Probability and Measure

Example sheet 2

Unless otherwise specified, let (E, \mathcal{E}) be a measurable space and $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space.

- **2.1** Let $f_n : E \to \mathbb{R}$, $n \in \mathbb{N}$ be \mathcal{E}/\mathcal{B} -measurable functions. Show that also the following functions, with values in $\mathbb{R}^* = \mathbb{R} \cup \{-\infty, \infty\}$, are measurable:
 - (a) $f_1 + f_2$ (b) $\inf_{n \in \mathbb{N}} f_n$ (c) $\sup_{n \in \mathbb{N}} f_n$ (d) $\liminf_{n \in \mathbb{N}} f_n$ (e) $\limsup_{n \in \mathbb{N}} f_n$ (f) Deduce further that: $\{x \in E : f_n(x) \text{ converges as } n \to \infty\} \in \mathcal{E}$
- **2.2** Let $f : E \to \mathbb{R}^d$ be written in the form $f(x) = (f_1(x), \ldots, f_d(x))$. Show that f is measurable w.r.t. \mathcal{E} and $\mathcal{B}(\mathbb{R}^d)$ if and only if each $f_i : E \to \mathbb{R}$ is measurable w.r.t. \mathcal{E} and \mathcal{B} .

2.3 Skorohod representation theorem

Let $F, F_n, n \in \mathbb{N}$ be probability distribution functions such that $F(x) = \lim_{n \to \infty} F_n(x)$ for all $x \in \mathbb{R}$ at which F is continuous. Show that there exists a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ together with random variables $X, X_n : \Omega \to \mathbb{R}$ such that:

- (a) X has distribution function F,
- (b) X_n has distribution function F_n ,
- (c) $X_n \to X$ almost surely as $n \to \infty$.
- **2.4** Let X, Y be random variables on $(\Omega, \mathcal{A}, \mathbb{P})$. Show that X and Y are independent if and only if

$$\mathbb{P}(X \le x, Y \le y) = \mathbb{P}(X \le x) \mathbb{P}(Y \le y) \quad \text{ for all } x, y \in \mathbb{R} .$$

- **2.5** Let X_1, X_2, \ldots be random variables with $X_n = \begin{cases} n^2 1 \text{ with probability } 1/n^2 \\ -1 \text{ with probability } 1 1/n^2 \end{cases}$. Show that $\mathbb{E}\left(\frac{X_1 + \cdots + X_n}{n}\right) = 0$ but $\frac{X_1 + \cdots + X_n}{n} \to -1$ almost surely.
- **2.6** Let X_1, X_2, \ldots be independent random variables with distribution uniform on [0, 1]. Let A_n be the event that a record occurs at time n, that is,

$$A_n = \left\{ \omega \in \Omega : X_n(\omega) > X_m(\omega) \quad \text{for all } m < n \right\}.$$

- (a) Find the probability of A_n and show that A_1, A_2, \ldots are independent.
- (b) Deduce that, with probability one, infinitely many records occur.

2.7 Let X_1, X_2, \ldots be independent random variables with distribution $\mathcal{N}(0, 1)$. Prove that

$$\limsup_{n} \left(X_n / \sqrt{2 \log n} \right) = 1 \qquad \text{a.s.}$$

- **2.8** Let X be a non-negative integer-valued random variable.
 - (a) Show that $\mathbb{E}(X) = \sum_{n=1}^{\infty} \mathbb{P}(X \ge n).$
 - (b) Deduce that, if $\mathbb{E}(X) = \infty$ and X_1, X_2, \ldots are iid random variables with the same distribution as X, $\limsup(X_n/n) \ge 1$ a.s. and indeed $\limsup(X_n/n) = \infty$ a.s.
 - (c) Now suppose that Y_1, Y_2, \ldots is any sequence of iid random variables with $\mathbb{E}|Y_1| = \infty$. Show that $\limsup(|Y_n|/n) = \infty$ a.s. and indeed $\limsup(|Y_1 + \cdots + Y_n|/n) = \infty$ a.s.
- **2.9** Show that, as $n \to \infty$,

(a)
$$\int_0^\infty \sin(e^x)/(1+nx^2) \, dx \to 0$$
, (b) $\int_0^1 (n\cos x)/(1+n^2x^{3/2}) \, dx \to 0$.

2.10 Show that the function $f(x) = x^{-1} \sin x$ is not Lebesgue integrable over $[1, \infty)$ but that

$$\lim_{y \to \infty} \int_0^y f(x) \, dx = \frac{\pi}{2} \, . \qquad \text{(use e.g. Fubini's theorem and } x^{-1} = \int_0^\infty e^{-xt} \, dt)$$

2.11 Let $u, v : \mathbb{R} \to \mathbb{R}$ be differentiable on [a, b] with continuous derivatives u' and v'. Show that for a < b

$$\int_{a}^{b} u(x) v'(x) \, dx = \left[u(b) v(b) - u(a) v(a) \right] - \int_{a}^{b} u'(x) v(x) \, dx$$

2.12 Let $\phi : [a, b] \to \mathbb{R}$ be continuously differentiable and strictly increasing. Show that for all continuous functions g on $[\phi(a), \phi(b)]$

$$\int_{\phi(a)}^{\phi(b)} g(y) \, dy = \int_a^b g(\phi(x)) \, \phi'(x) \, dx$$

2.13 Let μ be a σ -finite measure on (E, \mathcal{E}) and let $f: E \to [0, \infty)$ be \mathcal{E}/\mathcal{B} -measurable. Show that

$$\mu(f) = \int_0^\infty \mu(f \ge \lambda) \, d\lambda \; .$$

2.14 The moment generating function ϕ of a real-valued random variable X is defined by

$$\phi(\theta) = \mathbb{E}(e^{\theta X}), \quad \theta \in \mathbb{R}$$

(a) Show that $I = \{\theta : \phi(\theta) < \infty\}$ is an interval and find examples for $I = \mathbb{R}, \{0\}$ and $(-\infty, 1)$.

Assume for simplicity that $X \ge 0$ from now on.

- (b) Show that if I contains a neighbourhood of 0 then X has finite moments of all orders given by $\mathbb{E}(X^n) = \left(\frac{d}{d\theta}\right)^n \Big|_{\theta=0} \phi(\theta)$.
- (c) Find a necessary and sufficient condition on the sequence of moments $m_n = \mathbb{E}(X^n)$ for I to contain a neighbourhood of 0.