Probability and Measure

Hand-out 2

Convergence of random variables

Let $X, X_n : \Omega \to \mathbb{R}$ be random variables on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with distributions μ, μ_n . There are several concepts of convergence of random variables, which are summarised in the following:

- (i) $X_n \to X$ everywhere or pointwise if $X_n(\omega) \to X(\omega)$ for all $\omega \in \Omega$ as $n \to \infty$.
- (ii) $X_n \xrightarrow{a.s.} X$ almost surely (a.s.) if $\mathbb{P}(X_n \not\to X) = 0$.
- (iii) $X_n \xrightarrow{P} X$ in probability if $\forall \epsilon > 0 : \mathbb{P}(|X_n X| > \epsilon) \to 0$ as $n \to \infty$.
- (iv) $X_n \xrightarrow{L^p} X$ in L^p for $p \in [1, \infty]$, if $||X_n X||_p \to 0$ as $n \to \infty$.
- (v) $X_n \xrightarrow{D} X$ in *distribution* or in *law* if $\mathbb{P}(X_n \leq x) \to \mathbb{P}(X \leq x)$ as $n \to \infty$, for all continuity points of $\mathbb{P}(X \leq x)$. Since equivalent to (vi), this is often also called *weak convergence*.

(vi)
$$\mu_n \Rightarrow \mu \quad \text{weakly if } \int_{\mathbb{R}} f \, d\mu_n \to \int_{\mathbb{R}} f \, d\mu \text{ for all } f \in C_b(\mathbb{R}, \mathbb{R}) .$$

The following implications hold $(q \ge p \ge 1)$:

$$\begin{array}{rcccc} X_n \to X & \Rightarrow & X_n \xrightarrow{a.s.} X \\ & & & & \\ & &$$

Proofs are given in Theorem 2.10, Proposition 2.11 (see below), Theorem 3.9 (see next page), Corollary 5.3 and example sheet question 3.2.

Proof. of Proposition 2.11: $X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{D} X$ Suppose $X_n \xrightarrow{P} X$ and write $F_n(x) = \mathbb{P}(X_n \le x)$, $F(x) = \mathbb{P}(X \le x)$ for the distr. fcts. If $\epsilon > 0$, $F_n(x) = \mathbb{P}(X_n \le x, X \le x + \epsilon) + \mathbb{P}(X_n \le x, X > x + \epsilon) \le F(x + \epsilon) + \mathbb{P}(|X_n - X| > \epsilon)$. Similarly, $F(x - \epsilon) = \mathbb{P}(X \le x - \epsilon, X_n \le x) + \mathbb{P}(X \le x - \epsilon, X_n > x) \le F_n(x) + \mathbb{P}(|X_n - X| > \epsilon)$. Thus $F(x - \epsilon) - \mathbb{P}(|X_n - X| > \epsilon) \le F_n(x) \le F(x + \epsilon) + \mathbb{P}(|X_n - X| > \epsilon)$, and as $n \to \infty$

$$F(x-\epsilon) \leq \liminf_{n} F_n(x) \leq \limsup_{n} F_n(x) \leq F(x+\epsilon)$$
 for all $\epsilon > 0$.

If F is continuous at x, $F(x - \epsilon) \nearrow F(x)$ and $F(x + \epsilon) \searrow F(x)$ as $\epsilon \to 0$, proving the result. \Box

Proof. of Theorem 3.9: $X_n \xrightarrow{D} X \Leftrightarrow \mu_n \Rightarrow \mu$

Suppose $X_n \xrightarrow{D} X$. Then by the Skorohod theorem 2.12 there exist $Y \sim X$ and $Y_n \sim X_n$ on a common probability space $(\Omega, \mathcal{A}, \mathbb{P})$ such that, $f(Y_n) \to f(Y)$ a.e. since $f \in C_b(\mathbb{R}, \mathbb{R})$. Thus

$$\int_{\mathbb{R}} f \, d\mu_n = \int_{\Omega} f(Y_n) \, d\mathbb{P} \to \int_{\Omega} f(Y) \, d\mathbb{P} = \int_{\mathbb{R}} f \, d\mu \quad \text{and} \quad \mu_n \Rightarrow \mu \quad \text{by bounded convergence}$$

Suppose $\mu_n \to \mu$ and let y be a continuity point of F_X .

For $\delta > 0$, approximate $\mathbb{1}_{(-\infty,y]}$ by $f_{\delta}(x) = \begin{cases} \mathbb{1}_{(-\infty,y]}(x) & , x \notin (y,y+\delta) \\ 1 + (y-x)/\delta & , x \in (y,y+\delta) \end{cases}$ such that

$$\left| \int_{\mathbb{R}} (\mathbb{1}_{(-\infty,y]} - f_{\delta}) \, d\mu \right| \le \left| \int_{\mathbb{R}} g_{\delta} \, d\mu \right| \quad \text{where} \quad g_{\delta}(x) = \begin{cases} 1 + (x-y)/\delta \ , \ x \notin (y-\delta,y) \\ 1 + (y-x)/\delta \ , \ x \in [y,y+\delta) \\ 0 \ , \ \text{otherwise} \end{cases}$$

The same inequality holds for μ_n for all $n \in \mathbb{N}$. Then as $n \to \infty$

$$\begin{aligned} \left| F_{X_n}(y) - F_X(y) \right| &= \left| \int_{\mathbb{R}} \mathbb{1}_{(-\infty,y]} d\mu_n - \int_{\mathbb{R}} \mathbb{1}_{(-\infty,y]} d\mu \right| \leq \\ &\leq \left| \int_{\mathbb{R}} g_\delta d\mu_n \right| + \left| \int_{\mathbb{R}} g_\delta d\mu \right| + \left| \int_{\mathbb{R}} f_\delta d\mu_n - \int_{\mathbb{R}} f_\delta d\mu \right| \to 2 \left| \int_{\mathbb{R}} g_\delta d\mu \right|, \\ f_{\delta} g_{\delta} \in C_{\ell}(\mathbb{R}, \mathbb{R}) \text{ Now } \left| \int_{\mathbb{R}} g_{\delta} d\mu \right| \leq \mu ((\mu - \delta, \mu + \delta)) \to 0 \text{ as } \delta \to 0 \quad \text{since } \mu (\{\mu\}) = \end{aligned}$$

since $f_{\delta}, g_{\delta} \in C_b(\mathbb{R}, \mathbb{R})$. Now, $\left| \int_{\mathbb{R}} g_{\delta} d\mu \right| \leq \mu ((y - \delta, y + \delta)) \to 0$ as $\delta \to 0$, since $\mu (\{y\}) = 0$, so $X_n \xrightarrow{D} X$.

Skorohod representation theorem

For all probability distribution functions $F_1, F_2, \ldots : \mathbb{R} \to [0, 1]$ there exists a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and random variables $X_1, X_2, \ldots : \Omega \to \mathbb{R}$ such that X_n has distribution function F_n .

- (a) The X_n can be chosen to be independent.
- (b) If $F_n \to F$ for all continuity points of the probability distribution function F, then the X_n can also be chosen such that $X_n \to X$ a.s. with $X : \Omega \to \mathbb{R}$ having distribution function F.

Proof. Consider the probability space $(\Omega, \mathcal{A}, \mathbb{P})$ where $\Omega = (0, 1], \mathcal{A} = \mathcal{B}((0, 1])$ and \mathbb{P} is the restriction of Lebesgue measure to \mathcal{A} . For each $n \in \mathbb{N}$ define $G_n : (0, 1] \to \mathbb{R}$, $G_n(\omega) = \inf \{x : \omega \leq F_n(x)\}$. (b) In problem 2.4 it is shown that $X_n = G_n$ are random variables with distribution functions F_n and that $X_n \to X$ a.s. under the assumption in (b), where $X(\omega) = G(\omega)$ is defined analogously.

(a) Each $\omega \in \Omega$ has a unique binary expansion $\omega = 0.\omega_1\omega_2\omega_3...$, where we forbid infinite sequences of 0's. The **Rademacher functions** $R_n : \Omega \to \{0, 1\}$ are defined as $R_n(\omega) = \omega_n$. Note that

$$R_{1} = \mathbb{1}_{\left(\frac{1}{2},1\right]}, \quad R_{2} = \mathbb{1}_{\left(\frac{1}{4},\frac{1}{2}\right]} + \mathbb{1}_{\left(\frac{3}{4},1\right]}, \quad R_{3} = \mathbb{1}_{\left(\frac{1}{8},\frac{1}{4}\right]} + \mathbb{1}_{\left(\frac{3}{8},\frac{1}{2}\right]} + \mathbb{1}_{\left(\frac{5}{8},\frac{3}{4}\right]} + \mathbb{1}_{\left(\frac{7}{8},1\right]}, \quad \dots$$

thus in general $R_n = \mathbb{1}_{A_n}$ where $A_n = \bigcup_{k=1}^{2} I_{n,k}$ and $I_{n,k} = \left(\frac{2k-1}{2^n}, \frac{2k}{2^n}\right]$.

With problem 1.11 the R_n are independent if and only if the A_n are. To see this, take $n_1 < \ldots < n_L$ for some $L \in \mathbb{N}$ and we see that A_{n_1}, \ldots, A_{n_L} are independent by induction, using that

$$\mathbb{P}(I_{n_l,k} \cap A_{n_{l+1}}) = \frac{1}{2} \mathbb{P}(I_{n_l,k}) = \mathbb{P}(I_{n_l,k}) \mathbb{P}(A_{n_{l+1}}) \quad \text{for all } k = 1, \dots, 2^{n_l - 1}$$

and thus
$$\mathbb{P}(A_{n_1} \cap \dots \cap A_{n_l} \cap A_{n_{l+1}}) = \mathbb{P}(A_{n_1} \cap \dots \cap A_{n_l}) \mathbb{P}(A_{n_{l+1}}).$$

Now choose a bijection $m: \mathbb{N}^2 \to \mathbb{N}$ and set $Y_{k,n} = R_{m(k,n)}$ and $Y_n = \sum_{k=1}^{\infty} 2^{-k} Y_{k,n}$.

Then Y_1, Y_2, \ldots are independent and $\mathbb{P}(i 2^{-k} < Y_n \le (i+1) 2^{-k}) = 2^{-k}$ for all n, k, i. Thus $\mathbb{P}(Y_n \le x) = x$ for all $x \in (0, 1]$. So $X_n = G_n(Y_n)$ are independent random variables with distribution F_n , which can be shown analogous to (b).