On the Cahn—Hilliard equation with
degenerate mobility
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Abstract

An existence result for the Cahn—Hilliard equation with a concentration
dependent diffusional mobility is presented. In particular the mobility is allowed
to vanish when the scaled concentration takes the values £1 and it is shown
that the solution is bounded by 1 in magnitude. Finally applications of our
method to other degenerate fourth order parabolic equations are discussed.
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1 Introduction
The Cahn—Hilliard equation

Uy = -V -] 5
J = —-B(u)Vw, (1.1)
= —Au+T¥'(u), ~eRT

was introduced to study phase separation in binary alloys (see Cahn and Hilliard
[8, 9]). Although the Cahn-Hilliard equation has been intensively studied, little
mathematical analysis has been done for a diffusional mobility B which depends
on u (where u is the difference of the mass density of the two components of the
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alloy). A concentration dependent mobility appeared in the original derivation of
the Cahn-Hilliard equation (see [9]) and a thermodynamically reasonable choice is
B(u) =1 — u? (see [10, 11, 18]). The mathematical difficulty in studying the Cahn-
Hilliard equation with a mobility like this lies in the degeneracy of B. On the other
hand there is hope that solutions which initially take values in the interval [—1,1]
will do so for all positive time (which is not true for fourth order parabolic equation
without degeneracy). We remark that only values in the interval [—1, 1] are physically
meaningful.

The function ¥ represents the homogeneous free energy in the energy functional

E(u) = /Q @ |V |? —I—\I/(u)> da

where @ C R" (n € N) is a bounded domain with sufficiently smooth boundary.
Possible choices for ¥ are

U(u) = (1—-wu?)? and

U(u) = g (T4 w)n(l +u)+ (1 —u)ln(l —u)) + Folu) (1.2)

with a smooth function Fy. In the case Fy(u) = 1 — u? one gets in the limit as 8 \ 0
the double obstacle potential (see the papers of Blowey and Elliott [5, 6] and Elliott

and Luckhaus [14])
1= ifu <1,
U(u) = { 00 otherwise.

In order to formulate an existence result for (1.1) in a general situation we make the
following assumptions.
Let

U(u) = Uy (u) 4+ Ta(u)
with functions ¥y, ¥, such that

1¥ello2pa,y < €

and

\:[11 . (—1,1) — R

1s convex and is of the form
W) = (1 — )" F(u) (m>1)

with a Cl-function F : [~1,1] — R{. This means we allow ¥ to be singular in the
convex part as |u| — 1. In particular the logarithmic form (1.2) is a possible choice.
Furthermore we assume that the mobility is of the form

B(u) = (1 —u*)"B(u)
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with a Cl'—function

B:[-1,1] - R

which satisfies

bo S B(U) S BO (Bo,bo > 0)
for u € [—1,1]. We extend the defintion of B to all of R by B(u) = 0 for |u| > 1. Let

$:(-1,1) > Ry

be defined by
1

B(u)
The following theorem states the existence of a weak solution to the Cahn-Hilliard
equation with a non-constant mobility as above on an arbitrary time interval [0, T

(T € R*) which fulfills the boundary conditions

D" (u) = , ®'(0) =0 and ®(0) =0.

n-J=0 and n-Vu=0 on 90x(0,T),
where n is the outer normal to 9f).

Theorem 1: Let either 90 € C* or Q convex and suppose that uy € H'(Q) with
luo| < 1 a.e. and

/Q(‘I’(UO) + ®(ug)) < C, CeR*t

then there exists a pair (u,J) such that

a) we L30T HX0)) N [¥(0,T; H(9)) N C([0, T); ()
b) w € L*0,T;(H (),

c) u(0)=wuy and Vu-n=0 on 99 x (0,T),

d) Jul<1l ae in Qr:=0Qx(0,T1),

e) Je L*Qr,R"),

which satisfies u, = —V - J in L*(0, T; (H'(Q))"), i.e.

T
/0 () ue®m gy = [ 3-9¢
for all ( € L*(0,T; H(Q)) and
J=—-B(u)V - (—yAu + ¥'(u))

in the following weak sense

. J-n=- /QT [’yAuV . (B(U)T]) + (B\IIH)(U)VU ‘ T[]



for all p € L*(0,T; HY(Q,R")) N L>(Qr, R™) which fulfill p-n =0 on 0 x (0,T).

We point out that the nonlinearity (B¥”)(u) = B(u)F(u) + B(u)¥}(u) is bounded
and therefore the last integral in the formulation of the theorem is well defined.

An existence result for the Cahn-Hilliard equation with a degenerate mobility in
a one—dimensional situation has been established by Yin Jingxue [23]. The existence
result we present is for arbitrary space dimensions and uses a weak formulation which
1s different to the formulation of Yin Jingxue. Furthermore we allow the bulk energy
¥ to have singularities when B degenerates. We refer also to the work of Bernis and
Friedman [3] for results on fourth order degenerate parabolic equations in one space
dimension.

In section 4 we prove a similar existence result for a viscous Cahn-Hilliard type
equation of the form

Uy = —V . J 5
J = —-B(u)Vuw,
w = —yAu+ V' (u)+ auy, aeRY

where we assume the mobility B and the homogeneous free energy ¥ to be as above.
We want to point out that our result includes the case B(u) =1 — u? and

U(u) = g (I+w)n(l+u)+ (1 —uw)ln(l —uw))+ %(1 — uz) ) (1.3)

In a recent work by Cahn, Elliott and Novick-Cohen [7] a formal asymptotic result for
the deep quench limit (8 N\ 0) of the Cahn-Hilliard equation with B(u) = 1 — u* and
U as in (1.3) has been established (they used the scaling v = ¢?,¢ — £?¢). They show
that one gets in the limit ¢ \ 0 the following geometric motion for hypersurfaces

V =-DAss D eR", (1.4)

where V' is the normal velocity, £ denotes the mean curvature and Ag is the surface
Laplacian. Material scientists refer to this evolution law as motion by surface dif-
fusion (see Cahn and Taylor [10], Davi and Gurtin [12] and Mullins [21]). The two
components of the alloy are separated by a sharp free boundary which is evolving
according to the law (1.4).

Cahn and Taylor [10, 11] also propose the motions

1 1\
V= Ag <MAS - 5) k., (M,DeR" (1.5)

which formally give in the limit as M — oo (D — oo respectively) the laws

V = —-DAgk if M — o (1.6)



and

V =Mk — Ka) if D— o (1.7)

where k, is the average mean curvature on the surface.

Formal asymptotic results suggest that the intermediate motion (1.5) is the asymp-
totic limit of the viscous Cahn-Hilliard equation with a mobility B(u) = 1 — u? (as
before with a logarithmic free energy and in the deep quench limit with a scaling
v =c¢c?and t — £%t).

For the geometric motions (1.5)—(1.7) just a few results exist so far. We can prove
local existence for the two dimensional case, i.e. for the evolution of curves in the
plane and results for the global behaviour if the initial data are close to a circle (see
13))

This paper is organized as follows. In section 2 we prove the existence of a solution
to the Cahn—Hilliard equation with a mobility which is bounded away from zero. This
result is used in section 3 to establish the existence of approximate solutions to the
degenerate problem. We derive energy estimates for the approximate solutions which
enable us to pass to the limit in the approximate equation to get the existence of a
weak solution as stated in Theorem 1. Section 4 is devoted to other applications of our
method. In particular the viscous Cahn-Hilliard equation and the deep quench limit
are studied. Furthermore our method can be used to establish an existence result for
degenerate parabolic equations of fourth order in arbitrary space dimensions. Finally
we discuss some open questions and give suggestions for further research.

2 Existence theorems for positive mobilities

In this section we study the Cahn—Hilliard equation with a mobility which is bounded
away from zero. We prove existence of solutions under various conditions on the bulk
energy . In section 3 we will use these solutions as approximate solutions for the
degenerate case.

We consider the Cahn—-Hilliard equation in the form

uy = V-b(u)Vw, (2.1)
w = —yhu+ ()

with Neumann and no-flux boundary conditions
Vu-n=0 and Vw-n=0 on 090x(0,T).

Here  C R" (n € N) is a bounded domain with Lipschitz boundary. We assume b
and % to be such that

i) be C(R,R") and there exist by, By > 0 such that b; < [b(u)| < B, for all u € R,
i) ¢ € CYR,R) and there exist constants Cy, Cy, C3 > 0 such that

|0 (u)] < Cilul®+ Cy  and  ¥(u) > —Cj
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where ¢ = = if n >3 and ¢ € R* arbitrary if n = 1, 2.

Under these assumptions we can state the following theorem.

Theorem 2: Suppose ug € H*(). Then there exist a pair of functions (u,w) such
that

1) we I0,T; H'(2) 0 C(0, T); X)),

2w e L(0.T: (H'(0))),

3)  u(0)=wuyg,

4) we L*0,T; H(Q)).

which satisfies equations (2.1) and (2.2) in the following weak sense

T
/0 () (E)) amy = — /Q - bu) V¢ (2.3)
for all ( € L*(0,T; H(Q)) and
Jwo=5 [ Vuve+ [ vwe (2.4)
for all p € H'(Q) and almost all t € [0, T].

Proof: To prove the theorem we apply a Galerkin approximation. Let {¢;}ien be
the eigenfunctions of the Laplace operator with Neumann boundary conditions, i.e.

—A¢;=X¢; inQ and V¢;-n=0 on 00.

The eigenfunctions ¢; are orthogonal in the H'(2) and the L*(2) scalar product. We
normalize the ¢; such that (¢;, ¢;)r2(q) = d; . Furthermore we assume without loss of
generality that Ay = 0.

Now we consider the following Galerkin ansatz for (2.1),(2.2)

N
uN(tr) = Zc (2), w™(t2) = 3 df (D)di(x). (2.5)
/Qatqubj = —/ MVwhVe; for j=1,.,N, (2.6)

/Qqubj = ’y/QVu Vo, —I—/Q;//(UN)qu for j=1,.,N and (2.7)
N
uN(0) = D (uo, di)r2@)®i - (2.8)

=1
This gives an initial value problem for a system of ordinary differential equations for
(c1,.,eN):

N N
e = —Zdﬁ/gb(zcwi) VérVe,, (2.9)
= :
d;y = ’y)\jcﬁy / (Z Cr qbk) ¢; and (2.10)

6



which has to hold for j = 1,.., N. Since the right hand side in (2.9) depends contin-
uously on ¢y, .., ¢y the initial value problem has a local solution.
In order to derive a priori estimates we differentiate the energy &£ and get

e = 4 (o).
= [ )

N N N N2
= =— /b \Y .
/Qw e /Q (w)I V™l
This implies

[ 3V OF [ e [ e = [ e+ [ e
(2.12)

The last inequality follows from (2.8), assumption ii) and the fact that ug € H'(Q).
Since 4 < o u”™ =0 (which follows from (2.6) with j = 1) Poincaré’s inequality yields

esssupgzqerl|u(®) e < C-

This estimate implies that the (¢}, .., c}) are bounded and therefore a global solution

to the initial value problem (2.9)—(2.11) exists.
If we denote by Il the projection of L*() onto span{¢y,..,on} we get

N _ N
[, ool = | [ BTl

= | . b(u™N )V Vel
T

(/. |b<uN>wN|2)% () wnmﬁf

By ([ )V ) 90l ean
T
< CIVlliaan

IA

for all ¢ € L*(0,T; H'(2)). This implies
||0tuN||L2(O7T;(H1(Q))/) S C .

Using compactness results (see Lions [19] and Remark 1) we obtain for a subsequence
(which we still denote by u”)

ut — wu weak — * in L>=(0,T; H'(Q)),
uN — strongly in C([0,T]; L*(Q)),
ouN — du weakly in L*(0,T; (H'(Q))) and
uN — strongly in L*(0,T; LP(Q)) and a.e. in Qr



where p < nZT”Z It remains to show the convegence of w”. Choosing j = 1 in
(2.7) gives [ow™N(t) = [o'(uN(¢)) which together with (2.12), assumption ii) and
Poincaré’s inequality gives

[w™ |22 075010 < C

This implies (again for a subsequence)
w — w weakly in L*0,T; H'(Q)).

With the convergence properties proved so far and using the assumptions on b and
we can pass to the limit in (2.6) and (2.7) in a standard fashion (see Lions [19] for
details) to get that (2.3) and (2.4) hold for (u,w).
The strong convergence of " in C([0,T]; L*()) and the fact that u™V(0) — ug in
L*(Q) gives u(0) = ug. This proves the theorem.
O

Remark 1: a) Let X, Y and Z be Banach spaces with a compact embedding X — Y
and a continuous embedding Y — Z. Then the embeddings

{ue L*0,T; X)| 0 € L*(0,T; 2)} — L*(0,T;Y) (2.13)

and

{ue L*(0,T; X) |0 € L*(0,T;2)} = C([0,T);Y) (2.14)

are compact (for a proof see Simon [22]).
b) In the proof of Theorem 2 we applied the above result for the case X = H'(Q),Y =
L*(Q) (Y =LP(Q) with p < 2L respectively) and Z = (H'(Q))'.
c¢) The solution in Theorem 2 lies in C([0,T]; H?(Q)) (where 3 < 1). We get this by
choosing X = H'(Q),Y = H?(Q) and Z = (H*(Q)) in a).

O

The existence result in Theorem 2 requires a bulk energy which is bounded from
below. It is possible to generalize this result if we assume further assumptions on 9f2
and the growth of .

We assume now either 99 € C! or Q is convex. Furthermore we replace assump-
tion ii) by
iii) ¢ € C*R,R) and there exists a constant D > 0 such that |[¢)"(u)| < D for all
u e R.

Theorem 3:  Assume i), iii) and ug € H*(). Then there exists a function u such
that

1) we L0,T; H'(Q)) N C([0,T]; L*(9)),

2)  w € L*0, T (H'(Q))),

3) w(0)=wuy and Vu-n=0on 9N x (0,T),

4) VAue L*(Qr).



which satisfies the Cahn—-Hilliard equation in the following sense

[T iy = [ BV (=320 + ()9

Qr
for all ( € L*(0,T; H(Q2)).

Proof: As in the proof of Theorem 2 we apply a Galerkin approximation, but now
we make an ansatz just in u:

wta) = Y o).

/Qatqubj = — /Q blun)(—yVAuY + " (uN)\VuN )V, for j =1,..,N (2.15)
N
uN(0) = Y (uo, bi)r2 )i

=1

Instead of differentiating the energy we use Au” as a test function to get

1

50 / Va2 4 / b(u™ )y | VAN = / b(u™ )" (N )V VALY

Q Q Q
Using Young’s inequality and assumptions i) and iii) we derive
at/ Va4 zm/ VA2 < c/ Va2,
Q Q Q
A Gronwall argument now gives
/ |qu(t)|2+/ IVAGN2 < C(T).
Q Qr

With this estimate the rest of the proof is straightforward using compactness results

(see Lions [19] and Remark 1) and passing to the limit in equation (2.15).
O

3 Existence proof for the degenerate case

In this section we prove Theorem 1. Our approach is to approximate the degenerate
problem by non-degenerate equations, i.e. by equations with a positive mobility.
Furthermore we modify the bulk energy ¥ so that it is defined on all R.

We introduce a positive mobility B. as

B.(u):=<% B(u) for  Jul<1-—¢,

B(-1+4¢) for u<—-1+¢,
B(l —¢) for w>1-c¢



and we define ®_ such that ®(u) = 3 1(u) and ®(0) = ¢.(0) = 0. We point out that
P (u) = ®(u) when |u| <1 —e.
The modified bulk energy ¥, : R — R is taken to be ¥_ := ¥! 4+ ¥? where

, (THY'(=1+4+¢) for wu<—-1+¢,
(21" (u) = { (T (u) for  |ul<1-—-¢,
(THY' (1 — &) for w>1-¢
and TL(0) = T1(0), (T1) (0) = (T (0). Asfor & we get V. (u) = U(u)if Ju| < 1—-c.
Furthermore ¥? is extended to be a function on all R such that || ¥?||c2g) < C.
With this choice of B. and ¥, Theorem 2 give the existence of a weak solution to
the equation

uy = V-B.(u)Vw in Qr,
w = —yAu+ (V) (u) in Qr,
Vu-n = 0 and Vw-n=0 on 9INx(0,7T).

We denote the solution by (u.,w.). From now on we assume either 9 € C'*! or
Q is convex. With this assumption we can state:

Lemma 1:  The solution u. belongs to the space L*(0,T; H*(Q?)) and VAu. €
L*(Qr).

Proof: Since

|wo= [ sVuvot [ W)

for all ¢ € H'(Q) and almost all t € (0,7) the first assertion follows from elliptic
regularity theory. Because Vw. € L*(Qr) and V' (u.) = U/ (u.)Vu. € L*(Qr) the
identity w. = —vyAu. + V' (u.) gives VAu. € L*(Qr).

O
Therefore we get
T !
/0 (GO gy = _/Q B.(u)V(—yAu. + U (1.))V¢ (3.1)
T
for all ¢ € L*(0,T; H'(Q)).
In the next step we prove the following energy estimates.
Lemma 2:  There exists an €y such that for all 0 < ¢ < ¢q the following estimates

hold with a constant C' independent of ¢.
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a) ess SuPogth/Q (%|Vu6(t)|2 + \Ils(us(t))) + /Q B.(u)|Vw|* < C,

b) ess SuPogth/Q(I)s(us(t)) + /Q (’Y|AU5|2 + (Tl (u5)|vus|2) <C,
T
c) ess SuPogth/Q (Jue| — 1)3_ < Ce™,
d) / |J.|? <C where J.:= B.(u.)Vuw..
Qr

Proof: The function w. = —yAu. + ¥.(u.) € L*0,T; H'(Q)) is a valid test

function in (3.1). Therefore we obtain

i
/ (= A, + W (u), ey gy = — / B.(u.)|Vuw.|? (3.2)

0 Q¢

for all ¢t € [0, T].
We claim: for almost all t € [0,T]

[t V), i ny = [ [T+ [ ()= [ [Tuol = [ 2(uo)
(3.3)
holds.

To prove this we define functions

uehtx:—h/th T, ) (3.4)

where we set u.(t, 1) = ug(x) when ¢t < 0. It is easily proved that

Aug, — Au. strongly in  L*(0,T; H'(Q)),
and  U'(ug) — W(u.) strongly in L*(0,T; H'(Q)),

for at least a subsequence (as h N\, 0). Furthermore we can show Oyu., — Opu.

strongly in L?(0,T; (H'(Q))). For any ¢ € L*(0,T; H'(Q)) we have
|<C7 atush - atus>L2(H1)7L2((H1)/)| = —|/ / atus( ) atus(t))dT>H17(H1)/dt|
0
= —|/ [ (@t + ) = B (t)ds) |

h/ |//v¢ (t+s) — J.(8))de dt | ds
IVCllz2ny  sup [[Je(o 4 s) = ()l 20
—h<s<0

IA

IA
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Since
sup |[Je(. +5) = J()]|z2@) — 0 as b — 0.
—h<s<0
1t follows that
Opuep, — O, strongly in  L*(0,T; (H'(R))').

Using Gyuep, € L*(r) we have for almost all t € [0, T:

i
[ (= ), D) iy =

0

= [ (A + B a)) Do

], G
= [ (a4 w0 - [ (Lol + ()

Passing to the limit (2 N\ 0) in this equation, where we apply the convergence prop-
erties of u., proved above and using (3.2) gives for almost all ¢

[ GIvuf + vw) + [ BtV = [ (V0 + ¥.(w) -

Noting that ¥.(u) < ¥(u) for ¢ sufficiently small proves a).
To prove b) we want to use ¢/ (u.) as a test function in (3.1). Since ®” is bounded
we have @’ (u.) € L*(0,T; H'(Q)) and therefore is an admissible test function. With

a similar argument as in the proof of a) we can prove that

¢
' (u.), O 1/:/@5 (t —/@6
[ (@) 0 oy = [ @) = [ @ofuo)
is true for almost all ¢t € [0, T]. On the other hand we derive
[ Beu) V(=7 Au. + V() VL) =

(—vVAu, + ¥/ (u.)Vu.) B (u )P (u ) Vu,

Q

— —

(YA + 9 (u)|Vu.?)

Qt

It follows that

/ (ue(t —I—/ v Au,| —I-/ \I/1 (ue)|Vu|? </ (uo —I-/ (u)] | Vuc]?.
o

Since ®.(u) < ®(u) for ¢ sufficiently small and (¥?)” is bounded we have proved b)
(note that we have estimated [, [Vu.|? in a)).
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Now we can use the bound for [, ®.(u.) to derive a bound for [, (Ju.| — 1)3_ If
z>1 and ¢ < 1 then we have

P(2) = P(1—e)+P'(1—¢)(z—(1—¢)) —|—%(I>”(1 —e)(z—(1—¢))

1 io o , 1 ) ,
e e e

1 1 2 -1_-m 2
= 5(1_(1 5)2)mB(1—€)(Z )*>C7e(=z-1)

It follows now (z — 1)? < Ce™®_(z). Similarly we obtain (|]z| — 1)* < Ce™®_(z) for
z < —1. This implies

_ 2 < m < m
/Q (Ju.| — 1)% < Ce /Q@s(us) < C:

which proves c).
Assertion d) follows easily from a), and this finishes the proof of Lemma 2.
O

Since Awu, is uniformly bounded in L?*(Qr), Vu. -n = 0 and [, u. = [, uo, elliptic
regularity theory yields
el 22 0,750200)) < C .

Now we apply the compactness result mentioned in Remark 1 (2.13) with X = H?*(Q2),
Y = HY(Q) and Z = (H'(Q)) to conclude the existence of a subsequence of (u.)eso
(which we still denote by (u¢)eso) such that

u., Vu. — u, Vu strongly in  L*(27) and a.e. in Q.
Furthermore using standard compactness properties we obtain the convergence

O — O weaklyin L*(0,T;(H'(Q))),
Au. — Au  weaklyin L*(Q7),
and J. — J weakly in  L*(Q7).

Passing to the limit in
2 m
[l =1 < 2

yields |u| < 1 a.e. in Q.
It remains to show that u fulfills the limit equation. The weak convergence of J;u.
and J. gives in the limit

T
/0 <C,6tu>H17(H1)/ = J- VC

Qr
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for all ¢ € L*(0,T; H'(Q2)). Now we have to identify J. Therefore we want to pass to
the limit in the equation

/QTJ*: = /QTBs(us)V (—vAu: + ¥ (u:)) (3.5)

where 7 € L*(0,T; H'(Q,R")) N L>(Qr, R") with - n =0 on 9 X (0,T). The left
hand side converges to J - 1. Since VAu, may not have a limit in L*(Qr) we
Q

T
integrate the first term on the right hand side of (3.5) by parts to get

/ B.(u)V(—=vAu.)n = / YAuB.(u)V-m+ /’yAusB;(us)Vu6 p=14+1I.
QT QT
Using the fact that for all z € R

|B.(z2) — B(z)| < sup |B(y)]—0 as —0
1—e<|y|<1

it follows that B. — B uniformly.
Hence we have

B.(u:) — B(u) a.e.in Qr.

Since Au. — Au weakly in L*(Q7) and B. is uniformly bounded we conclude

YAuB.(u)V -1 — YAuB(u)V-m as ¢—0.
QT QT

Now we pass to the limit in II. First of all we consider the case m > 1. As for B we
have B, — B’ uniformly which gives

Bl(u.) — B'(u) a.ein Q.

by using
Vu. — Vu in L*Qr) andae. in Qf,

and the fact that B! is uniformly bounded a generalized version of the Lebesgue
convergence theorem yields

B!(u.)Vu. — B'(uv)Vu in L*(Qr).

Hence

yAu.Bl(u.)Vu, - —> yAuB'(u)Vu-n
QT QT

where we use the fact that 5§ € L>(Qr).
In the case m = 1 the function B’ is discontinuous and we have to use a more
subtle argument.

We claim:  Bl(u.)Vu. — B'(v)Vu in L*(Qr).
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We analyze the following integrals
/ B (w.)Vu. — B'(w)Vuf* =
Qr
B’u5Vu6—B’uVu2—|—/ B'(u.)Vu. — B'(u)Vul?.
o B (VP f Bl (u)Vul
Since Vu = 0 on the set {|u| = 1} (see [16] Lemma 7.7) we obtain

/ B () V. — Bu)Vul* = | Bl (u) Ve |
Qrn{lul=1}

Qrn{lul=1}

gc/ |Vu5|2—>0/ Vul2 =0
Qrn{|u|=1} Qrn{|ul=1}

On the set {|u| < 1} we know B(u.) — B'(u) a.e.
Hence we have

Bl(u.)Vu. — B'(u)Vu a.e. in Q7.

The generalized Lebesgue convergence theorem now gives
/ B! (1) V. — B'(«)Vul? — 0
Qrnflul<1}

which proves our claim. Furthermore this proves that we can pass to the limit in II.
To complete the proof of Theorem 1 we have to show

[ Bln) W)V — [ (BE)()Vu- . (3.6)

First of all we want to point out that B.¥” is uniformly bounded. Therefore it is
sufficient to show

B.(u)9"(u.) — (BY")(u) = B(u)F(u) + B(u)¥Y(u) ae. in Qr. (3.7)

If |u(t,z))] < 1 the convergence in (3.7) follows from the definition of B. and V.

(B:(z) = B(z) and ¥ (z) = ¥(z) if |z| < 1 — £). Now let us consider points (¢, )

where |u(t,2)] = 1. Without loss of generality we assume u.(t,2) — 1 = u(t, ).
For ¢ with u.(t,2) > 1 — & we have

Boluc(t, o)W ua(t,x) = B(1—e)F(1— <)+ B(1 - ) W(ua(t,x))
— BF(1) + BO)T() = (BE)(u(t,2)).

On the other side if u.(¢t,2) <1 — ¢ and u.(¢t,2) — 1 we have
Be(us(t, @)W (ue(t,2)) = Bluc(t, )" (uc(t, z))
= Blunlt, o) Flunlt, ) + Blun(t, e) W)
— (BY")(u(t,x)).



We proved B.(u.)¥”(u.) — (BY")(u) a.e. in Qp, which together with the strong
convergence of Vu, in L*(€r) gives (3.6). This shows that u solves the Cahn-Hilliard
equation in the sense of Theorem 1. The facts that v € C([0,T]; L*(Q2)) and u.(0) =
g follow as in the proof of Theorem 2 from an application of the compactness result
mentioned in Remark 1. In fact it holds that « € C([0,T]; H?(2)) with 8 < 1.

O

Remark 2 (generalized Lebesgue convergence theorem):  Assume £ C R" is mea-
surable, ¢, — ¢ in LY(E) with 1 < ¢ < oo and f,,f : E — R" are measurable
functions such that

fo—f a.e. in E,
|ful? < |gnl? a.e. In F

with 1 < p < oo. Then f,, — f in LP(E).

For a proof see [1, A 1.26].

Remark 3: For m € [1,2) the functions ® and ¥ are bounded on the interval
[—1,1] and therefore the assumption

], (®0) + T(wo)) < €

imposes no restrictions on the initial data. This is in particular true for the case
B(u) =1 —u* and ¥ of the logarithmic form (1.2).
O

The following corollary gives an additional result in the case m > 2.
Corollary: Assume m > 2 and u is the solution constructed in Theorem 1. Then
0 esssupogrer [ (B(u(t)) + (u(t)) <
b) the set  {x | |u(t,x)| =1} has zero measure for almost all ¢ ¢€ [0,T].
Proof: We have proved

[ @cduity <c
for almost all ¢ € [0,T]. Since ®.(u.) > 0 the Lemma of Fatou gives
/ liminf @ (u.(t)) < liminf [ @(u.(t) < C.

We claim:
P (u) if Jul<1,
00 elsewhere .

liminf ®.(u.) = {
e\
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If |u] <1 it is clear that lim.\o ®.(u.) = ®(u). Now we consider points (t,z) where
lim.\ou.(t,2) = 1. In this case we have

P (uc(t,z)) > min (®(1 — ), P(u(t,x))) — o0.

as ¢ —» 0. The same argument can be applied for lim.\ o u.(¢, ) = —1, which proves
the claim. Therefore the set {« | |u(t,2)| = 1} has zero measure and

hrs{‘l()nf P (u.) = ll\r‘% P (u.) = P(u) ae. in Qp.

The estimate [, U(u(t)) < C is proved similarly.
O

Remark 4:  Since F can vanish at +£1, U” can be less singular than of order m. In
particular the smooth double well potential ¥(u) = (1 —u?)? and the double obstacle
potential are possible choices for all m > 1.

4 Some generalizations

4.1 The viscous Cahn—Hilliard equation

In this subsection we consider the viscous Cahn—Hilliard equation with a non—constant
mobility

Uy = V-] 5
J = —-B(u)Vuw,
= —Au+ V' (u) + oue, aeRY

supplemented with the boundary conditions J-n =0 and Vu-n =0 on 9Q x (0,T).
For a mobility B = 1 this is the usual viscous Cahn—Hilliard equation as studied by
Novick-Cohen, Elliott, Stuart and others [2, 15, 20].

In a first step we state a theorem for the non-degenerate case. Therefore we
assume b and v to fulfill assumptions i) and ii) in section 2).

Theorem 4:  Suppose ug € H'(Q) and 9 Lipschitz. Then there exist a pair (u, w)
such that

1) we L>0,T; H(Q))NnC([0,T]; L*(Q)),

2) w € L*(Qr),

3) u(0) = uo,

4) we L*0,T; H(Q)).

which satisfies

/QT Cup=— | b(u)VwV(

Qr

17



for all ( € L*(0,T; H(Q)) and

Jwo=5 [ Vuve+ [ vwe

for all p € H'(Q) and almost all t € [0, T].

Proof: As in the proof of Theorem 2 we apply a Galerkin approximation

N(t,:z;) = Z:cfv(t)qb,(x) \ wN(t,:L') = Z:dfv(t)qb x

/atqubj = —/ bluy)Vw Ve, for j=1,..,N,
Q Q

Ny — N , N N 4. -
/Qw p; = ’y/QVu qu]—l—/gg/)(u )qb]—l—oz/gatu ¢; for j=1,..,N

N
uN(0) =Y (uo, Bi)ro(e) @i

=1

N
0~ -y / (Seva) vavs, (a1)
dﬁy = ’y)\ (Z c{vqbl) ¢; + adic; and (4.2)
=1
C;V(O) == (uoaqu)L?(Q) . (43)

These equations have to hold for 7 = 1,.., N. This yields to the following initial value

problem for (¥, .., ¥):

N N
atC;V + Z atCk/ b (Z Cqubl) v¢kv¢] =
k=1 Q =1
N

_y (»Wc{f +f v (g} c%l) ¢k) /.b (Z

k=1 =1

N (0) = (uo, &j)r2(0) -

Since the matrix (gk)jk=1.n with

g = [ b (Z c%i) Venve,

(4.4)

Cfvﬁbz) VoV,

(4.5)

is positive definite, the initial value problem (4.4),(4.5) has a local solution.
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Now we use
L (9P e) = [ (a4 ) ol

- / wNuN—/ oy
e ], )

to establish a priori estimates. The rest is proved in a similar way as in the proof of

Theorem 2.
O

Having proved an existence theorem for a positive mobility we are now in a position
to prove existence for the degenerate case. We assume ¥ and B to be as in the
introduction. Furthermore we assume either 9Q € C1! or Q) convex.

Theorem 5:  Let ug € H'(Q) satisty |uo| <1 a.e. in Qr and
/Q(‘I’(UO) + ®(up)) <C, CeR'.

Then there exists a pair (u,J) such that

a) we L*0,T; H*(Q)) N L>0,T; H(Q)) N C([0,T]; L*()) ,
b) w € L*Qr),

c) u(0)=wuy and Vu-n=0 on 99 x (0,T),

d) Jul<1l ae in Qr:=0Qx(0,T1),

e) Je L*(Qr,R"),

which satisfies u;, = —V - J in L*(0,T; (H'(Q))), i.e.
Cur= [ 3¢
Qrp Qrp
for all ( € L*(0,T; H(Q)) and
J=—-Bu)V:(—yAu+ V'(u) + au;)
in the following weak sense
Jon=—[ [(380—auw) V- (Blun) + (BY")(w)Vu- 7]

Qrp Qrp

for allp € L*(0,T; HY(Q,R")) N L>(Qr, R") which fulfill p-n =0 on 0 x (0,T).

Proof: We modify B and ¥ in the same manner as in the proof of Theorem 1 to
get functions B. and ¥.. For the modified equation we proved existence in Theorem
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4. In a similar fashion as in the proof of Theorem 1 we can derive the following
identities for the approximating solutions (u.,w.).

ess SuPogth/Q (%|Vu6(t)|2 + \Il(us(t))) + /Q B.(u.)|Vw[*+

T

vaf (@)= [ (31wl +0(w)
and
esssuporer [ (@(ue(t) + 5V (OP) + [ 9l8uf+

[ o, PVl = [ (®e(0) + 51V ul)

With this estimates the remaining part of the proof follows the outline of the proof of
Theorem 1. One uses compactness results to conclude the existence of a converging
subsequence and passes to the limit in the approximating equation.

O
4.2 The deep quench limit
Now we consider the case B(u) = 1 — u? and
6 1
Uy(u) = 2 (T4 w)In(l +u)+ (1 —u)ln(l —u))+ 5(1 — uz) (4.6)

where 6 > (. Let us denote the solution we constructed in the proof of Theorem 1 by
ug. Cahn, Elliott and Novick—Cohen [7] studied the deep quench limit (6 \, 0) of these
solutions. The purpose of this subsection is to show that the solutions uy converge
to weak solutions of the Cahn-Hilliard equation with a mobility B(u) = 1 — u? and
a bulk energy W(u) = 1 — u?, which is the case where we set § = 0 in (4.6).

For wy we have the following a priori estimates, which follow from the estimates
derived in Lemma 2 and the weak lower semi—continuity of the L?-norm.

ess SuPogth/Q|vu9(t)|2 + /Q 1Jg|* < /Q <%|Vuo|2 + \Ilg(uo)> <C
T

and

/"ﬂAng/@@@+/ Vol < C
QT Q QT

with a constant C' independently of . From these estimates we obtain

|1 0sua |22 0,70 )y + w6l r2 0,1:m200)) < C
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Using the same compactness results as before we get (for a subsequence 6 \ 0)

ug, Vug — u,Vu  strongly in L*(Qr) and a.e. in Qr,
Aug — Au weakly in  L*(Qr),
Oug — O weakly in  L*(0,7;(H'(Q))) and
Jy — J weakly in  L*(Qr).

Since |u.| < 1 a.e. in Qr, the same is true for u. Furthermore we get dyu = V - J in
L*(0,T; (H'(R))). It remains to pass to the limit in

Joem= —/Q YAV - (B(ug)n) + 8V ugn — Blug)Vugn)] .
T T
The fact that Vuy is uniformly bounded in L?*(£)7) yields

Qr

All other terms can be handled as in the proof of Theorem 1 to get
J-n==[ [AuV-(B(un) - Ba)Vu-n].
Qrp Qrp

This proves that u is a weak solution in the case B(u) = 1 —u? and ¥(u) = 3(1—u?).
We note that we have not proved the convergence of the whole sequence. This is
due to the fact that so far there is no uniqueness result for the Cahn—Hilliard equation

with a degenerate mobility.

4.3 Other applications

In a paper by Bernis and Friedman [3] the equation

ur = —(f (W) Uggr)a (4.7)

where

flu) = [u|™folu), fo€ CH*R), fo>0 and m>1 (4.8)

was studied. They proved the existence of a nonnegative continuous solution and
properties of the support of the solution. For example they proved that the support
increases when m > 2. We also refer to [3] for other applications of degenerate
parabolic equations of higher order.

With straightforward modifications we can apply our techniques to the following
generalization of (4.7) in several space dimensions

wp =V (f(u)V(=Au + ¥'(u)))
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supplemented with Neumann— and no—flux boundary conditions. Under appropriate
conditions on the nonlinearities f and ¥ our method gives the existence of a nonneg-
ative solution in the sense of Theorem 1. In particular we have to assume that f, f’

and ¥"f are bounded.

Degenerate parabolic equations of the form
ur = =V - (f(u)(VAu+ Vu)) + g(t, z,u) (4.9)

arising in the theory of plasticity have been independently studied by Griin [17].

5 Conclusion

We proved the existence of a weak solution to the Cahn—Hilliard equation with a
degenerate mobility. As was pointed out, our method is also applicable for other
fourth order degenerate parabolic equations. So far an uniqueness result for fourth
order degenerate parabolic equations has not been established. Methods for proving
uniqueness in the case of second order degenerate parabolic equations seem not to be
applicable directly.

Beside studying the question of uniqueness it is important to get a better under-
standing of the qualitative behaviour of solutions. Questions are for example: What
kind of singularities occur when |u| — 17 What is the evolutionary behaviour of
the set {|u| = 1}? In the case of the deep quench limit for example one would expect
that the set {|u| = 1} develops an interior. If this is the case one would get a free
boundary problem for 9{|u| = 1}.

Furthermore we are interested in the asymptotic behaviour of solutions as ¢ — oco.
For second order degenrate parabolic equations similarity solutions were important
for the understanding of the asymptotic behaviour of solutions. There are results by
Bernis, Peletier and Williams [4] on similarity solutions in one space dimension. It
would be interesting to study if similarity solutions in higher space dimensions exist.
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