Counting unlabeled full binary rooted plane trees

How many ways are there to place \(k-2 \) pairs of parentheses in the product \(x_1 \cdot \ldots \cdot x_k \) in such a way that the order of multiplication is completely specified?

\[k=3 \quad (x_1x_2)x_3 \quad x_1(x_2x_3) \]

\[k=4 \quad ((x_1x_2)x_3)x_4 \quad (x_1(x_2x_3))x_4 \quad (x_1x_2)(x_3x_4) \quad x_1((x_2x_3)x_4) \quad x_1(x_2(x_3x_4)) \]
Counting unlabeled full binary rooted plane trees

How many ways are there to place $k-2$ pairs of parentheses in the product $x_1 \cdot \ldots \cdot x_k$ in such a way that the order of multiplication is completely specified?

$k=3 \quad (x_1x_2)x_3 \quad x_1(x_2x_3)$

$k=4 \quad ((x_1x_2)x_3)x_4 \quad (x_1(x_2x_3))x_4 \quad (x_1x_2)(x_3x_4) \quad x_1((x_2x_3)x_4) \quad x_1(x_2(x_3x_4))$
Counting unlabeled full binary rooted plane trees

How many ways are there to cut a regular n-gon into triangles?

$n=4$

$n=5$

Lemma. For $n>3$, any triangulation of an n-gon has $n-3$ diagonals, $n-2$ triangles, and at least 2 triangles containing two edges of the original n-gon.

Proof. Let D be the number of diagonals, T the number of triangles, and T_i the number of triangles containing i edges of the n-gon. Then $T_0+T_1+T_2=T$, $T_1+2T_2=n$, $3T=n+2D$. Let’s show that $D=n-3$ by induction on n. Cut the n-gon along any diagonal into two polygons with k_1 and k_2 sides. Then $k_1+k_2=n+2$, $D=(k_1-3)+(k_2-3)+1=n-3$.
Counting unlabeled full binary rooted plane trees

How many ways are there to cut a regular n-gon into triangles?

n=4

1 2 3 4

n=5

1 2 3 4 5

(12)
Counting unlabeled full binary rooted plane trees

How many ways are there to cut a regular n-gon into triangles?

n=4

n=5

(12)(34)
Counting unlabeled full binary rooted plane trees

How many ways are there to cut a regular n-gon into triangles?

\[
\begin{align*}
n=4 & \quad \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
1 \quad 2 \quad 3 \\
4
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
1 \quad 2 \quad 3 \\
4
\end{array}
\end{array}
\end{array} \\
(12)(34) & \quad (23)
\end{align*}
\]

\[
\begin{align*}
n=5 & \quad \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
1 \quad 2 \quad 3 \quad 4 \quad 5 \\
1 \quad 5
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
23
\end{array}
\end{array}
\end{array} \\
(23)
\end{align*}
\]
Counting unlabeled full binary rooted plane trees

How many ways are there to cut a regular n-gon into triangles?

n=4

n=5
Counting unlabeled full binary rooted plane trees

How many ways are there to cut a regular \(n \)-gon into triangles?

\(n=4 \)

\[\begin{array}{c}
\text{1} & \text{4} \\
\text{2} & \text{3} \\
\end{array} \]

\(n=5 \)

\[\begin{array}{c}
\text{1} & \text{5} \\
\text{2} & \text{4} \\
\text{3} & \text{4} \\
\text{4} & \text{5} \\
\text{5} & \text{5} \\
\end{array} \]

(12)(34)

(1(23))4
Counting unlabeled full binary rooted plane trees

How many ways are there to cut a regular n-gon into triangles?

n=4

n=5

(12)(34) (1(23))4 1(2(34)) ((12)3)4 1((23)4)
Counting unlabeled full binary rooted plane trees

How many ways are there to cut a regular n-gon into triangles?

n=4

n=5

(12)(34) (1(23))4 1(2(34)) ((12)3)4 1((23)4)
Counting unlabeled full binary rooted plane trees

Definition.
1. A single vertex is a UFBRP tree.
2. If T_1 and T_2 are UFBRP trees, then

\[
\begin{array}{c}
\text{is a UFBRP tree}
\end{array}
\]

$T_1 \quad \quad T_2$
Counting unlabeled full binary rooted plane trees

\[b_n \] is the number of unlabeled full binary rooted plane trees with \(n \) leaves (i.e., with \(n \) non-parent vertices)

- \(b_0 = 0 \)
- \(b_1 = 1 \) (a single vertex is a leaf)
- \(b_2 = 1 \)
- \(b_3 = 2 \)
- \(b_4 = 5 \)
- \(b_5 = b_1b_4 + b_2b_3 + b_3b_2 + b_4b_1 = 14 \)

\[b_n = \sum_{k=1}^{n-1} b_k b_{n-k} \]

Recursion
Counting unlabeled full binary rooted plane trees

b_n is the number of unlabeled full binary rooted plane trees with n leaves (i.e., with n non-parent vertices)

$b_0=0$

$b_1=1$ (a single vertex is a leaf)

$b_2=1$

$b_3=2$

$b_4=5$

$b_5=b_1b_4+b_2b_3+b_3b_2+b_4b_1=14$

$$b_n = \sum_{k=0}^{n} b_k b_{n-k}$$

recursion

$n>1$
Counting unlabeled full binary rooted plane trees

\(b_n \) is the number of unlabeled full binary rooted plane trees with \(n \) leaves (i.e., with \(n \) non-parent vertices)

\(b_0 = 0 \)

\(b_1 = 1 \) (a single vertex is a leaf)

\(b_2 = 1 \)

\(b_3 = 2 \)

\(b_4 = 5 \)

\(b_5 = b_1 b_4 + b_2 b_3 + b_3 b_2 + b_4 b_1 = 14 \)

\[b_n = \sum_{k=0}^{n} b_k b_{n-k} + a_n \quad \text{for } n \geq 0 \]

recursion \(a_1 = 1 \) and for \(n \neq 1 \), \(a_n = 0 \)
Generating functions

Definition. Let $a_0,a_1,a_2,...$ be an arbitrary sequence of numbers. The generating function for this sequence (associated with the sequence) is the function $G(x)$ whose value at x is $\sum_{i\geq 0} a_i x^i$ (power series). The sequence $a_0,a_1,...$ is called the coefficients of the generating function.

Examples.

$$(1 + x)^n = \sum_{k \geq 0} \binom{n}{k} x^k$$

i.e., $(1+x)^n$ is the generating function for the binomial coefficients.
Generating functions

If $A(x)$ and $B(x)$ are two generating functions with coefficients $\{a_n\}$ and $\{b_n\}$, then the product $A(x)B(x)$ is a generating function with coefficients $\{c_n\}$ defined as follows:

$$c_n = \sum_{k=0}^{n} a_k b_{n-k} = \sum_{i+j=n} a_i b_j$$

Convolution

$$A(x)B(x) = \left(\sum_{i \geq 0} a_i x^i \right) \left(\sum_{j \geq 0} b_j x^j \right) = \sum_{i,j \geq 0} a_i b_j x^{i+j} = \sum_{n \geq 0} \sum_{i+j=n} a_i b_j x^n$$
Counting unlabeled full binary rooted plane trees

\[b_n = \sum_{k=0}^{n} b_k b_{n-k} + a_n \quad \text{a}_1=1 \text{ and for } n\neq 1, \text{a}_n=0 \]

\[B(x) = \sum_{n\geq 0} b_n x^n \quad \text{Generating function for } \{b_n\} \]

\[B(x) = \sum_{n\geq 0} \sum_{k=0}^{n} b_k b_{n-k} x^n + x \]

\[B(x) = B(x) B(x) + x \quad B(x) = \frac{(1 \pm \sqrt{1-4x})}{2} \]

Since \(B(0)=0\), we conclude that

\[B(x) = \frac{1 - \sqrt{1-4x}}{2} \]
Counting unlabeled full binary rooted plane trees

\[B(x) = \frac{1}{2} - \frac{(1 - 4x)^2}{2} = \sum_{n \geq 0} b_n x^n \]

\[(1 - 4x)^2 = \sum_{n \geq 0} \binom{1}{2} \binom{n}{2} (-4x)^n \quad \text{by Binomial Theorem} \]

\[B(x) = \frac{1}{2} + \sum_{n \geq 0} (-\frac{1}{2}) \binom{1}{2} \binom{n}{2} (-4)^n x^n \]

\[b_n = \left(-\frac{1}{2}\right) \binom{1}{2} (-4)^n \quad \text{n>0} \quad b_0 = \left(-\frac{1}{2}\right) \binom{1}{2} (-4)^0 + \frac{1}{2} = 0 \]
\[
\binom{n}{k} = n^k = \frac{n(n-1)...(n-k+1)}{k!}
\]

Counting unlabeled full binary rooted plane trees

\[
b_n = \left(-\frac{1}{2} \right)^n \binom{1}{n} (-4)^n = 2^{n-1} \frac{1}{2} \frac{1}{2} \cdots \frac{1}{2} - n + 1 \frac{1}{n!} 2(-2)^{n-1}
\]

\[
= 2^{n-1} (n-1)! \frac{(-1+2)(-1+4)\cdots(-1+2n-2)}{(n-1)!} \frac{1}{n!}
\]

\[
= \frac{2 \cdot 4 \cdots (2n-2)}{(n-1)!} \frac{1 \cdot 3 \cdots (2n-3)}{n!}
\]

Catalan numbers

\[
C_n = \frac{1}{n+1} \binom{2n}{n}
\]
Generating functions

Definition. Let \(a_0, a_1, a_2, \ldots \) be an arbitrary sequence of numbers. The generating function for this sequence (associated with the sequence) is the function \(G(x) \) whose value at \(x \) is \(\sum_{i \geq 0} a_i x^i \). The sequence \(a_0, a_1, \ldots \) is called the coefficients of the generating function.

Examples.

\[
(1 + x)^n = \sum_{k \geq 0} \binom{n}{k} x^k \quad \text{i.e., } (1+x)^n \text{ is the generating function for the binomial coefficients}
\]

\[
(1 - x)^{-n} = \sum_{k \geq 0} \binom{n+k-1}{k} x^k \Rightarrow \frac{a}{1 - rx} = \sum_{k \geq 0} ar^k x^k
\]
The number of binary words with no consecutive 1’s

Examples. 00100010 01010101

Denote by F_n the number of words of this type of length n

- $F_1=2$ $F_2=3$ \Rightarrow $F_0=1$ (there is one word of length 0)

- $a_1,a_2,...,a_{n-1},a_n$ $n>2$

If $a_n=0$, then $a_1,a_2,...,a_{n-1}$ is an arbitrary word of this type F_{n-1}

If $a_n=1$, then $a_{n-1}=0$ and $a_1,...,a_{n-2}$ is an arbitrary word of this type F_{n-2}

$F_n=F_{n-1}+F_{n-2}$ Fibonacci numbers

An alternative definition: $F_1=1$, $F_2=1$, $F_n=F_{n-1}+F_{n-2}$ \Rightarrow $F_0=0$
Generating function for the Fibonacci sequence

\[G(x) = \sum_{n \geq 0} F_n x^n \]
Generating function for the Fibonacci sequence

\[G(x) = \sum_{n \geq 0} F_n x^n = F_0 + F_1 x + \sum_{n \geq 2} F_n x^n \]

\[= x + \sum_{n \geq 2} (F_{n-1} + F_{n-2}) x^n \]

\[= x + x \sum_{n \geq 2} F_{n-1} x^{n-1} + x^2 \sum_{n \geq 2} F_{n-2} x^{n-2} \]

\[= x + x \sum_{n \geq 1} F_n x^n + x^2 \sum_{n \geq 0} F_n x^n \]

\[= x + x G(x) + x^2 G(x) \]

\[G(x) = \frac{-x}{x^2 + x - 1} \]
Generating function for the Fibonacci sequence

\[\frac{a}{1-rx} = \sum_{k \geq 0} ar^k x^k \]

\[\left\{ \begin{array}{l}
A + B = -1 \\
A \phi^* + B \phi = 0
\end{array} \right. \]

\[G(x) = \frac{-x}{x^2 + x - 1} = \frac{-x}{(x + \phi)(x + \phi^*)} = \frac{A}{x + \phi} + \frac{B}{x + \phi^*} = \frac{A(x + \phi^*) + B(x + \phi)}{(x + \phi)(x + \phi^*)} \]

$x^2 + x - 1 = 0$ \hspace{1cm} Golden ratio \hspace{1cm} $\phi = \frac{1 + \sqrt{5}}{2}$

$x^2 + x - 1 = (x + \phi)(x + \phi^*)$ \hspace{1cm} $\phi^* = \frac{1 - \sqrt{5}}{2}$

$\phi + \phi^* = 1$

$\phi\phi^* = -1$

$\phi - \phi^* = \sqrt{5}$
\[
\frac{a}{1-rx} = \sum_{k=0}^{\infty} ar^k x^k
\]

Generating function for the Fibonacci sequence

\[
G(x) = \frac{-x}{x^2 + x - 1} = \frac{-x}{(x+\phi)(x+\phi^*)} = \frac{A}{x+\phi} + \frac{B}{x+\phi^*} = \frac{A(x+\phi^*)+B(x+\phi)}{(x+\phi)(x+\phi^*)}
\]

\[
x^2 + x - 1 = 0 \quad \text{Golden ratio} \quad \phi = \frac{1 + \sqrt{5}}{2}
\]

\[
x^2 + x - 1 = (x+\phi)(x+\phi^*) \quad \phi^* = \frac{1 - \sqrt{5}}{2}
\]

\[
A = -\frac{\phi}{\sqrt{5}} \quad B = \frac{\phi^*}{\sqrt{5}} \quad \phi + \phi^* = 1
\]

\[
\phi\phi^* = -1
\]

\[
\phi - \phi^* = \sqrt{5}
\]

\[
G(x) = \frac{1}{\sqrt{5}} \left(\frac{\phi^*}{x+\phi^*} - \frac{\phi}{x+\phi} \right) = \frac{1}{\sqrt{5}} \left(\frac{1}{1-\phi x} - \frac{1}{1-\phi^* x} \right)
\]
Generating function for the Fibonacci sequence

\[
G(x) = \frac{1}{\sqrt{5}} \sum_{k \geq 0} (\phi^k - \phi^* x^k)
\]

\[
F_k = \frac{\phi^k - \phi^*}{\sqrt{5}}
\]

\[
a = \sum_{k \geq 0} ar^k x^k \quad \Rightarrow \quad \frac{1}{1 - \phi x} = \sum_{k \geq 0} \phi^k x^k \quad \frac{1}{1 - \phi^* x} = \sum_{k \geq 0} \phi^{*k} x^k
\]

\[
G(x) = \frac{1}{\sqrt{5}} \left(\frac{\phi^*}{x + \phi^*} - \frac{\phi}{x + \phi} \right) = \frac{1}{\sqrt{5}} \left(\frac{1}{1 - \phi x} - \frac{1}{1 - \phi^* x} \right)
\]
Tower of Hanoi

Object: move pile A to B by moving one disc at a time. A disc may never rest on a smaller one.

What is the minimum number of moves, a_n?

$a_1 = 1$, $a_2 = 3$, $a_n = a_{n-1} + 1 + a_{n-1} = 2a_{n-1} + 1 = 2^{n-1}$
\[
\frac{a}{1 - rx} = \sum_{k \geq 0} ar^k x^k
\]

\[a_n = ba_{n-1} + c \quad n > 0\]

\[G(x) = \frac{cx}{(1 - bx)(1 - x)} + \frac{a_0}{(1 - bx)}\]

\[
\frac{cx}{(1 - bx)(1 - x)} = \frac{c}{b - 1}\left(\frac{1}{1 - bx} - \frac{1}{1 - x}\right)
\]

\[G(x) = \left(a_0 + \frac{c}{b - 1}\right) \frac{1}{(1 - bx)} - \frac{c}{b - 1} \frac{1}{1 - x}\]

\[
= \left(a_0 + \frac{c}{b - 1}\right) \sum_{n \geq 0} b^n x^n - \frac{c}{b - 1} \sum_{n \geq 0} x^n
\]

\[a_n = \left(a_0 + \frac{c}{b - 1}\right) b^n - \frac{c}{b - 1}\]

Linear recurrence relations

Tower of Hanoi

\[a_0 = 0 \quad b = 2 \quad c = 1\]

\[a_n = 2^{n-1}\]
Derangements: \(D_n = (n-1)(D_{n-1} + D_{n-2}) \)

Any derangement \(f \) moves the point \(n \) to some point \(i < n \). For a fixed \(i \),

- there are \(D_{n-2} \) derangements for which \(f(i) = n \)
- if \(f(j) = n \) for \(j \neq i \), then associate to \(f \) a derangement \(f' \) on the set \(1, 2, \ldots, n-1 \) as follows:

 \[
 f'(k) = f(k) \quad \text{for} \quad k \neq j
 \]
 \[
 f'(j) = i
 \]
More recursions

Derangements: \(D_n = (n-1)(D_{n-1} + D_{n-2}) \)

Any derangement \(f \) moves the point \(n \) to some point \(i < n \). For a fixed \(i \),

- there are \(D_{n-2} \) derangements for which \(f(i) = n \)
- if \(f(j) = n \) for \(j \neq i \), then associate to \(f \) a derangement \(f' \) on the set \(1, 2, ..., n-1 \) as follows:

 \[f'(k) = f(k) \text{ for } k \neq j \]

 \[f'(j) = i \]
More recursions

Derangements: \(D_n = (n-1)(D_{n-1} + D_{n-2}) \)

Any derangement \(f \) moves the point \(n \) to some point \(i < n \). For a fixed \(i \),

- there are \(D_{n-2} \) derangements for which \(f(i) = n \)
- if \(f(j) = n \) for \(j \neq i \), then associate to \(f \) a derangement \(f' \) on the set \(1, 2, ..., n-1 \) as follows:

 \[
 f'(k) = f(k) \text{ for } k \neq j \\
 f'(j) = i
 \]

There is a one-to-one correspondence between derangements of \(n-1 \) elements and derangements of \(n \) elements for which \(f^{-1}(n) \neq i \).
More recursions

Involutions: $v_n = v_{n-1} + (n-1)v_{n-2}$

- There are v_{n-1} involutions for which $f(n) = n$
- If $f(n) = i \neq n$, then $f(i) = n$ and therefore there are v_{n-2} involutions containing the cycle (i,n).
Stirling numbers of the second kind

Definition. The Stirling number of the second kind is the number of ways to partition a set of n elements into k non-empty subsets.

Example: $n=4$, $k=2$

$\{1,2,3\} \cup \{4\}$, $\{1,2,4\} \cup \{3\}$, $\{1,3,4\} \cup \{2\}$, $\{2,3,4\} \cup \{1\}$,

$\{1,2\} \cup \{3,4\}$, $\{1,3\} \cup \{2,4\}$, $\{1,4\} \cup \{2,3\}$

$\binom{n}{k} = 0 \quad \text{if} \quad k < 0 \quad \text{or} \quad k > n$

$\binom{n}{0} = \begin{cases} 1, & n = 0 \\ 0, & n > 0 \end{cases}$

$\binom{n}{1} = \binom{n}{n-1} = 1 \quad n \geq 1$

$\binom{n}{2} = \frac{2^n - 2}{2} = 2^{n-1} - 1 \quad n \geq 2$
Stirling numbers of the second kind

Basic recurrence relation

\[
\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}
\]

Proof. We divide all partitions into two groups

A: partitions containing \(\{n\} \) as a subset,
B: all remaining partitions.

Any partition in A can be obtained from a partition of \(n-1 \) elements into \(k-1 \) subsets (there are \(S(n-1,k-1) \) such partitions) by adding to it \(\{n\} \).

Any partition in B can be obtained from a partition of \(n-1 \) elements into \(k \) subsets (\(S(n-1,k) \) partitions) by inserting the element \(n \) into one of the subsets (\(k \) subsets).
The number of surjections

Theorem. The number of ordered partitions of a set of n elements into k non-empty subsets is

$$\sum_{i=0}^{k} (-1)^i \binom{k}{i} (k-i)^n$$

Proof.

Let A be a set of n elements and $B=\{1,2,...,k\}$. Each surjection f from A to B defines an ordered partition of A into k non-empty subsets $A_1,...,A_k$ as follows: $A_i=\{a \in A \mid f(a)=i\}$.

Conversely, each ordered partition of A into k non-empty subsets defines a surjection $f: A \rightarrow B$.

Therefore, the number of ordered partitions of A coincides with the number of surjections from A to B.
Stirling numbers of the second kind

Theorem. The number of partitions of a set of n elements into k non-empty subsets is

$$
\begin{bmatrix} n \\ k \end{bmatrix} = \frac{1}{k!} \sum_{i=0}^{k} (-1)^i \binom{k}{i} (k-i)^n
$$
Stirling numbers of the first kind

Definition. The Stirling number of the first kind \(s(n, k) \) is the number of permutations of \(n \) elements consisting of \(k \) cycles.

Example: \(n=4, k=2 \)

\[
(1,2,3)(4), (1,3,2)(4), (1,2,4)(3), (1,4,2)(3), (1,3,4)(2), (1,4,3)(2),
(2,3,4)(1), (2,4,3)(1), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)
\]

\[
\begin{align*}
\left[\begin{array}{c}
\frac{n}{k} \\
\end{array} \right] &= 0 \quad \text{if} \quad k < 0 \quad \text{or} \quad k > n \\
\left[\begin{array}{c}
\frac{n}{0} \\
\end{array} \right] &= \begin{cases}
1, & n = 0 \\
0, & n > 0
\end{cases} \\
\left[\begin{array}{c}
\frac{n}{n} \\
\end{array} \right] &= 1
\end{align*}
\]

\[
\left[\begin{array}{c}
\frac{n}{1} \\
\end{array} \right] = (n - 1)!
\]

\[
\left[\begin{array}{c}
\frac{n}{n - 1} \\
\end{array} \right] = \binom{n}{2}
\]

\[
\sum_{k \geq 0} \left[\begin{array}{c}
\frac{n}{k} \\
\end{array} \right] = n!
\]
Stirling numbers of the first kind

Basic recurrence relation

\[\left[\begin{array}{c} n \\ k \end{array} \right] = (n-1) \left[\begin{array}{c} n-1 \\ k \end{array} \right] + \left[\begin{array}{c} n-1 \\ k-1 \end{array} \right] \]

Proof. We divide all permutations with \(k \) cycles into two groups

A: permutations containing \((n) \) as a cycle,
B: all remaining permutations.

Any permutation in A can be obtained from a permutation of \(n-1 \) elements with \(k-1 \) cycles (there are \(s(n-1,k-1) \) such permutations) by adding to it \(n \).

Any permutation in B can be obtained from a permutation of \(n-1 \) elements with \(k \) cycles (\(s(n-1,k) \) permutations) by inserting the element \(n \) into one of the cycles (\(n-1 \) ways).