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A b s t r a c t  

A model for phase separation in multicomponent systems is studied. In particular the possibility of a concentration de- 
pendence of the mobility matrix is taken into account. This leads to a system of fourth-order degenerate parabolic partial 
differential equations. We derive these equations from balance laws, show some properties of the model and prove a global 
existence result for the degenerate system. 
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1. Introduction 

Many phenomena in the theory of phase transitions can be modeled by diffusion equations for multicomponent 

systems. In this paper we consider systems described by a set of conserved order parameters u = (u 1 . . . . .  u N) (N 

N) which fulfill the constraints 

N 

~-~ ui = l a n d u i  > O . . . .  , N .  fo r i  = 1 
i=1 

This includes systems with constant molar volume in which case the order parameter ui describes the molar fraction 

of the ith component, or systems with constant molar mass density where we define ui to be the mass fraction of 

the component i. Such assumptions are reasonable in many condensed systems on account of molecular or site 

conservation (for example this is true for many polymer systems and alloys). 
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Since we want to model  phase transition phenomena we choose a Helmholtz free energy g of  a generalized 

Ginzburg-Landau form 

£(u) = f(~v(u) + ½Vu. rVu), (1.1) 

;2 

where E2 is an open bounded domain in •n (n E N). The homogeneous free energy ~P and the gradient part of  the 

free energy are defined as 

N 

kb(ll) = kBO y~OliUi lnu i  + l U - A u ,  (1.2) 
i=1 

N 

VU" I ~ V u  -~- Z I ~ j V u i  . V u j ,  (1.3) 
i , j=l 

where kB is the Boltzmann constant, 0 is the absolute temperature, the Ai j ' s  are the interaction parameters and the 

/~ j ' s  are gradient energy parameters.  B o t h / "  and A are assumed to be symmetric (N × N)  matrices with constant 

entries and fu r the rmore / "  is assumed to be positive definite. Similar free energies were proposed by De Fontaine 

[9,10], Hoyt  [19-21] and Elliott  and Luckhans [14]. A typical choice is A = x ( ee  t -- Id)  with e = (1 . . . . .  1) t, 

which is the case when the interaction between all components has the same magnitude X (where X E ~+) .  The 

simplest  choice for E' i s / '  = y I d  where y > 0 is a small interracial parameter. We point out that i r A  has negative 

eigenvalues then qJ becomes a nonconvex function for 0 less than a critical temperature. For  simplicity we rescale 

such that kB = 1. 
Having defined the Helmholtz free energy we get the chemical  potent ia ls /z i  as variational derivatives of  g with 

respect to the i th component.  We obtain 

I~i = Oiql(u) - ( F A u ) i  ---- Oc~i(lnui + l )  + (Au)i - ( / ' A u ) i ,  (1.4) 

where (Au)i and ( / ' A u ) i  are the i th component  of  the vectors Au  a n d / ' A u .  This identity is supplemented with 

the natural boundary condition ( F V u ) i  . ~ = 0 for all i = 1 . . . . .  N,  on 0E2 × (0, T),  where ~ is the outer 

normal vector to 0~2. Now we assume the thermodynamical  principle that the fluxes .~ are linear and homogeneous 

functions of  the forces V/zj (see [22, p. 136]) and make the ansatz 

N 

Ji = -- Z L i j  (u) V/zj (1.5) 
j = l  

with Onsager coefficients Li j  which may depend on u = (ul . . . . .  u g )  (see [16, Postulate II; 25,26]). In order to 

fulfill Onsager 's  reciprocity law we require that L ----- (L i j ) i , j= l  ..... N is symmetric [22, p. 137; 25,26]. 

With these definitions we can formulate the balance laws for the order parameters ui as 

Otbl i = - - V "  Ji, i = 1 . . . . .  N (1.6) 

together with the no-flux boundary condition a~ • B = 0 for i = 1 . . . . .  N on 0E2 x (0, T).  In the case that the order 

parameter  u describes the molar  fraction of  components in a system of  constant molar  volume, these equations 

are a consequence of  mass conservation (see [22]). We also refer to de Groot  and Mazur [12] for a derivation of  

Eqs. (1.6) in systems of  constant mass density. In order to ensure that the constraint ~ N  1 ui = 1 is fulfilled during 

the evolution we assume 

N N 

Z L i j ( v ) = O  for a l l v E R  N w i t h  Z v i = l a n d f ° r j = l  . . . . .  N. 
i=1 i=1 



244 

Hence 

C.M. Elliott, H. Garcke/Physica D 109 (1997) 242-256 

so that the ui sum up to one at time t > 0 if they did at time zero. 

In this paper we consider an Onsager matrix L which can depend on the order parameters. This is necessary for 

many applications and was for the binary case first pointed out by Cahn [4] and Hilliard [18] and later by Langer, 

Bar-On and Miller [23] and de Gennes [11]. For example in the case that the mobility in the interface is larger than 

in the pure phase, one needs a concentration dependent mobility matrix (see [5,7,8]). 

In the binary case (i.e. N = 2) we recover the Cahn-Hill iard equation (for c :=  ul  - u2) 

Otc = V • B(c)V (0(ln(1 + c) -- ln(1 - c)) - X c -  FAc)  

upon choosing 

1 F = I F I d ,  A =  1 x ( e e t - I d ) ,  a l  = c ~ 2 =  

and using the facts ua = 1 - ul and L12 = -L11.  In this case B(c) :=  Ll1((1 + c)/2,  (1 - c)/2) is called the 

mobility and has been proposed to be proportional to 1 - c 2 (cf. [7,8,13,18,23]). 

But what is an appropriate generalization of the mobility B(c) = 1 - c 2 to systems of more than two compo- 

nents? Ziya Akcasu and Tombakoglu [28] used the dynamic random phase approximation (or mean field theory) to 

determine the Onsager mobility matrix. Their simplest prototype is 

L i j ( u ) = u i ( ~ i j - u j )  for i ,  j =  1 . . . . .  N. 

This is the case when there are no hydrodynamic interactions and when all components have the same diffusion 

coefficient. See also [27] for a numerical study based on the above mobility. 

In this paper we allow more general mobility matrices 

Lij (u) = li (ui )(Sij - (e- l ( u ) ) - l / j  (u j ) )  

with l(u) = (ll (Ul) . . . . .  IN (UN)) t and bare mobilities li C C 1 ([0, 11, R0 +) which vanish in 0 linearly, i.e. there exist 

positive constants Cl, C] such that 

ClUi < li(ui) < Clui for ui c [0, 1]. 

In the case  li ( u i )  -= di ui, with positive constants di ,  w e  recover the prototype mobility matrix of Ziya Akcasu and 

Tombakoglu [28] if we take di -= 1. 

With the definitions above the system fulfills an isothermal version of the second principle of thermodynamics, 

namely the Clausius-Duhem inequality which in this case is an inequality for the total energy density q~ (u) -4- ½ Vu-  

F V u .  The local form of the inequality can formally be derived as follows: 

d 
a t  ( ~ ( u )  + 1 V u -  [ ' V u )  

= DqJ(u) - ut + Vut • F V u  = (DqJ(u) - F A u )  - ut + V - (ut • F V u )  

= - ~ .  v . . J  + v .  (u , .  _rVu) = - v .  ( ~ . . j )  + v ~ .  j + v .  (u , .  r V u )  

_< - V  - ( ~ -  .] - u t  - F V u ) .  
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The last inequality holds because L is positive semi-definite on the Gibbs-s implex 

QN := v ~ N N vi ---- l and vi > O for i = l . . . . .  N , 

i=1 

which will be proved in Section 2. Above and in the following sections we use the notations 

Dq/ (u )  --= (01qJ(u) . . . . .  0Nt/t(U)) t , 

/~ = (#1 . . . . .  /~N) t , J = (]1 . . . . .  I N )  t, 

N 

V']: (V' ]1 ..... V" JN) t, /Z']=Z/zi~. 
i=I 

Although the scalar product - is used in different contexts it will be clear from the multiplicands which meaning it 

will have in a particular situation. The term ut .  _r'Vu appearing in the Claus ius-Duhem inequality can be interpreted 

as interface flux. In this context we refer to Gurtin [17] who first derived a version of  the second law for binary 

systems with capillarity (or interface) contributions. In his paper the interface term is interpreted as the product of  a 

capillarity potential u and a capillarity flux F V u .  We also refer to Elliott  and Luckhaus [ 14] who extended Gurtin's 

inequality to mult icomponent  systems and Alt  and Pawlow [1] for a nonisothermal version of an entropy inequality 

for mult icomponent  systems. 

The aim of  this paper  is to develop an existence theory for mult icomponent  diffusion when the mobil i ty matrix 

depends on the order parameter  u. A main difficulty in this task is the degeneracy of  the matrix L(u) .  If  we interpret 

L as a mapping from R N into NN, we always have a zero eigenvalue. On the other hand if  we restrict L(u)  to 

e A- = {V E ~ N  IV . e  = 0} 

then we will show in Section 2 that L(u)  is positive definite as long as u lies in the interior of  the Gibbs simplex 

Q N  but degenerates on the boundary of QN. 

Now we state an existence theorem for the initial boundary value problem for (1.4)-(1.6) which will be proved 

in the following sections. From now on we assume either X2 is convex or has a C 1' 1-boundary and use the notation 

X2T = X2 × (0, T). 

TheoremA. Assume the initial data u0 E Hi(X2, R N) fulfills u0 E QN almost everywhere. Then there ex- 
ists a function u : X2T ~ QN with u c L2(0, T; H2(X2, ~ N ) )  A H I ( 0 ,  T; (HI(X2, I~N)) z) and fluxes ~ c 

L2(S2T, •n) for i = 1 . . . . .  N,  such that 

(1) u(0) = u0 and ( / ' V u ) i  • ~ = 0, i = 1 . . . . .  N,  
(2) Otui = - V .  f .  in L2(0, T; (Hi (X2) ) ' ) ,  

(3) j = - L ( u ) V ( - - F A u  + Dq/ (u ) )  in the sense that 

f J'~=- f rAu'(V (L(u)~))- f ((LDZ~)(u)Vu)~ 
ff2r $2T "QT 

for all ~ ~ L2(0, T; Hi(x2 ,  ( ~ ) U ) )  N L~(X2T,  (~n)U) which fulfill ~" - ~ -= 0, for i = 1 . . . . .  N on 

O,Q x (0, T).  

This theorem will be proved in the following sections. First we prove some basic facts for the mobil i ty matrix 

(Section 2). Then we formulate approximate equations with a smooth homogeneous free energy and a strictly 

positive definite mobil i ty matrix and show existence of  solutions to this set of  equations (Section 3). For  these 
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approximate  solutions we  show energy est imates  which  enable  us to pass to the l imi t  in the approximate  equat ions 

(Sect ion 4). The  l imit  equat ion will  be satisfied in a sense similar  to the not ion of  a solut ion in the binary case 

defined in [13]. We finish with  some conclusions.  

2. Some properties of the mobility matrix 

In this sect ion we  prove that the matr ix  L ( u )  is posi t ive  semi-def ini te  for all u c QN. 

L e m m a  1. Let  a, b ~ Ed (d c ~ )  and Ida  be the identi ty on R d. Then  

de t ( l da  - ab  t) = 1 - a - b. 

P r o o f  Without  loss o f  general i ty  we  assume I bl = 1. The  mapp ing  Idd  - ab  t is the identi ty on all vectors  or thogonal  

to b and therefore  we  have  I as an e igenvalue  o f  mul t ip l ic i ty  ( d -  1). Hence  the determinant  o f  Idd  - ab  t is de termined 

by the remain ing  eigenvalue.  Since  

Odd -- a b t ) a  = (1 - a .  b ) a  

we  conc lude  that a is an e igenvec tor  to the e igenvalue  1 - a • b and the l e m m a  is p roved  provided  a - b ~ 0. In the 

case a • b ----- 0 the l e m m a  fo l lows  because  the determinant  is continuous.  [] 

L e m m a  2. Let  M = ( M i j ) i , j = l  ..... d (d C N) be a matr ix  def ined as 

Mij  = m i ( 3 i j - n j )  ( i , j  = 1 . . . . .  d) .  

Then  it holds  

d e t M = m l . . . m d  1 -  nk • 
k = l  

P r o o f  Since  

M = d iag (ml  . . . . .  md) ( I t l  -- en  t) 

wi th  e = ( 1  . . . . .  1 )  t and n = (nl . . . . .  nd) t the conclus ion  fo l lows  f rom L e m m a  1. [] 

L e m m a  3. The  matr ix  L ( u )  = ( L i j  ( u ) ) i , j = l  . . . . .  N with  

L i , j ( u )  = l i (u i ) (S i , j  - ( e .  l ( u ) ) - l l j ( u j ) ) ,  i, j = 1 . . . . .  N ,  

where  the li are as in Sect ion  1, is posi t ive  semi-def ini te  for  all u c QN. 

P r o o f  Let  Ld (u )  = (Lij (ll))i,j=l,..,d be an upper  lef t  sub-matr ix  o f  L .  L e m m a  2 yields 

d e t L d = l l - - . l d  1 - ( e - l ( u ) )  - l ~ l k  , 

k----1 

which  is nonnegat ive .  The  assert ion now fo l lows  f rom an applicat ion o f  Hurwi tz ' s  theorem for symmetr ic  

matrices.  [] 
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Now we want to calculate the determinant of  the linear mapping which we get when we restrict L(u)  on e ±. Let 
us denote this mapping by £e±. Since L(u)e  ± _1_ e we have 

£ e  ± : e  ± > e ~L. 

Lemma 4. It holds that 

detEe± = N . - -  
11 • • • l N  

~ N  1 li " 

Proof  We choose a basis {fi}Ns1 o f e  ± with fi :=  ei -- eN, where ei is the ith unit vector. Then we get 

N N N 

Lf i  : Z (Lj i  - L j N ) e j  : ~ ( L j i  - L j N ) ( e j  - - e N )  + Z ( L j i  - L j N ) e N  
j = l  j = l  j = l  

& 
N - 1  

= ~_j (Lji  -- L j N ) f j ,  
j = l  

where we omitted the argument u. Therefore, the matrix L which expresses the linear mapping Ee± with respect to 

the basis ( f l  . . . . .  f N - 1 )  is 

= ( E l  --  L N  . . . . .  L N - 1  --  [~-~N) 

with the (N -- 1) vectors L1 . . . . .  l~N-1 defined as I,i = (Ll i  . . . . .  L N - 1  i)t. Hence we can calculate the determinant 

of  [, as 

N--1 

det]~ = det(L1 . . . . .  £N-1)  + ~ det([d . . . . .  L i - 1 ,  - - £ N ,  1~i+1 . . . . .  £ N - 1 )  - 

i=1 

Since 

N--1 

Z Li = --LN 
i=1 

we get 

det 1~ = N det(f,1 . . . . .  I~N-1). 

But Lemma 2 yields 

d e t ( [ , 1 . .  " L N - 1 ) = I I "  "lN-1 1 -- li ~ _ l i  _ ll'K -'N''IN 
li i=1 \ i = 1  / / z_.i=l 

which proves Lemma 4. [] 

As a consequence of  Lemma 4 we can determine when L(u) degenerates. 

Corollary 5. The mobility matrix L(u)  degenerates o n  QN, i.e. has more than one vanishing eigenvalue, if and only if 

ui = 0 for some i E {1 . . . . .  N}. 
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Proof Since li is zero if and only if ui = 0 this result is an immediate consequence of  Lemma 4. [] 

Remark 6. Lemmas 3 and 4 remain true for arbitrary nonnegative l i 'S. In particular the assumption that li (0) = 0 
is of  course not necessary. 

3. An approximating problem 

As we have seen in Section 2 the mobility matrix L degenerates on the boundary of Q N .  In  this section we replace 
the mobility by a modified mobility matrix L e having positive eigenvalues when restricted on e ± which for fixed e 
are uniformly in u bounded away from zero. 

First of  all we define modified bare mobilities as 

{ [i(s) for ui < e, 
le(Ui)  :---~ li(ui) for ui > e, 

where we extended li to  all of R + such that li and 1~ are bounded. With this definition the l~ are Lipschitz continuous 
and uniformly bounded away from zero. Having defined the modified bare mobilities we get the modified mobility 
matrix L e (u) as 

gi~ (n )  : :  [~ (Sij - -  ( e .  I s ( u ) ) - l / ; )  

with le(u) :=  (l~(ul) . . . . .  lsN(UN)) t. 

This new mobility matrix is uniformly positive definite on e ±. Let "n be the orthogonal projection from ~N onto 
the subspace e ±. 

Lemma 7. There exists a positive constant c(e) such that 

v - L e ( u ) v  > c(s)]~vl  2 (3.1) 

for all u, v ~ R N. Furthermore, L~(u)e = 0. But when restricted to e ± the linear mapping L~(u) has positive real 

eigenvalues. 

Proof Let £~± (n) be the restriction of  the linear mapping defined by L e (u) on e ±. Lemma 4 implies (cf. Remark 6) 

det/2ee± (u) = N I f . . .  l~ > N cNEN ~ C06: N, 
~ N  l ~ -- ~ N 1  116 IIL~(%% i=1 i 

where co > 0. Furthermore, L s (u) is bounded independently of u in any matrix norm. This implies that the 

eigenvalues of  E:± (u) are bounded. 
Since det/:~± (u) is the product of  all eigenvalues of  E:± (u) and the magnitude of  the eigenvalues is bounded we 

get an estimate on the smallest eigenvalue from below by a constant c(e) independent of  u. A simple calculation 
yields 

L~(u)e ~-~l~(~ij--l;(e le (n)) - l )e i  ~-~l~ 1 ' f f -~/ ; (e . l~(u))  -1 = - = - -  e i  = 0 .  

i : l  j = l  i :1  j = l  

20 
Now (3.1) follows because L s is symmetric. [] 
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with 

In order to regularize the problem we replace the homogeneous free energy qJ by 

N 
~,e(u) = 0 ~ V ~ ( u ~ )  + ½u. Au 

i=1 

{ i  I n r  fee) for r > s ,  ~ S ( r )  :=  e r 2 
r l n e - - ~ +  for r < e .  

This is the same modification of the free energy which was used by Elliott and Luckhaus [14] in their existence 

proof for the case of a constant mobility matrix. For qte they proved the following lemma which we shall need later. 

L e m m a  8. There exists an e0 > 0 and a K > 0 such that for all s < s0 

~Pe(u) > - K  for all u 6 ~S with u .  e = 1. 

The regularized problem now becomes to find functions u ~, w e " ~ r  ) R N such that 

Otu e = V .  [Le(uS)Vwe], 

N 
1 ) - ~ ( _ ( r A u e )  ~ + o ~ e ( u ~ )  + ( r A u e )  j _ o i lS(uS)  ) 

j=l 
for i - - 1  . . . . .  N 

together with the initial condition u s (0) = u0, the no-flux condition (L e (u e) Vw e) • ~ = 0 and the natural boundary 

condition F V u  e • 7z = O. 

Above we defined generalized chemical potential differences 

N N 
1 e 1 ) -~ (_( rzXue) i  + 0;q,e(uS ) + ( r A u e )  j _ 0j q~e(u~))" 

j=l j=l 

These generalized chemical potential differences have been introduced by Elliott and Luckhaus [14]. This set of 

equations is the variational derivative of the free energy g when one allows variations subject to the constraint 

y~N_~ ui = 1 (cf. [1]). As we shall see later w e rather than/z  s is the quantity one gets estimates for. This is due to 

the fact that LS(u e) has the vector e = (1 . . . . .  1) t in its kernel. 

The next proposition states an existence result for the regularized problem. 

Propos i t ionB.  Assume u0 6 H1(£2, EN) such that u0 .  e = 1 almost everywhere in ~2. Then for all s 6 (0, e0] 
there exist functions u e c L2(0, T; H1 (~2, [RN))nH1 (0, T; (HI (5'2, ~N)),) andw ~ E L2(0, T; H1 (f2, ~N)) such 

that 
(1) Otu e = V - [LS(uS)Vw e] holds in L2(0, T; (Hi(if2, RN))I), 
(2) w e = ~r ( - - F A u  s + DiPS(uS))  holds in L2(0, T; (Hi(f2,  ~N))I), 
(3) u e (0) = u0 and u e - e = 1 almost everywhere in £2T. 

P r o o f  The proposition is proved by a Galerkin approximation. For the binary case this method is described in detail 

in [ 13]. Therefore, we only sketch the proof here and concentrate on the new difficulties which arise due to the fact 

that we consider multicomponent systems. 
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As Galerkin spaces for u e and w e we use 

wN:=WkX...XWk 
N-times 

with Wk = span{C] . . . . .  Ck} where the Ck are the eigenfunctions of the Laplace operator on £2 with Neumann 

boundary conditions. In particular we choose the Ck such that they are orthonormal with respect to the L 2 scalar 

product and such that q~l =- const. 

The proof  is based on a free energy estimate. In the following estimate we omit the index k in u ek which stands 

for the kth Galerkin solution. We want to point out that the energy estimate can be made rigorous for the solution 

of  the Galerkin approximation as well for the limit (u e, we): 

d f  1 e d t  (q/e(ue) + ~Vu  • F V u  e) 

12 

12 12 

= f w e . ( v .  (Le(ue)Vwe))=-fVwe.(Le(ue)Vwe)<-c(e)flVwel2, 
12 12 £2 

where we used that Le(ue)e  = 0 and estimate (3.1). S ince /1  is positive definite there exists a constant y > 0 such 

that 

Vu  e . F V u  e _ ?/IVuel 2. 

Since ~pe is bounded from below (Lemma 8) we get 

eSSSUp0<t<T f [Vue(t) l  2 %-c(e) f [Vwe] 2 < C. 

12 12T 

This estimate implies that 3tu ek is bounded in L2(0, T; (Hl(~2,  NN))r) uniformly with respect to k. Now the 

fact that f12 u~k(t) = mi  with constants mi E ~ implies that the u ek are uniformly in k bounded in the norm of  

L ~ ( 0 ,  T; H1($2, NN)). Furthermore, the boundary c o n d i t i o n / ' V u  e • B = 0 and the sub-linear growth of  D O  e 

implies that the w ek lie in a bounded set of  L2(0,  T;  H l (£2, AN)) (for fixed e). 

Using compactness results these estimates are enough to pass to the limit as k tends to infinity (see [13] for the 

binary case). We just  want to show that ~ U  1 u ek (t, x)  = 1 is true for all e 6 (0, e0] and k 6 N. For all test functions 

~(t, x) = rl(t)¢(x) with ¢ ~ Wk and 77 : [0, T] --+ R smooth such that 0(T)  = 0 we have for all i e {1 . . . . .  N} 

that 

N 

~r  ~ ~T j = l  

where u~i k = y~q=l(UOi, (bj)L2(Pj. If  we take the sum over i ~ {1 . . . . .  N}, we obtain 

N N N N 

12T i=1 ,.(2 i=1 12T j-=l i=1 ; 

20 
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Therefore, 

£2T 

N for all ff as above. This implies that Ot(~,i=l u~ k) is for all t orthogonal to Wk in the L 2 scalar product. Hence 
0 N Since gk i k 0. = = Y~4=l(uoi, Cj)LZ(S?)¢] we have 

N ) 
i~_lU~)i=~'-~" Euoi ,C/ ) j  ¢ j = l .  

J=I U=I.: 
\ -=1 L2(~) 

This shows that E L 1  uS k = 1 for all s ~ (0, so] and k ~ N. Thus we obtain (3) in the limit as k tends to infinity 
which finishes the proof of  Proposition B. [] 

Remark 9. Using the facts that w e E L2(0, T; (H1(S2, []~N)) and that D O  e is sub-linear we can apply elliptic 

regularity theory to conclude that V A u  s c L2(f2T). 

But we want to stress that in general no in s uniform estimates for third-order derivatives can be established. This 
is due to the fact that L e degenerates as s tends to 0. In order to pass to the limit we shall establish estimates on 
second spatial derivatives which hold uniformly in s. To establish these estimates we need to define 

N 

q~e(z) :=  E ¢ 7 ( z i )  f o r a l l z  E ~ U  

i : 1  

with 

1 e ii (cP i )  ( z i ) - -  and q~7(1)=0,  (~p~) ' (1)=0 fo r /  = 1 . . . . .  N. 
lT(zi) 

The function D ~  e (u) will be the test function which enables us to establish the uniform estimates for second-order 

spatial derivatives. 
In the next lemma we collect estimates which hold uniformly in s. 

Lemma 10. We assume u0 6 HI(~"2, R N) with uo c QN almost everywhere and s 6 (0, s0]. Then the solutions 
(u s, w s) of  Proposition B fulfill the following properties. There exists a constant C such that 

(1) esssupo<t<rfs  ? IVue(t)12-t - f ~ r  (Le(ue)Vwe "Vwe) -< C, 

(2) esssup0<t<r  f ~  qgS(ue(t)) + f~r/ \ue "-r~ue <- c, 
(3) esssup0<t<T f ~  ~ N l ( m i n ( u  ~, 0)) 2 < Cs. 

Furthermore, the fluxes i s  = Le(ue)Vw e are uniformly bounded in L2(S2r, 1~ Nn) and the time derivatives Otu e 
are uniformly in e bounded in L2(0, T; (H 1 ( ~ ,  NN))I). 

Proof  The first estimate has been proven in Proposition B. Since L s (u e) has eigenvalues which are nonnegative 
and uniformly in s bounded we conclude from estimate (1) 

f d )a = f . < d f . <_ C. 
ff2T ,.('2T ~)T 
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Since 0tu ~ = - V . J  E the estimate on jr  implies that Otu ~ is uniformly bounded in  L 2 ( 0 ,  T;  ( H 1 ( $ 2 ,  
~U))t).  

Next we are going to prove (2). Therefore, we use D~0S(u e) as a test function in the weak formulation of the 

identity 3tu ~ = V .  [L e (uS)VwS]. By a standard approximation argument one can show (see [13] for details) 

t 

f (Dcl~S(uS),3tUS)Hl (Hl)t = f cl~S(Ue(t)) -- j ~e(Uo) 

0 ~2 ~2 

for almost all t c [0, T]. On the other hand we have 

f V D q ~ ( u  ~) . L~(u~)Vw ~ 

£2t 

=f 
~t 

=f 
-Qt 

=f 
,¢2t 

=f 
,.Qt 

E l/ E V E E E E 
(qbi) (Ui) Ui " E L i j ( u i ) V t o j  

i=1 j = l  

s Vu~ 

N 
1 

Z li (ui )(~i j -- (e s -1 e s e • ~ ~ . 1 )  l ~ ( u s ) ) v  % 
i=1 li (ui) j = l  

N N N 

. . . .  l ) l ; v t o j  
i=1 t2 t i=1 j = l  

=0 

N 

E V u ~ .  V ( - - ( / ' A u S ) i  + (~s)t(uS) + ( A u S ) i )  

i=1 

f A u  e F A u  ~ = ] • 
J 

S2t 

Altogether we obtain 

N 

f (~  ) (U i) Vu i -~- Vue - A V u E .  

,Qt i=1 >o ,f2t 

Since the ~b~ are on  QN bounded by a constant which does not depend on e the first term on the fight-hand side is 

bounded. The second term is quadratic in V u  e and is therefore bounded by estimate (1). Hence we have proved (2). 

It remains to prove (3). Since Ili (w) l < C1 to for all to ~ ~ +  we get for all z < 0 

q5~ (z )  = ~ d w  d v  > d w  d v  
l~ ( t o )  - 

Z V Z 19 
E 8 

f f ,  1 > dto dv  = (e - -  Z) 2 > - -  

- C l S  2 C l s  - 2 C l e  

Hence the estimate on ~ e  implies (3). Therefore, the proof of Lemma 10 is complete. [] 



C.M. Elliott, H. Garcke/Physica D 109 (1997) 242-256 253 

case  li(ui) = ui we get for u C QN Remark 11. In the that 

N 

qS°(u) := lim q~e(u) = E ui In ui + const, 
e---~-0 

i = l  

which is up to a constant the logarithmic part of the free energy. Therefore, the estimate (2) can be seen as an 
estimate for the logarithmic part of the free energy. 

Now we are in a position to prove Theorem A. By well-known compactness arguments (see [13]) we can subtract 
a subsequence of {uS}e>0 which converges to a limit u almost everywhere in S2r as s -+ 0. Furthermore, the 
subsequence can be chosen such that the following convergence properties hold: 

u ~ > u strongly in L2(0, T; Hi(y2, ~ N ) ) ,  

Au s > Au weakly in L2(S2T, NN), 

Ot ue ~ OtU weakly in L2(0, T; (Hi(S2, NN))I), 
i s  > J weakly in L2(~.2T, ~Nn). 

Furthermore, estimate (3) in Lemma 10 together with the fact that ~ U  1 u~ = 1 for all s c (0, s0] gives in the limit 
that u E QN almost everywhere in X2r. It remains to pass to the limit in the equations 

0 t u S = - V .  is ,  (3.2) 

i s  = _ L  s (uS)V(_ / ,Au  ~ + DqjS (uS)). (3.3) 

Since Eqs. (3.2) is linear, passing to the limit in this equation follows from the weak convergence of Otu s and js.  
The more difficult part is to pass to the limit in (3.3). First we show how to pass to the limit in the highest-order 

term. Therefore, we choose a test function ~ as in the formulation of Theorem A. We get 

f F A u  s .  (V.  (LS(uS)~)) 

,(2 T 

) f + 
~2 T i=1  k = l  j = l  j = l  

N 

S2 T i , j ,k=l 

Since Au~ converges weakly in La(X2T), u s converges pointwise everywhere a nd  Lij converges uniformly it is 

enough to show 

VLej(U e) > VLi j (u)  in L2(ff2T). 

A closer examination of this term gives 

V L ~ j ( u ) = V  l~(u~) 3ij--  ll~(U~) l;(U~) 
k = l  

(3.4) 



254 C.M. Elliott, H. Garcke/Physica D 109 (1997) 242-256 

( (~=1 1 -1  (~--i t -2~=1  ! 
s s s s s s s s V S  u e 

+ l ~ ( u ~ )  - -  lk(Uk) Vlj (uj) +l)(uj) lk(Uk) Ik( k) 

The facts that u~ --+ u~ converges pointwise everywhere and that l~ -+ li converges uniformly imply that l~ (u~) 

converges to li (ui) pointwise almost everywhere. Therefore, it is enough to show that 

Vl~(u~) --+ Vli(ui)  in L2(£2r). 

In order to show this we calculate 

f IV1;(u~)-Vli(ui)la f I s '  e e -~ (1 i ) (Ui)VU i -- (li)'(l, ti)Vlgil 2 

£2T £2r~{Ui>0} 

f e ! S e q- 1(l i ) (U i )Vu i --( l i ) ' (ui)Vui] 2 = I + II. (3.5) 

S2rO{ui=0} 

,le,t,  e, V e (li)1(ui)Vui almost everywhere. Using the fact that Vu~ ~ Vui in On {Ui > 0} we have ~ i ) tUi ) Ui > 
L2(~f2T) we can apply the generalized dominated convergence theorem of Lebesgue to conclude that the term I in 
(3.5) converges to zero. In addition we use the fact that Vui = 0 on {ui = 0} almost everywhere to compute 

f 
£2r n{ui=0} 

[(l~)' (u~) Vu e - (li)' (ui) Vui [ 2 

f ~, s e2 f = I ( l i )  (bli)Vuil ~ C 

£2TN{ui=O} S2rN{Ui =0} 

IVu~[ 2 > C f Iguil  2 = 0. 

ff2TA{ui=O} 

This proves (3.4) and therefore the convergence of  the highest-order term. 
It remains to pass to the limit in the term containing the homogeneous free energy. Therefore, we have to show 

f ((LSD2g'~)(uS)VuS) - ~ > f ((LD2q- ')(u)Vu) • ~. (3.6) 
* ]  

$2 r S2T 

Since Vu e > Vu in the strong topology of  Le(S2T, ~U) it remains to show that (LeDeq/e) (u s) converges almost 

everywhere. Noting that L e converges to L uniformly the convergence of  (LEA) (u e) follows from the pointwise 
convergence of  u e. The difficult part is to show convergence of  

L e (u e) diag( cq (~e)"  (u~) . . . . .  C~N (~s)'(USN)). 

Therefore, we show: For all i, j = 1 . . . . .  N we have 

lk(Uk) (li(~s)H)(U~) > lk(Uk) (liOt')(Ui) 
k=l  k=l  

as e --+ 0 almost everywhere in I2r. 
Above and in the following we use the notation O(r)  = r in r for all r c R +. Since l~(.) converges to l~(.) 

( N e e - l ie  e uniformly the convergence of  the term ~ k = l  l~ (uk)) j (u j )  is obvious. We are left to show 

(l~(aPs)")(u~) > (li~P")(ui) almost everywhere, 

For (t, x) with ui (t, x) > 0 this convergence follows from the fact that 17 (z) = li (z) and ~ps (z) = ~P (z) for z > s. 
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Now we consider points (t, x) with l ime~o u~(t, x) = 0. For subsequences {Sk}k~N such that Sk --+ 0 and 
u~ k (t, x)  > ek we have 

8k 8 k If Ek (li ( 0 )  )(Ui ) -'= (li~n)(U~ k) ~ (liOn)(O) 

as ek tends to zero. Besides that for subsequences {Sk}k~N with sk -+  0 and u~k(t, x)  < sk we have 

Ek E k lI ~k (l i (~  ) )(U i ) =- (l iO")(ek) -+ (liO")(O) 

1 and li c CI([0,  1]) as ek tends to zero. In both cases we define (liOn)(O) :=  l imzNo(liOn)(z) .  Since 7F(z)  = 7 

we get (l i~")(O) = l~(O). 
We remark that the term ( L D 2 0 )  (u) on the boundary of  QN has to be interpreted as above, i.e. the term is defined 

as the limit from the interior of  QN. To be precise let us derive the term which we get from the logarithmic part of 
~P: 

( L d i a g ( ~ 1 0  n . . . . .  ~Ng/I))(U) = Id  - lk(uk) l(u)e t diag Ol 1 . . . . .  OtN lN(uN) 
\ k= l  / HN 

with 1 (u) = (11 (u ~ ) . . . . .  lN (u N)) t and li (Ui)/ui :~- l~ (0) if u i = 0. Since we proved convergence almost everywhere 
for all entries of  the matrix 

LS(u e)diag( 8 - e ( a l ~ )  (U 1) . . . . .  ( O t N ~ t S ) n ( U e N ) )  

we can apply the generalized dominated convergence theorem of Lebesgue to conclude 

f ( (LSD2~E)(uS)Vu~) ' r l - - - -> f ( (LD2qt) (u)Vu)  "~ 

~T '-{'2 T 

for all test functions ~ which fulfill the requirements of  Theorem A. 

This completes the proof of  Theorem A. [] 

4. Conclusions 

We derived a model for phase separation in multicomponent systems which takes a concentration dependence 
of  the mobility matrix into account. This is physically reasonable because in many applications the mobility in the 
pure components is much smaller than in the interfacial regions. 

In this paper we study mobility matrices which are generalizations of  a mobility matrix introduced by Ziya Akcasu 
and Tombakoglu [28]. We show that these mobilities degenerate only on the boundary of  the Gibbs simplex. The 
main part of  the paper is dedicated to the proof of  an existence theorem for the resulting fourth-order degenerate 
parabolic system. Existence of  a solution is shown by approximation with nondegenerate problems. 

Uniqueness of  solutions is still an open problem. To our best knowledge there is no proof of  uniqueness for fourth- 
order degenerate parabolic equations. Beretta et al. [2] gave examples of  nonuniqueness for the initial boundary 
value problem for the equation ht + (hnhxxx)x = 0 (0 < n < 3). But due to the applications they had in mind they 
used a weaker notion of  a solution than we did. In particular they did not require h E L2(0,  T; H2(S2)) .  Therefore, 
there is still some hope that there is only one solution which fulfills the requirements of  Theorem A. 

We want to point out that other homogeneous free energies are possible. For example a polynomial which 
generalizes the quartic double well potential W (c) = c2(1 - c) 2 to the case of  multicomponent systems. With some 
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minor  modif icat ions  our  theory is appl icable  in this case as well .  Final ly  it is possible  to pass to the l imit  0 ~ 0 to 

get  the deep quench  l imit  (see [13,14]). In our  paper  [13] we  showed how to pass to the l imi t  0 "~ 0 in the binary 

case and since the alterations are s traightforward we  do not  carry out  the p roof  for  the mul t i componen t  case. 
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