s
m

≤ 2k

N
(1−s)e1/(2m)

m

e1/mks−1L1−s
m . (4.31)

We may suppose that
√

logNm ≤ 1−s
4m

logNm, thus 2k ≤ ek ≤ N
(1−s)/(4m)
m . We may

also suppose that Lm−1 ≤ N
1/(8m)
m , thus L1−s

m ≤ N
(1−s)(1+

1
8m

)
m . Using these estimates,

we may continue (4.31) as

≤ N
−(1−s)(1+ 1

4m
)

m e1/mks−1N
(1−s)(1+

1
8m

)
m ≤ 3N−(1−s)/(8m)

m .

Proof of Lemma 4.4.10. We may use the inequality (4.30); that is,

E etb(Sn) ≤
(

1 −N s−1
m +N s−1

m exp(tL−s
m Ls

ne
2tL−s

m+1Ls
n)
)k

(4.32)
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when t ≤ Ls
m+1L

−s
n . Set

t =
logNm

log logNm
Ls

mL
−s
n .

Clearly this t has both the lower bound t ≥ k−sLs
mL

−s
n and the upper bound t ≤

Ls
m+1L

−s
n if we impose some mild conditions on the sequence (Ni). Therefore, by

using (4.32), the left hand side of (4.26) can be estimated as

≤

(

1 −N s−1
m +N s−1

m exp
(

(logNm)/(log logNm) e2
)

)k

exp
(

(logNm)/(log logNm) e1/mks
) e1/mks−1L1−s

m

≤
(

1 −N s−1
m +N s−1

m N
e2/ log log Nm
m

)k

N
e1/mks/ log log Nm
m

e1/mks−1L1−s
m

≤ exp
(

kN s−1
m N

e2/ log log Nm
m

)

N
e1/mks/ log log Nm
m

e1/mks−1L1−s
m

≤ exp
(

N
(s−1)/2
m N

e2/ log log Nm
m

)

N
(log Nm)s/2/ log log Nm
m

e1/mks−1L1−s
m . (4.33)

We may clearly assume that s−1
2

+ e2

log log Nm
< 0 and that log logNm ≤ (logNm)s/4,

hence we may continue (4.33) as

≤ exp(1)

N
(log Nm)s/4

m

e1/mks−1L1−s
m ≤ e2N−(log Nm)s/4

m ks−1L1−s
m ≤ 8N−(log Nm)s/4

m L1−s
m .

Assuming that (Ni) is increasing sufficiently rapidly we have L1−s
m ≤ Nm, which

concludes the proof.

Proof of Lemma 4.4.11. The combination of Corollary 4.4.5 and (the first part of)

Lemma 4.4.7 for some u ∈ Vm−1 gives that

E etb(Sn) ≤ 1 − Ls−1
m−1 + Ls−1

m−1

(

exp(tL−s
m−1L

s
ne

2tL−s
m Ls

n)
)kN−1

m

if t ≤ Ls
mL

−s
n , since b(Vn)/cu(Vn) = kL−1

m Ln/(L
−1
m−1Ln) = kN−1

m . Therefore clearly

E etb(Sn) ≤ exp(kN−1
m tL−s

m−1L
s
ne

2tL−s
m Ls

n) (4.34)

if t ≤ Ls
mL

−s
n . Set

t =
1

4m
Ls

mL
−s
n .

We may clearly assume that 4m ≤ N
s(1−s)/2
m , therefore t has the lower bound
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k−sLs
mL

−s
n . Using (4.34) we may estimate the left hand side of (4.27) as

≤ exp
(

kN s−1
m e2/(4m)/(4m)

)

exp
(

e1/mks/(4m)
) e1/mks−1L1−s

m

≤ exp
(

kN s−1
m

e1/(2m)

4m
− kse

1/m

4m

)

e1/mks−1L1−s
m . (4.35)

It is easy to check that e1/m−e1/(2m) ≥ 1/(2m). Since k ≤ Nm, we have kN s−1
m ≤ ks,

and therefore

kN s−1
m

e1/(2m)

4m
− ks e

1/m

4m
≤ − ks

8m2
.

Using this inequality and that k ≥ N
(1−s)/2
m , we can continue (4.35) as

≤ exp
(

− ks

8m2

)

e1/mks−1L1−s
m ≤ 3 exp

(

− N
s(1−s)/2
m

8m2

)

L1−s
m .

Assuming that (Ni) is increasing sufficiently rapidly we have L1−s
m ≤ Nm, which

concludes the proof.

4.5 Main results

The first lemma is the only statement in this section which uses the concepts and

results of the other sections of this chapter; that is, the random subtree of §4.1, the

upper estimate of §4.2 and the lower estimate of §4.3.

4.5.1 Results on the real line

Lemma 4.5.1. Let K ⊂ R be a compact set of Lebesgue measure 1, and let f :

K \ {maxK} → [0, 1] be a continuous function. Then for every 0 < s < 1, there

exists a compact set C ⊂ [0, 1] such that

Hs(C) ≤ Hs(f−1(C)) (4.36)

where Hs(C) <∞ and Hs(f−1(C)) > 0.

Remark 4.5.2. By requesting that Hs(C) < ∞ and Hs(f−1(C)) > 0, we exclude

the two possibilities 0 ≤ 0 and ∞ ≤ ∞ in inequality (4.36). The Lemma would be

trivial if we did not exclude these possibilities. Note that we do not exclude the case

when 0 = Hs(C) ≤ Hs(f−1(C)) = ∞.

Proof of Lemma 4.5.1. We may suppose that the preimage of each point has Lebesgue
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measure zero, otherwise the statement is trivial (namely, one can choose C to be a

single point the preimage of which is of positive Lebesgue measure).

We define a system of intervals in [0, 1] in the following way. Define ϕ : [0, 1] → R

as

ϕ(y) = λ(f−1([0, y])).

Hence ϕ is a continuous and increasing function, and its range is [0, 1].

Recall the tree V and the random subtree S of §4.1. For each non-negative integer

n and v = (i1, . . . , in) ∈ Vn define Uv to be the closed interval with left endpoint

max
{

y ∈ [0, 1] : ϕ(y) =
n
∑

j=1

ij
Lj

}

and right endpoint

min
{

y ∈ [0, 1] : ϕ(y) =
1

Ln
+

n
∑

j=1

ij
Lj

}

.

Thus, for example, U∅ = [maxϕ−1(0), minϕ−1(1)]. Therefore for two vertices u and

v we have Uu ⊂ Uv if v ≤ u; and Uu and Uv have at most one point in common if u

and v are incomparable. We also have

λ(f−1(Uv)) = 1/Ln (4.37)

for every v ∈ Vn.

Define the random compact sets Cn as

Cn =
⋃

{Uv : v ∈ Sn}

and let

C =

∞
⋂

n=0

Cn.

The intervals Uv satisfy the assumptions of the upper estimate (§4.2). Hence from

Proposition 4.2.1 we obtain

EHs(C) ≤ 1. (4.38)

Set ψ : K → [0, 1] by

ψ(x) = λ((−∞, x] ∩K).

Then ψ is a 1-Lipschitz function from K onto [0, 1] preserving the Lebesgue measure.
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For each v ∈ V , set

Mv = ψ
(

f−1(Uv) ∪ {maxK}
)

.

Then (4.37) implies that λ(Mv) = 1/Ln for every v ∈ Vn. It is easy to check that

λ(Mu ∩Mv) = 0 if u and v are incomparable, and that Mu ⊂ Mv if v ≤ u. It is

also easy to see that the sets f−1(Uv) ∪ {maxK} are compact, thus the sets Mv are

compact as well. Therefore the assumptions of the lower estimate (§4.3) are satisfied.

Set Dn =
⋃{Mv : v ∈ Sn}, and set D =

⋂

nDn. We may apply Theorem 4.3.4

and obtain

EHs(D) ≥ 1. (4.39)

Notice that Dn = ψ
(

f−1(Cn) ∪ {maxK}
)

. Since ψ is monotonic, there can be only

countably many points y ∈ [0, 1] for which ψ−1(y) is not a single point. This implies

that D and ψ
(
⋂

n f
−1(Cn) ∪ {maxK}

)

= ψ
(

f−1(C) ∪ {maxK}
)

can differ only

in countably many points. Since 1-Lipschitz functions do not increase Hausdorff

measures, from (4.39) we deduce

EHs
(

f−1(C) ∪ {maxK}
)

≥ 1.

Then we also have

EHs(f−1(C)) ≥ 1. (4.40)

From (4.38) we know that Hs(C) is almost surely finite, and (4.38) and (4.40) imply

that

E
(

Hs(f−1(C)) −Hs(C)
)

≥ 0.

Combining this with (4.40) gives that with positive probability all the inequalities

Hs(C) ≤ Hs(f−1(C)), Hs(C) <∞, Hs(f−1(C)) > 0 hold.

Proposition 4.5.3. Let A ⊂ R be a Borel set of positive and finite Lebesgue measure,

and let f : A → [0, 1] be a Borel mapping. Then for every 0 < s < 1 there exists a

compact set C ⊂ [0, 1] such that Hs(C) <∞, Hs(f−1(C)) > 0 and

λ(A)sHs(C) ≤ Hs(f−1(C)).

Proof. By applying a similarity transformation in the domain space, we may assume

without loss of generality that λ(A) = 1.

By a repeated use of Luzin’s theorem we can find disjoint compact sets Ki ⊂ A

(i = 0, 1, . . .) such that f is continuous on each Ki and that
∑∞

i=0 λ(Ki) = 1. By the

Lebesgue density theorem we may even suppose that the diameter of each Ki is at

most twice its Lebesgue measure. Then we can find translation vectors ti ∈ R such
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that Ki + ti ⊂ [0, 3], and that max(Ki + ti) < min(Ki+1 + ti+1). Put

K ′ =
∞
⋃

i=0

(Ki + ti).

Note that the closure of K ′ is K ′ ∪ {supK ′}. Let ψ :
⋃

iKi → K ′ be the unique

bijection for which ψ|Ki
is just the translation by ti for each i ∈ N. Define g : K ′ →

[0, 1] by g = f ◦ ψ−1. It is easy to see that g is continuous. Thus we may apply

Lemma 4.5.1 to K = K ′ ∪ {supK ′} and the function g. We obtain a compact set

C ⊂ [0, 1] such that Hs(C) ≤ Hs(g−1(C)) where Hs(C) < ∞ and Hs(g−1(C)) > 0.

Since Hausdorff measures are translation invariant and σ-additive, the bijection ψ

preserves Hausdorff measures. Hence Hs(g−1(C)) = Hs(f−1(C)) and the proof is

finished.

The following auxiliary lemma will be used in the proof of Theorem 4.5.5. Similar

statements surely exist in the literature, however, we could not find any reference.

Lemma 4.5.4. Let µ and ν be atomless Borel measures on the unit circle T such

that 1 ≤ µ(T) < ∞ and µ(T) ≤ ν(T). Then there exists a closed interval (an arc)

I ⊂ T such that µ(I) = 1 and ν(I) ≥ 1.

Proof. If µ(T) = 1 then I can be chosen as T. Therefore we may assume that

µ(T) > 1.

Suppose first that ν(T) < ∞. Fix some δ > 0. We define a Borel measure µδ

on T by setting µδ = µ + δλ, where λ is the (normalized) Lebesgue measure on T.

Then µδ(T) = µ(T)+δ and µδ possesses the property that every non-empty open set

has positive µδ measure. For x ∈ T define f(x) as the unique point in T for which

µδ([x, f(x)]) = 1 holds. Thus f is a T → T homeomorphism. We claim that there

exists an interval Iδ ⊂ T for which ν(Iδ) ≥ 1/(1 + δ) and µδ(Iδ) = 1. Indeed, put

E = {(x, y) ∈ T
2 : y ∈ [x, f(x)]} = {(x, y) ∈ T

2 : x ∈ [f−1(y), y]}.

Then

∫

T

ν([x, f(x)]) dµδ(x) = µδ × ν(E) =

∫

T

µδ([f
−1(y), y]) dν(y) =

∫

T

1 dν(y) = ν(T).

Therefore there exists some x ∈ T such that ν([x, f(x)])µδ(T) ≥ ν(T). Then

ν([x, f(x)]) ≥ ν(T)/(µ(T) + δ) ≥ 1/(1 + δ), and we can let Iδ = [x, f(x)].

We can do the same and define Iδ for all δ > 0. We can choose a sequence δn → 0

such that Iδ converges to some closed interval I (meaning that the left endpoints
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converge to the left endpoint of I, and the right endpoints converge to the right

endpoint of I). It is easy to check that µ(I) = limn µ(Iδn) = limn µδn(Iδn) = 1 and

also that ν(I) = limn ν(Iδn) ≥ limn 1/(1 + δn) = 1. Hence we are done with the case

ν(T) <∞.

Now suppose that ν(T) = ∞. Since µ(T) < ∞, it is easy to cover T by finitely

many closed intervals Ii such that µ(Ii) = 1 for every i. One of these intervals must

have infinite ν measure, we can choose that as I.

Theorem 4.5.5. Let f : [0, 1] → [0, 1] be Borel. Then for every 0 < s < 1 there

exists a compact set C such that Hs(C) ≤ 1 and Hs(f−1(C)) ≥ 1.

Proof. This proof is based on a repeated use of Proposition 4.5.3. First we prove

that there exists a compact set C ′ ⊂ [0, 1] such that

Hs(C ′) <∞, Hs(f−1(C ′)) ≥ 1, and Hs(C ′) ≤ Hs(f−1(C ′)). (4.41)

Suppose that such set C ′ does not exist.

We will define compact sets Ck ⊂ [0, 1] for every positive integer k by a greedy

algorithm such that each f−1(Ck) is of Lebesgue measure zero. Suppose that the

sets Ci are already defined for i = 1, . . . , k − 1. (Note that this automatically holds

for k = 1.) Put

Ak = [0, 1] \
k−1
⋃

i=1

f−1(Ci);

this is a Borel set of Lebesgue measure 1. Apply Proposition 4.5.3 to the function

f |Ak
. We conclude that there exists a compact set Ck ⊂ [0, 1] such that

Hs(Ck) <∞, Hs(Ak ∩ f−1(Ck)) ≥ 1/nk and Hs(Ck) ≤ Hs(Ak ∩ f−1(Ck)) (4.42)

for some integer nk ≥ 2. Choose such a set Ck for which we may choose nk to be

minimal. Our hypothesis that (4.41) cannot be satisfied implies that we must have

Hs(f−1(Ck)) < 1. (4.43)

Therefore f−1(Ck) is of Lebesgue measure zero.

It is easy to check that the sequence nk is monotone increasing. We claim that nk

stabilizes (that is, it does not tend to infinity). Indeed, let A∞ = [0, 1]\⋃∞
i=1 f

−1(Ci).

Apply Proposition 4.5.3 to the function f |A∞ to obtain a compact set C∞ ⊂ [0, 1]

such that

Hs(C∞) <∞, Hs(A∞ ∩ f−1(C∞)) ≥ 1/m and Hs(C∞) ≤ Hs(A∞ ∩ f−1(C∞))
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for some positive integer m. It is easy to check nk ≤ m holds for all k.

The sets Ak∩f−1(Ck) are pairwise disjoint. Let C ′ = C1∪ . . .∪Cm. The previous

arguments imply that

Hs(f−1(C ′)) ≥ Hs

(

m
⋃

i=1

(Ai ∩ f−1(Ci))

)

=

m
∑

i=1

Hs(Ai ∩ f−1(Ci)) (4.44)

≥
m
∑

i=1

1

ni
≥ 1. (4.45)

From (4.42) and (4.43) we obtain

Hs(C ′) ≤
m
∑

i=1

Hs(Ci) ≤
m
∑

i=1

Hs(Ai ∩ f−1(Ci)) < m. (4.46)

Combining (4.44) and (4.46) gives Hs(C ′) ≤ Hs(f−1(C ′)). This, together with (4.45)

and (4.46) imply that our hypothesis that (4.41) cannot be satisfied was false, thus

there indeed exists a compact set C ′ ⊂ [0, 1] such that (4.41) holds.

Now let C ′ ⊂ [0, 1] be a compact set such that (4.41) holds. If Hs(C ′) ≤ 1 then

we are done. Otherwise we define two Borel measures µ and ν on [0, 2π) by setting

µ(A) = Hs(C ′ ∩ A) and ν(A) = Hs(f−1(C ′ ∩ A))

for every Borel set A ⊂ [0, 2π). The inequalities (4.41) imply that we may apply

Lemma 4.5.4 after identifying [0, 2π) with T. We obtain two closed intervals I1 ⊂
[0, 1] and I2 ⊂ [0, 1] (one of them may be empty) such that for C = C ′ ∩ (I1 ∪ I2) we

have Hs(C) = 1 and Hs(f−1(C)) ≥ 1. This concludes the proof.

From Theorem 4.5.5 we can easily deduce the following.

Theorem 4.5.6. Let f : [0, 1] → [0, 1] be Borel measurable. Then for every 0 < s < 1

there exists a compact set C ⊂ [0, 1] such that Hs(C) = 1 and Hs(f(C)) ≤ 1.

Proof. Let f : [0, 1] → [0, 1] be Borel measurable, and let 0 < s < 1. Apply-

ing Theorem 4.5.5 we obtain a compact set C ⊂ [0, 1] such that Hs(C) ≤ 1 and

Hs(f−1(C)) ≥ 1. Then we can choose a compact set C ′ ⊂ f−1(C) such that

Hs(C ′) = 1. Clearly Hs(f(C ′)) ≤ 1, thus the proof is finished.

Remark 4.5.7. Many steps of the previous proofs could be simplified if one wanted

to prove only the following weaker version of Theorem 4.5.6. Let f : [0, 1] → [0, 1]

be Borel measurable, let 0 < s < 1 and let ε > 0. Then there exists a compact set

C ⊂ [0, 1] such that Hs(C) = 1 and Hs(f(C)) ≤ 1+ ε. However, this weaker version
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would leave open the question whether there exists a Borel map f : [0, 1] → [0, 1] such

that Hs(f(B)) > Hs(B) for every Borel set B ⊂ [0, 1] satisfying 0 < Hs(B) <∞.

Corollary 4.5.8. Let 0 < s < 1 and c > 0, c 6= 1 be fixed. Then the measures

Hs and c · Hs are not Borel isomorphic on [0, 1]. (That is, there does not exist a

Borel bijection f : [0, 1] → [0, 1] such that Hs(B) = cHs(f(B)) for every Borel set

B ⊂ [0, 1].)

Remark 4.5.9. Obviously, Hs is Borel isomorphic to cHs on the real line, as there

is a similarity which realizes the isomorphism.

Remark 4.5.10. Corollary 4.5.8 suggests an interesting ‘compactness’ property of

Borel measures. Let X be a Polish space, B the Borel σ-algebra, and µ an atomless

measure on B. Let us say that µ is compressible if there exists a Borel map f : X → X

such that

µ(f−1(B)) ≤ µ(B)

2

for every B ∈ B. (There are many reasonable alternatives to this definition to

describe roughly the same phenomenon.) Then Theorem 4.5.5 implies that Hs re-

stricted to [0, 1] (to the Borel subsets of [0, 1]) is not compressible. However, Hs on

the real line is compressible (see Remark 4.5.9).

For σ-finite measures there is a very simple characterization of compressibility.

If µ is σ-finite, then it is not compressible if and only if µ is finite and non-zero;

that is, 0 < µ(X) <∞. The non-trivial part of this statement follows from the well-

known isomorphism theorem of σ-finite Borel measures; see for example [7, Theorem

17.41]. (That is, every atomless infinite σ-finite Borel measure on a Polish space

is isomorphic to the Lebesgue measure on the real line, thus compressible.) Hence

compressibility can be interesting only for non-σ-finite measures.

4.5.2 Results in Euclidean spaces

Proposition 4.5.11. Let A,B ⊂ R
n be Borel sets satisfying 0 < λ(A) = λ(B) <∞,

and let f : A → B be a Borel mapping. Let 0 < s < n. Then for every ε > 0 there

exists a Borel set C ⊂ B such that Hs(C) ≤ (1 + ε)Hs(f−1(C)), where Hs(C) <∞
and Hs(f−1(C)) > 0.

Lemma 4.5.12. Let F ⊂ R
n be a compact set of positive Lebesgue measure, and let

δ > 0 be given. Let Q ⊂ R
n be an open cube of volume (1 + δ)λ(F ). Then there

exists an injective Borel mapping ψ : F → Q which preserves Lebesgue measure and

all Hausdorff measures.
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Proof. As Lebesgue and Hausdorff measures are isometry invariant, we may assume

without loss of generality that Q is an axis-parallel cube of volume (1 + δ)λ(F ). We

will show that F can be divided into finitely many Borel subsets so that we can

choose ψ to be a translation on each of these subsets. Since Lebesgue and Hausdorff

measures are translation invariant and additive, this will give the proof.

Let r > 0 be some small number, and consider a covering of R
n by grid cubes

[0, r)n + rz, where z ∈ Z
n. For sufficiently small r, the compact set F intersects

at most λ(F )r−n(1 + δ/2) grid cubes. Therefore these grid cubes can be translated

to fit in the cube Q (if r is again sufficiently small compared to δ). From this we

conclude that the sought injective Borel mapping ψ : F → Q exists.

Remark 4.5.13. The proof of Proposition 4.5.11 is based on Proposition 4.5.3, using

Lemma 3.7.3 and Lemma 4.5.12. If in the statement of Proposition 4.5.11 we allowed

1+ε to be some large constant depending on n and s, then the proof would be rather

straightforward (but still lengthy). However, to get 1+ ε, first we have to find a way

to iterate f in some sense before reducing the problem to the one dimensional case

(that is, Proposition 4.5.3).

Proposition 4.5.11 should be true even for ε = 0, but the author does not know

how to prove that, and we will not need that for the applications.

Proof of Proposition 4.5.11. Consider n and s fixed. Let cn,s be the constant given

by Lemma 3.7.3. Let k > 0 be so large that

ks/nc2n,s ≥ 2. (4.47)

There are two possibilities.

(i) Either there exists a Borel set A′ ⊂ A such that

λ(A′) > kλ(f(A′));

(ii) or for every Borel set B′ ⊂ R
n,

λ(f−1(B′)) ≤ kλ(B′). (4.48)

First we deal with case (i). We do not need the extra ε in the Proposition in

this case. We can choose a compact set A∗ ⊂ A′ such that f restricted to A∗ is

continuous and that

λ(A∗) > kλ(f(A′)) ≥ kλ(f(A∗)). (4.49)
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Let f∗ be the restriction of f to A∗.

Let us fix some small δ > 0. Let QA be an open cube of volume (1+δ)λ(A∗), and

QB be an open cube of volume (1 + δ)λ(A∗)/k. Using Lemma 4.5.12 (and (4.49)),

fix injective Borel functions ψA : A∗ → QA and ψB : f∗(A∗) → QB preserving

Lebesgue and Hausdorff measures. Let sA : QA → (0, 1)n and sB : QB → (0, 1)n

be surjective similarity transformations. Also consider the Borel set En ⊂ [0, 1) and

Borel bijection pn : En → [0, 1)n given by Lemma 3.7.3. Let g be a Borel mapping

from p−1
n (sA(ψA(A∗))) ⊂ [0, 1) to [0, 1) defined by

g = p−1
n ◦ sB ◦ ψB ◦ f∗ ◦ ψ−1

A ◦ s−1
A ◦ pn.

Applying Proposition 4.5.3 to the function g and dimension s/n gives a compact set

C ′ ⊂ [0, 1] such that

λ
(

p−1
n (sA(ψA(A∗)))

)s/n Hs/n(C ′) ≤ Hs/n(g−1(C ′)), (4.50)

where Hs/n(C ′) <∞ and Hs/n(g−1(C ′)) > 0. It is easy to check that

λ
(

p−1
n (sA(ψA(A∗)))

)

= (1 + δ)−1λ(A∗)
−1λ(A∗) = (1 + δ)−1. (4.51)

We define a Borel set

C = ψ−1
B ◦ s−1

B ◦ pn(C
′) ⊂ f∗(A∗).

Then

Hs(C) ≤ Hs(s−1
B (pn(C ′))) ≤ λ(QB)s/n Hs(pn(C ′))

≤ λ(QB)s/n c−1
n,s Hs/n(C ′) = (1 + δ)s/n (λ(A∗)/k)

s/n c−1
n,s Hs/n(C ′) (4.52)

where the third inequality was obtained by (3.10). On the other hand,

g−1(C ′) = p−1
n (sA(ψA(f−1

∗ (C)))),

and thus

Hs/n(g−1(C ′)) ≤ c−1
n,s Hs(sA(ψA(f−1

∗ (C))) = c−1
n,s λ(QA)−s/n Hs(ψA(f−1

∗ (C)))

= c−1
n,s λ(QA)−s/n Hs(f−1

∗ (C))

= c−1
n,s (1 + δ)−s/n λ(A∗)

−s/n Hs(f−1
∗ (C)). (4.53)
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Combining (4.50) with (4.51), (4.52) and (4.53) gives that

(1 + δ)−s/nks/nc2n,sHs(C) ≤ Hs(f−1
∗ (C)), (4.54)

where Hs(C) < ∞ and Hs(f−1
∗ (C)) > 0. We may assume that δ < 1, thus from

(4.47) we obtain (1 + δ)−s/nks/nc2n,s ≥ 1. Therefore (4.54) implies

Hs(C) ≤ Hs(f−1
∗ (C)) ≤ Hs(f−1(C)),

since f∗ was just a restriction of f . Hence we are done with case (i).

Now let us assume that the second case holds: for every Borel set B′ ⊂ R
n,

λ(f−1(B′)) ≤ kλ(B′).

Let N be some large positive integer depending on ε > 0 given in the Proposition.

Let δ > 0 be very small depending on N . (The right choice of these constants will

become clear during the proof.)

Let A∗ be a compact subset of A such that λ(A∗) = (1 − δ)λ(A), and B∗ be a

compact subset of B such that λ(B∗) = (1 − δ)λ(A). Let Q ⊂ R
n be an open cube

of volume λ(A). Using Lemma 4.5.12, fix injective Borel functions ψA : A∗ → Q and

ψB : B∗ → Q which preserve Lebesgue and Hausdorff measures. We define a Borel

map

g : ψA(A∗ ∩ f−1(B∗)) → Q

by setting

g = ψB ◦ f ◦ ψ−1
A . (4.55)

Let D = ψA(A∗ ∩ f−1(B∗)) be the domain of g. Note that D ⊂ Q. We claim that

this domain is in fact a large portion of the cube Q. Indeed,

λ(D) = λ(A∗ ∩ f−1(B∗))

= λ(A∗ \ f−1(B \B∗)) ≥ λ(A∗) − λ(f−1(B \B∗))

≥ λ(A∗) − kλ(B \B∗) = (1 − δ)λ(A) − kδλ(A)

= (1 − (k + 1)δ)λ(A) = (1 − (k + 1)δ)λ(Q). (4.56)

Since ψA and ψB are Lebesgue measure preserving (where they are defined), it is

easy to check that (4.48) implies that λ(g−1(B′)) ≤ kλ(B′) for all Borel sets B′ ⊂ R
n.

For each positive integer j we have

λ(g−j(Q \D)) ≤ kjλ(Q \D) ≤ kj(k + 1)δλ(Q)
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by (4.56). Therefore

λ

(

N−1
⋃

j=1

g−j(Q \D)

)

≤ kN (k + 1)δλ(Q) (4.57)

since k ≥ 2 by (4.47). Set

D′ = D ∩ g−1(D) ∩ g−2(D) ∩ . . . ∩ g−(N−1)(D).

The set D′ is the largest domain on which gN is defined. It is easy to check that

D′ = D \
(

g−1(Q \D) ∪ g−2(Q \D) ∪ . . . ∪ g−(N−1)(Q \D)
)

.

The estimate (4.57) implies that λ(D′) ≥ λ(D) − kN(k + 1)δλ(Q). Combining this

with (4.56), for sufficiently small δ we have

λ(D′) ≥ λ(Q)/2. (4.58)

Now consider a surjective similarity map sQ : Q → (0, 1)n. Let En ⊂ [0, 1) and

pn : En → [0, 1)n be the Borel set and the bijection of Lemma 3.7.3. We define a

function

h : p−1
n (sQ(D′)) → [0, 1)

by setting

h = p−1
n ◦ sQ ◦ gN ◦ s−1

Q ◦ pn.

Applying Proposition 4.5.3 to the function h and dimension s/n gives a compact set

C ′ ⊂ [0, 1] such that

λ
(

p−1
n (sQ(D′))

)s/n Hs/n(C ′) ≤ Hs/n(h−1(C ′)), (4.59)

where Hs/n(C ′) <∞ and Hs/n(h−1(C ′)) > 0. Clearly λ(p−1
n (sQ(D′))) = λ(sQ(D′)) =

λ(Q)−1λ(D′) ≥ 1/2 by (4.58).

Define the Borel set C ′′ = s−1
Q (pn(C ′)). Then

Hs(C ′′) ≤ λ(Q)s/n Hs(pn(C
′)) ≤ λ(Q)s/n c−1

n,s Hs/n(C ′). (4.60)

Since h−1(C ′) = p−1
n (sQ(g−N(C ′′))), we have

Hs/n(h−1(C ′)) ≤ c−1
n,s Hs(sQ(g−N(C ′′))) = c−1

n,s λ(Q)−s/n Hs(g−N(C ′′)). (4.61)
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Combining (4.59) with (4.60) and (4.61) gives that

Hs(C ′′) ≤ 2c−2
n,s Hs(g−N(C ′′)),

where Hs(C ′′) < ∞ and Hs(g−N(C ′′)) > 0. Then there must exist some j ∈
{0, 1, . . . , N − 1} such that

Hs(g−j(C ′′)) ≤ (2c−2
n,s)

1/N Hs(g−(j+1)(C ′′))

and that Hs(g−j(C ′′)) < ∞ and Hs(g−(j+1)(C ′′)) > 0 (as easily verified). Set C ′′′ =

g−j(C ′′) for such a j. We may choose N large enough (at the beginning of the proof)

to ensure (2c−2
n,s)

1/N ≤ (1 + ε). Thus

Hs(C ′′′) ≤ (1 + ε)Hs(g−1(C ′′′)) (4.62)

and Hs(C ′′′) <∞ and Hs(g−1(C ′′′)) > 0. Recall that the domain of g = ψB ◦f ◦ψ−1
A

is D = ψA(A∗ ∩ f−1(B∗)), see (4.55). Therefore we have

g−1(C ′′′) = ψA(A∗ ∩ f−1(ψ−1
B (C ′′′))).

Setting C = ψ−1
B (C ′′′) gives g−1(C ′′′) = ψA(A∗ ∩ f−1(C)). Since ψA and ψB preserve

Hausdorff measures, (4.62) implies that

Hs(C) ≤ Hs(C ′′′) ≤ (1 + ε)Hs(A∗ ∩ f−1(C)) ≤ (1 + ε)Hs(f−1(C)).

From the previous arguments it is also clear that Hs(C) <∞ and Hs(f−1(C)) > 0,

therefore the proof is finished.

By applying suitable similarity transformations in the domain and range spaces,

it is easy to deduce the following generalization of Proposition 4.5.11.

Proposition 4.5.14. Let A,B ⊂ R
n be Borel sets of positive and finite Lebesgue

measures, and let f : A → B be a Borel mapping. Let 0 < s < n. Then for every

ε > 0 there exists a Borel set C ⊂ B such that

λ(A)s Hs(C) ≤ (1 + ε)λ(B)s Hs(f−1(C)),

where Hs(C) <∞ and Hs(f−1(C)) > 0.

Theorem 4.5.15. Let D ⊂ R
n be Borel and let f : D → R

n be a Borel mapping.

Let 0 < s < n be fixed. If f does not decrease the Hs measure of any sets, then it
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does not decrease the Lebesgue measure either. That is, if we have

Hs(A) ≤ Hs(f(A))

for every Borel set A ⊂ D, then

λ(A) ≤ λ(f(A))

for every Borel set A ⊂ D.

Remark 4.5.16. It is easy to check that Theorem 4.5.15 can be equivalently for-

mulated in the following way. Let D ⊂ R
n be Borel and let f : D → R

n be a Borel

mapping. Let 0 < s < n be fixed. If we have Hs(f−1(B)) ≤ Hs(B) for every Borel

set B ⊂ R
n, then we also have λ(f−1(B)) ≤ λ(B) for every Borel set B ⊂ R

n.

Proof of Theorem 4.5.15. Suppose to the contrary that there exists a Borel set A ⊂
D such that λ(A) > λ(f(A)). We may suppose that λ(A) < ∞, otherwise we may

work with a subset of A instead. There exist an expanding similarity ψ of R
n and a

Borel set B ⊃ ψ(f(A)) such that λ(B) = λ(A). Let ε > 0 be so small that (1+ ε)1/s

is smaller than the similarity ratio of ψ. Applying Proposition 4.5.11 to the function

ψ ◦ f |A : A→ B gives us a Borel set C such that

Hs(C) ≤ (1 + ε)Hs
(

(f |A)−1(ψ−1(C))
)

= (1 + ε)Hs
(

A ∩ f−1(ψ−1(C))
)

≤ (1 + ε)Hs
(

f−1(ψ−1(C))
)

, (4.63)

where Hs(C) <∞ and Hs(f−1(ψ−1(C))) > 0.

Let C ′ = ψ−1(C). Then Hs(C) > (1 + ε)Hs(C ′) or Hs(C ′) = 0. In either case,

from (4.63) we obtain

Hs(C ′) < Hs(f−1(C ′)).

This contradicts the assumptions of the theorem for the Borel set f−1(C ′) ⊂ D.

The author would like to thank David Preiss for some remarks which were essen-

tial for proving the following theorem.

Theorem 4.5.17. Let f : D → R
n be a Borel mapping on a Borel set D ⊂ R

n, and

let 0 < s < n be fixed. If f does not increase the Hs measure of any sets, then it

does not increase the Lebesgue measure either. That is, if

Hs(A) ≥ Hs(f(A)) (4.64)
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for every Borel set A ⊂ D, then

λ(A) ≥ λ(f(A))

for every Borel set A ⊂ D.

Proof. Suppose to the contrary that there exists a Borel set A ⊂ D for which

λ(A) < λ(f(A)). Here f(A) is analytic and therefore Lebesgue measurable. The

Borel function f |A is not necessarily invertible, however, we would like to take at

least some partial inverse of it. As David Preiss pointed out, we can always take a

Lebesgue measurable function g : f(A) → A such that f ◦ g is the identity. This

follows, for example, from the uniformization theorem of Jankov and von Neumann

[7, Theorem 18.1].

Let us choose Borel sets A′ ⊃ A and B ⊂ f(A) such that 0 < λ(A′) < λ(B) <∞
and that g|B is Borel. (By Luzin’s theorem, we could even require that B is compact

and g|B is continuous.) Applying Proposition 4.5.14 to g|B : B → A′ gives us a Borel

set C ⊂ A′ such that

λ(B)s Hs(C) ≤ (1 + ε)λ(A′)s Hs
(

(g|B)−1(C)
)

, (4.65)

where Hs(C) <∞ and Hs
(

(g|B)−1(C)
)

> 0. Since f ◦g is the identity, (g|B)−1(C) ⊂
f(C). We may choose ε so small that (1+ ε)λ(A′)s < λ(B)s, and then (4.65) implies

that

Hs(C) < Hs(f(C)),

which contradicts (4.64).

Remark 4.5.18. The analogue of Remark 4.5.16 does not apply to Theorem 4.5.17.

In fact, if we have a Borel mapping f : D → R
n on a Borel set D ⊂ R

n, and

Hs(f−1(B)) ≥ Hs(B) for every Borel set B ⊂ f(D), then we cannot conclude that

λ(f−1(B)) ≥ λ(B) for every Borel set B ⊂ f(D). See Example 4.5.19 for a hint. See

also Claim 4.5.20.

Example 4.5.19. Let f : [0, 1) → [0, 1) be the mapping f(x) = {2x} (where {} de-

notes fractional part). Then f preserves the Lebesgue measure, but does not preserve

Hs measures; that is,

λ(f−1(B)) = λ(B),

but

Hs(f−1(B)) = 21−sHs(B)

for every Borel set B ⊂ [0, 1), for every 0 < s < 1.
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Claim 4.5.20. There exists a continuous function f : R → R such that f−1(x) has

Hausdorff dimension 1 for every x ∈ R.

Sketch of proof. It is easy to construct a compact set A ⊂ R of Hausdorff dimension

1 such that A−A is nowhere dense. Then it is not hard to deduce that there exists

a compact uncountable set P ⊂ R such that A+p1 and A+p2 are disjoint whenever

p1, p2 ∈ P are distinct. Fix a continuous surjective function g : P → [0, 1]. Let

f0 : A + P → [0, 1] be the function defined by f0(a + p) = g(p) (a ∈ A, p ∈ P ).

This function is well-defined and continuous. Moreover, for every x ∈ [0, 1], the set

f−1
0 (x) contains a translated copy of A thus it is of Hausdorff dimension 1. It is easy

to extend f0 to R so that it possesses all the desired properties.

Theorem 4.5.21. Let n ≥ 1 and let f : R
n → R

n be a Borel bijection. If f preserves

the s-dimensional Hausdorff measure for some 0 < s < n, then it also preserves the

Lebesgue measure. That is, if

Hs(f−1(B)) = Hs(B)

for every Borel set B ⊂ R
n, then

λ(f−1(B)) = λ(B)

for every measurable set B ⊂ R
n.

Proof. This is immediate from Theorem 4.5.15 and Theorem 4.5.17. Note that since

f is injective, we do not need the uniformization theorem of Jankov and von Neumann

this time.
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Summary

Geometric measure theory is concerned with investigating subsets of Euclidean spaces

from measure theoretical point of view. Its basic tool is the Hausdorff measure. As

it is well-known, for every 0 ≤ s ≤ n there exists a measure Hs, the so-called

s-dimensional Hausdorff measure on R
n. Therefore, it is a fundamental question

whether Hausdorff measures of different dimensions can be Borel isomorphic. This

was an unsolved problem for several years, attributed to B. Weiss and popularized

by D. Preiss.

Related to this problem, M. Elekes raised two questions which belong to the topic

of restriction theorems.

In Chapter 2 we answer the questions of M. Elekes by showing that for every

Lebesgue measurable function f : [0, 1] → R there exists a compact set C ⊂ [0, 1] of

Hausdorff dimension 1/2 such that f |C is of bounded variation; and we also prove

that there exist compact sets Cα ⊂ [0, 1] of Hausdorff dimension 1−α such that f |Cα

is Hölder-α (0 < α < 1). By the results of M. Elekes, these dimension bounds are

sharp.

In Chapter 3 we solve the above mentioned problem of D. Preiss and B. Weiss by

showing that Hausdorff measures of different dimensions are not Borel isomorphic.

In fact, we show that for every Borel measurable function f : R → R and for every

0 < s < 1 there exists a compact set C of Hausdorff dimension s such that f(C) is

of Hausdorff dimension at most s.

The proof of this theorem is based on two types of random constructions. One

of them can be used to obtain a random Cantor set of dimension at most s almost

surely; and the other to obtain a random compact set of dimension at least s almost

surely.

In Chapter 4 we prove a quantitative sharp version of the previous result. Let

f : [0, 1] → [0, 1] be Borel. Then for every 0 < s < 1 there exists a compact set C

such that Hs(C) = 1 and Hs(f(C)) ≤ 1. This result implies that the measures Hs

and c · Hs (where c > 0, c 6= 1) on the unit interval [0, 1] are not Borel isomorphic.

Among others, we also prove the following consequences. Let f : D → R
n be a

Borel mapping on a Borel set D ⊂ R
n, and let 0 < s < n. If f does not increase the

Hs measure of any sets, then it does not increase the Lebesgue measure either.

Let f : R
n → R

n be a Borel bijection. If f preserves the s-dimensional Hausdorff

measure for some 0 < s < n, then it also preserves the Lebesgue measure.



Magyar nyelvű összefoglalás

A geometriai mértékelmélet főként az euklideszi terek részhalmazait vizsgálja mér-

tékelméleti szempontból. E vizsgálatok alapvető eszköze a Hausdorff-mérték.

Ismert, hogy minden 0 ≤ s ≤ n számhoz tartozik egy Hs mérték, az ún. s-

dimenziós Hausdorff-mérték. Ezért alapvetően fontos annak az eldöntése, hogy

ezek a mértékek ténylegesen különböznek-e, avagy lehetnek-e különböző dimenziós

Hausdorff-mértékek Borel-izomorfak. Ezt a hosszú időn keresztül megoldatlan prob-

lémát B. Weiss vetette fel és D. Preiss népszerűśıtette.

Ehhez a problémához kapcsolódik Elekes Márton két kérdése függvények meg-

szoŕıtásairól.

A 2. fejezetben megválaszoljuk Elekes Márton kérdéseit megmutatva, hogy min-

den f : [0, 1] → R Lebesgue-mérhető függvényhez létezik egy olyan 1/2 Hausdorff-

dimenziós C ⊂ [0, 1] kompakt halmaz, hogy f |C korlátos változású; valamint minden

0 < α < 1 számhoz létezik egy olyan 1−α Hausdorff-dimenziós Cα ⊂ [0, 1] kompakt

halmaz, hogy f |Cα Hölder-α. Elekes Márton eredményei szerint ezek a tételek nem

jav́ıthatók.

A 3. fejezetben megválaszoljuk D. Preiss és B. Weiss kérdését: megmutatjuk,

hogy különböző dimenziós Hausdorff-mértékek nem lehetnek Borel-izomorfak. Való-

jában azt bizonýıtjuk, hogy minden f : R → R Borel-mérhető függvényhez és minden

0 < s < 1 számhoz létezik egy C kompakt halmaz, amelynek Hausdorff-dimenziója

s, és amelyre f(C) Hausdorff-dimenziója legfeljebb s.

E tétel bizonýıtása kétfajta véletlen konstrukción alapszik. Az egyik olyan véletlen

Cantor-halmazokat ad, melyek dimenziója majdnem biztosan legfeljebb s. A másikkal

pedig olyan véletlen kompakt halmazok kaphatók, amelyek dimenziója majdnem biz-

tosan legalább s.

A 4. fejezetben az előző eredményt éleśıtjük. Legyen f : [0, 1] → [0, 1] Borel-

mérhető. Ekkor minden 0 < s < 1 számhoz létezik egy C ⊂ [0, 1] kompakt halmaz,

hogy Hs(C) = 1 és Hs(f(C)) ≤ 1. Ebből a tételből következik, hogy a Hs és c · Hs

mértékek (ahol c > 0 és c 6= 1) a [0, 1] intervallumon nem Borel-izomorfak.

Az előzőből további tételeket is levezetünk. Legyen f : D → R
n Borel-mérhető

a D ⊂ R
n Borel-halmazon, és legyen 0 < s < n. Ha f nem növeli egyetlen halmaz

Hs-mértékét sem, akkor nem növeli egyetlen halmaz Lebesgue-mértékét sem.

Végül megmutatjuk, hogy ha egy f : R
n → R

n Borel-bijekció megőrzi az s-

dimenziós Hausdorff-mértéket valamely 0 < s < n-re (vagyis Hs-mértéktartó), akkor

a Lebesgue-mértéket is megőrzi.
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