Some remarks on topological groups

David Loeffler

4 April 2004

Problem. Let G be a compact Hausdorff topological group. Show that the space G/\sim of conjugacy classes is Hausdorff (in the quotient topology).

The following definition will be useful to us:

Definition. If a set $X \subset G$ is such that $g^{-1}Xg \subset X \forall g \in G$, we shall say that X is **normal**. The smallest normal set containing X shall be denoted n(X), the **normal closure** of X.

Lemma 1. It is sufficient to prove that if $x, y \in G$ are not conjugate, there are open sets $U \ni x, V \ni y$ such that $U \cap V = \emptyset$ and U is normal.

Proof. Let π be the projection map $G \to G/\sim$. Then the preimages under π of open sets in G/\sim are clearly open and normal; conversely if a set $U \subset G$ is open and normal, $\pi^{-1}(\pi(U)) = U$, so $\pi(U)$ is open in G/\sim .

Hence the statement that G/\sim is Hausdorff is equivalent to the statement that for any $x \not\sim y$, there are disjoint normal open sets $U \ni x, V \ni y$.

Now, if we assume that just one of the sets, U, is normal, suppose that $U \cap V = \emptyset$ but $U \cap n(V) \neq \emptyset$; let $z \in U \cap n(V)$. Then $z = g\zeta g^{-1}$ for some $g \in G$ and $\zeta \in V$; so $\zeta = g^{-1}zg$. Since U is normal it follows that $\zeta \in U \cap V$, contradiction.

Lemma 2. If X is any set and \overline{X} is the topological closure of X, then $n(\overline{X}) = \overline{n(X)}$.

Proof. On the one hand, the function $f(r,s) = rsr^{-1}$ is continuous $G \to G$, so if we restrict it to the compact set $G \times \overline{X}$ its range is compact. Hence $n(\overline{X})$ is closed, and since it obviously contains n(X), we have $n(\overline{X}) \supset \overline{n(X)}$.

On the other hand, suppose $a \in n(\bar{X})$. Then $a = g^{-1}bg$ for some $b \in \bar{X}$. So $gag^{-1} \in C$ for every closed set $C \supset X$.

Hence in particular $gag^{-1} \in gCg^{-1}$ for every closed $C \supset n(X)$, since every such set is a closed set containing X.

So
$$a \in C$$
 for all closed $C \supset n(X)$; that is, $a \in n(X)$. So $n(X) \subset n(X)$.
Therefore $n(\overline{X}) = \overline{n(X)}$.

It's more or less downhill from here, if you know your separation axioms. Unfortunately, most of us don't, but I think this argument works.

Let U be any open set $\ni x$. If $y \notin \overline{n(U)}$, then n(U) and $G - \overline{n(U)}$ separate x and y. Suppose, therefore, that $y \in \overline{n(U)} \forall U \ni x$. We have

$$y \in \overline{n(U)} \quad \forall U \ni x$$
$$\iff y \in n(\bar{U}) \quad \forall U \ni x$$
$$\iff [y] \cap \bar{U} \neq \emptyset \quad \forall U \ni x$$

Now, it is sufficient to show that G is nice enough that given any closed set A and $x \neq A$, then there are open sets U, V with $x \in U, V \subset A$, and $\overline{U} \cap V = \emptyset$.

I claim this follows if G is a normal space:

Definition. A topological space is **normal** if disjoint closed sets lie in disjoint open sets.

For if G is normal, we may start with our closed sets being $\{x\}$ and A; we thus obtain U, V with $U \cap V = \emptyset$. Now let our closed sets be G - V and A; then we obtain sets U', V' such that $A \subset V$ and $\overline{U} \subset G - V \subset V'$; so U and V' have the required properties.

However, it is a known fact that any compact Hausdorff space is normal. So the result follows.