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A NONCONFORMING FINITE-ELEMENT METHOD FOR THE
TWO-DIMENSIONAL CAHN-HILLIARD EQUATION*

CHARLES M. ELLIOTTt AND DONALD A. FRENCH{

Abstract. The Cahn-Hilliard equation is a nonlinear evolutionary equation that is fourth order in space.
In this paper a continuous in-time finite-element Galerkin approximation is considered. We use the
nonconforming Morley element and derive optimal order error bounds in L?.

Key words. Cahn-Hilliard equation, nonconforming finite-element method, Morley element, bihar-
monic, nonlinear evolution equation
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1. Introduction. We consider the Cahn-Hilliard equation

(1.1a) u,+Au=A¢u), (x,t)eQx(0, T)
for u(x, t), subject to the boundary conditions
d 0
(1.1b) —u=0, —(p(u)—Au)=0 onasQ
v v

and the initial condition
(1.1¢) u(-,0)=u,

where ¢(-)=¢'(-), ¥(u)=y(u’>—B??/4, y>0, Q is the interior of a rectangle, and
v is the outward pointing normal to Q). This initial-boundary value problem arises in
the study of phase separation in binary mixtures (see Novick-Cohen and Segel [8]
and Elliott and French [2] and the references cited therein). We use the notation

(1.2a) H%(Q) ={n e H(Q): Z—Z=o on aﬂ}

and observe that there exist C >0 and C. >0 such that for each we H%(Q)
(1.2b) IWl320= C(AW5 10+ IW]320),

(1.2¢) Iwli20=(elAw]3,0+ Clw(50)

where for a set A<R?,
||Z||6’,p,A=J |lz[?,  1=p<oo,
A
2]l 0.c0,4 = €ss sup |z],
A

|Z|r’::,p,A=| Y I1D%z||§ pa, 1=p<oo,

al=m

m
lzllmpa= X |2l7pa-
j=0
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We have the following weak form of (1.1). Find u(-, t) € H%(Q) such that
(1.3a) (u,, v)+a(u, v)=(Adp(u),v) Vve Hz(Q),

(1.3b) u(-,0)=u,e Hx(Q)

where a(-, -) is a bilinear form commonly used in fourth-order problems:

Fw 8’z 13*°w o’z 1°w azz>

3%, 9%, 3%, 0%, 2 ax? ax? 2 9x3 9x?

a(w, z)=J <Aw Az+

with Poisson’s coefficient set to 3. Note that
(1.4) a(w, w) :%("AW”(Z),LQ_'_'W‘%,Z,Q) Vwe H*(Q).
For w, ze H%(Q), we have by Green’s formula, since dz/dv=29/3s(dw/dv) =0,

1 9°w\ 9z ] 1 w9
a(w,z)=J Azw-z+J (Aw————;)——J —(Aw)-z+—J —Z,
Q aQ 29s°)9v  Jsdv 2 Jsa0vas as

so that if u satisfies (1.3) and is sufficiently smooth, then it also solves (1.1).

Regularity. In the Appendix we prove that for each T> 0 and u,€ H£(Q) there
exists a unique solution such that

(1.5) ue L*(0, T; HE(Q)), ueL*0, T; H(Q)), u,eL*0, T; L*(Q))
(see also Elliott and Zheng [3]). Furthermore, if —A%u,+ A (uo) € Hz(Q), then
(1.6) u, e L0, T; HY(Q)).

Finite-element approximation. Let Q=U, s+ 7, where J" is a family of
quasiuniform triangulations of () with 0 <h = hy<1. This means there exist constants
Bo and B, independent of h such that for any 7€ J", Boh =diam (7) = 8,h and Boh*=
meas (7). Let S” be the finite-element space consisting of Morley’s nonconforming
shape functions defined on J":

§"={x e L*(Q): x|. is a quadratic polynomial, x is continuous at the vertices of
™" the normal derivative dx|dv is continuous at the midpoints of all edges
of triangles 7€ 7"}

To approximate H:(Q) we use

. St ={xeS":9xlav =0 at the midpoints of edges on 92}
The following approximation property holds for each pe[1, c]:
(1.7) lo— Lol ,.= C* 70| ,, Y7ed", j=0,1,2

where I, is the usual interpolation operator into S” and C is a positive constant

dependent only on mesh parameters.
It is convenient to use the mesh-dependent seminorms and norms

1/p
=, 0lfer)
T€T

» 1/p
fola=(_Z, bollts)
TE
the mesh-dependent inner product

(wo)= T, j w(x)o(x) dx,

redJ "
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and the notation
H*"(Q)=S"®H*(Q), H"(Q)=S"®@H'Q),
HE'"(Q)=Sr®HL(Q), HE"(Q)=St®H'(Q)
where, for instance,
S"®H*(Q)={v+x:ve HXQ) and xye S"}.

Our semidiscrete Galerkin method is as follows. Find u,(-, t) € S% such that

(1.8a) (4o x) +an (i, )+ (Ve (uy) - Vx)n=0 VyeSh,
(1.8b) u,(+,0)=useSh
where

Fw 8z 19wz 19°waz
reg" J: axl X, a-’ﬁ a.X2 2 ax] 8x2 2 axz ax,

and
(1.9) aw(w, w) =5(|Aw||5on +IW52) Ywe H>"(Q).

We use a,(w, z) instead of a form with (Aw,Az), on H>"(Q) to guarantee the
equivalence, independent of h, with respect to |+|,,.;.

Since (1.8) is a nonlinear system of ordinary differential equations there exists a
unique solution, at least locally. Taking x =u, in (1.8a) and using the fact that
¢'(-)=—yB> we may obtain an a priori estimate for u, when h is sufficiently small.
The argument is similar to the one in Elliott and Zheng [3]. Our Lemma 2.4 must be
used in this argument. Thus, for h sufficiently small (1.8) has a unique, global-in-time
solution.

Analysis of the biharmonic equation using this nonconforming method can be
found in Lascaux and Lesaint [5], Rannacher [9], and Arnold and Brezzi [1]. In this
paper we extend their analysis to the nonlinear time-dependent equation (1.1).

Let B={ne HE(Q): Ane HE(Q)} and note that by Theorem A.1 of the Appendix
% < HYQ). It is convenient to introduce an elliptic projection P"ve S% for ve R
defined by

(1.10a) by(P"v, §) = (A% =V (¢'(u)Vv)+av, ) VyeSh
where b,(-, +) is the bilinear form
(1.10b) bu(w, ¥) = a,(w, ¥)+ (¢"(u)Vw, )+ a(w, )

and a = a, for some positive a,. Since ¢'(u) = —yB> we have that for ze H>"(Q)
bu(z, z) g%(|AZ|3,2;h + |Z|§,2;h) - Ylezﬁ,z;h + alz|g,2;h

and, from (1.2c) and Lemma 2.4 (of § 2), it is clear that a, can be chosen independently

of h and u such that

(1.11) bu(z,z)=c|z||32n Vze H*"(Q)

where c is a constant independent of h, u, and z. Thus b, (-, -) is a continuous, coercive
bilinear form on S} x S% and P"v is well defined. We will need the following approxima-
tion property of P" that is proved in § 5.
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PROPOSITION 1.1. Suppose u solves (1.1) and P"u is defined by (1.10); then there
exists C independent of h such that

(1.12) lu—P"ul|y 2.0+ hlu—P"ul,,., = Ch?,
(1.13) ”ur - (Phu)t” 1,20 T hlul - (Phu)tlz,z;h = Chza

provided u and u, € R. 0
The main result of this paper is the following theorem that is proved in § 3.
THEOREM 1.1. Let u solve (1.1) and u, solve (1.8). Suppose uye H%(Q), —A%uy+
Ad(up) € HE(Q), and

(1.14) u,,(-,O)=Phu0;
then there exists C independent of h and h, such that for h < h,
(1.15) lu = wp|l10:n+ Blu— upl 20 = Ch* Vtel0, T].

We consider this result optimal since it is well known that O(h?) convergence is
optimal in H' and L*> and O(h) convergence is optimal in H” for finite-element
approximations of the biharmonic equation using the Morley elements. These rates of
convergence were found in our one-dimensional numerical experiments with C'
quadratics (see Elliott and French [2]).

In § 4, we briefly derive optimal-order convergence of u, to u in L™,

We will frequently use the following inverse inequalities that hold for quadratic
functions. Let 7€ 7" and y € S”; then

"X"l,p,-r =Ch'||x| m,q,7
where r=m—1-2((1/q)—(1/p)) for0=m=I=2and 1=g=p=o0.

2. Some auxiliary lemmas.
LEMMA 2.1. Let ze H%"(Q) and we W""(Q); then for 1=p, g=, and (1/p)+

(1/q)=1:

(2.1)

0z
) J Wa_y;léch|w|1,p,0|2|2""’"
T

reT"

Proof. The following equation holds:

az 0z 0z
(22) p [ W=y Jw[—]+ 5wl
reg" Jor OV resalr LOV] resn OV

where I’ is a typical triangle side and the summations are over triangle sides. [dz/dv]

denotes the jump in 9z/dv across I'. We note that at x,, the midpoint of T',

9z 9z
[_]¢0, res6Q, —=0, TI'eos.
v av

The estimation of the first sum of (2.2) will be given and the second sum can be
treated in a similar way. Change to a local coordinate system such that I" is (0, H) on
the x,-axis. We first show that

23) [ bo=mi=crmu,,



888 C. M. ELLIOTT AND D. A. FRENCH

where 7 is a triangle with side I" and m is the mean value of w on 7. For any (X,, X,) € 7
we have

X, aw . 0
— (X,,8)ds+ J
0X, z

X1

w(0, 1) =2(%, f2>+j,

X2

ow
—(t, x,) dt
90X,
and an integration over 7 with respect to (X,, x,) yields
Ch
|W(01 x2)_m|< |W|1,1,1"

~ meas (1)

Noting that meas (7) = Ch?, applying Hélder’s inequality to |w|, ; . and integrating to
X, we obtain (2.3).

Let 7" and 7" be the elements with common side I and denote by z’' and z” the
restrictions of z to these elements. Since ze H%"(Q) it follows that dz'/dv(x,,) =
9z"/dv(x,,) = m, and that [dz/av] is linear on I'. Hence we obtain, using an inverse

inequality,
=0, ALm]
gz Zm
v v 0,00,
o [t1n]
T v
éCh"{J' ai—m,”.
rlov v

By an argument similar to the derivation of (2.3), the vanishing of 9z'/dv—m, and
3z"/dv — m, at the midpoint of I yields

0,00,I'

3z’ oz’

_‘—ml éC - §C|Z|2,1,f',
r aV al/ 1,1,,.'

3z" az"
J Z _m|=c|Z|  =Clehn
rlov oV | 1,1,+

so that, by Holder’s inequality,

)
v

Since [9z/dv] is linear on I' and vanishes at the midpoint,

(2] onl2)

therefore (2.1) follows from (2.3), (2.4), and Hoélder’s inequality, implying that

= Ch_1(|2|2,1,-r'+ |Z|2,1,‘r”)

0,00,I'

(2.4)

= WP ([2] g+ 121 3) .

Z|W|l,p,f'Z|2,q,'r§|W'1,p;hlz|2,q;h' o

T

LEMMA 2.2. Let ze HZ"(Q) and we W"?(Q); then for 1=p,q=c0 and 1/p+

1/g=1
dz
w—| = Chlw O
e JGT as | |1,l’,ﬂ| iz,q,h

(2.5)




A NONCONFORMING METHOD FOR THE CAHN-HILLIARD EQUATION 889

Proof. The proof is identical to the one in Lemma 2.1 since

(2.6) L [%] =0

for any edge I' £ Q) since z is continuous at the vertices of 7. Furthermore, [9z/3s]=0
at the midpoint of T'. 0
LEMMA 2.3. Let w, ze HZ"(Q); then

ow
y [ 2
TeTy a-raV

Proof. The following holds:

aw aw aw ow
Y J —z= Y J—[z]-i— Y. J—z+ Y, J [—]z
red), Jar OV resq Jrov rea Jrd?  resn JrLOV

The last two terms are estimated by the same argument as in Lemma 2.1 and result in
the third term of (2.7). For the first term

J 2= ([ |2 ieetos
. gChz(J'r( z_:}v—rn‘+m>)

where m is the mean value of aw/dv over 7; the argument used to prove (2.3) can be
applied here to yield

(2.7) = Ch(h||w2zmll 2l 220 H Wl 2n | 202200+ 1wl 2208 1 21| 1 250)-

a_w
v

3’z

9s?

0,00,I"

ow
J 6_1/ [z]= Ch(h|w|2,2,f+|w|1,2,f) [z 22,7+
r

The second factor was estimated using an inverse inequality as follows:
8’z

5? §|Z|2,Oo,fé Ch_1||z||2,2’,,. ]

0,00,I'

LEMMA 2.4. Let xy € S and 0< & =3; then there exist constants C, and C, such that

b

(28) 'Xli2;h = CO(E + h)|X|§,2;h + Ce ||X"(2),2;h .

Proof. By Green’s theorem we have

2%
(2.9) IXIi2n= X (J x——.[ AX‘X>~
TeJ, or OV T

We estimate the boundary term by Lemma 2.3 and obtain

4
(2.10) ) J x— =Ch|x|22n-
T aV

€T,
For the second term in (2.9) we use the Cauchy-Schwarz inequality:

(2.11) J Ax- x=ellAx |52+ Collxllfa.r-
r

Combining (2.9), (2.10), and (2.11) gives (2.8). 0
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The following important boundary term that arises in our analysis:

9z 1( &°w 3z 3w
(2.12) B,(w,z)= Y J (AW_Z+_( w _E_J;_Z»
reTy Jor dv 2\ovas ds 93s° ov

can be estimated by an application of Lemmas 2.1 and 2.2.

LEMMA 2.5. Let ze H*"(Q) and w e H%(Q) N W>P(Q); then for 1=p, g =co, and
1/p+1/q=1
(2.13) | By, (w, 2)| = Ch|w|; p.0l2|2.q:n-

LEMMA 2.6. Let 7' and " be adjacent elements in I" with an intersecting edge T’
whose endpoints are denoted by a and b. Suppose that w' € H*(7'), w"e H*(t"), w'(a) =
w"(a), w'(b)=w"(b), and

w' on7,
w=

w" on7'.

It follows that for all y € S"

le)
(2.14) J [w] a_):é Ch(h('w‘3,2,'r’+ |W‘3,2,T") + 'W|2,2,7'+ |W'2,2,r")‘X| 1,2,7'
"

where dx/dv is evaluated on 7'
Proof. Since [w]=0 at a and b, we have

a_X< 2 8_2
| Z=on| L) e

0,1,

Let z'=9°w'/as® and m = 1/meas 7' [,. z'; it follows that
1z'loa =1z =mljo, -+ Chm

= ChlZ'! l,2,'r'+ C'z,|0,2,'r'

where (2.3) was applied to the first term. A similar argument applied to 9°w"/as” and
the inverse norm inequality |x/|, «. = Ch™'|x|, . implies the lemma. ]

3. Convergence in H' and H% In this section we prove Theorem 1.1 concerning
the error bounds in H>" and H"". Because of the assumptions on the initial data we
have the regularity specified by Theorem A.2 of the Appendix which we shall use in
this section without comment. Our argument is based on the error decomposition

3.1) u—u, =(u—Pu)+(Pu—u,)=p+6,

which is often used for parabolic equations (see Wheeler [12] and Thomée [11]). We
need only to estimate 8 due to the projection error bounds of Proposition 1.1 which

imply

(3.2a) o112+ Bl pla2n = Ch?,
(3.2b) I ol 1 20+ Bl ool 220 = CH,
(3.2¢) 1P ully seon+ NP u) fl1 soin = €
where

”X” m,o0h = max IXI m,00,7 s
1 =m

=j

p
reJ"

|X| m,co;h = ma)’( |X|j,°0,‘f .
re g
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Inequality (3.2¢) is a consequence of (3.2a, b) since

l((%) j(I,,u — P"u)

<Ch™' ll(%) (Lu— P"u)

= cw‘{”(%)j(z,,u— u)

= Ch,

J J
IG5zl
at 1,005h ot

3\’ a\’
B I 1 adl _ ph
'(at) it (at) (T = P"w)

We shall also assume in the following that
(3.3) 4"l 1con=C

where C depends on T. This assumption (3.3) will be justified at the end of the section.
It follows from (1.8) and (1.10) that for any y € S%

(60, x)+ @, (6, x) = [((P"u),, x)+ an(P"u, x)1~[(uns, x) + @, (uy, X)]
- ==(ps, X)+(ur+A2u_A¢(u)+a“a X)
—[(¢" W)V Py, V)i + a(P"u, x)1+ (Vb (w4), V).
Hence we obtain the fundamental equation for the error

(3.4) (8, x)+an(6, x)=(—p,+ap,x)—(¢'(W)VP"u—-V$(u"),Vx), VxeSk.

1,00h 1,2;h

+
1,2;h

G)el...)
—)p
at 1,2;h

5
1,00,h

=

+

1,00;h

2\’
)
ot

1,00;h 1,00;h

Taking y = 6 we obtain
L 0t a6, 0) = o~ aplozalOloza
2 dt ’
+ |[¢’(u)VP"u —Vd?(uh)"o,z,nloll,z;h
and noting that, by (3.2¢) and (3.3),

6" (WVP"'u=Véu)ooa=('(u)~ ¢'(P"u))VP"ull,0
+(¢'(P"u) = ¢'(u"))VP"ul|g2.0
+1¢'(u") (VP u=Vu")loz0

=C(lpllozatl6ll:2:n)

we obtain

d
2 100520+ a(6,0)= (o llozat allplloz0)l0ll020

N =

+C(llplloz.alOlr2:n+16l12:4l1011.2:0)-
Applying the Cauchy-Schwarz inequality, Lemma 2.4, and (1.9), we obtain

d
(3.5) E ||0||<2>,2,a+ |0|§,2;h = C(" P" <2>,2,n+ ” P||(2>,2,a+ ||0||<2>,2,n)~
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It now follows from Gronwall’s inequality and (3.2a, b) that
T

(3.6) fe(-, t)”(z),z,n"'J 16]2,., dt'= Ch*

0

where the fact that 6(-,0) =0 has been used.
Taking x = 6, in (3.4) we obtain

1d
16, 132.0+% = an(6, 0) =l pllozatallplloza)llblloza
2 dt

- (d"(“)vph“ =V (u,), Vo),
and after an integration with respect to t, we have

t
(3.7) J ller”(zxz,n dt'+a,(6,0)=1,+1,

0

where

1 t
L, =C, J Ul e ”<2>,2,n+a2” P”(z),z,n} dt'+e J ”9p||(2),z,a dr,
0

0
L= ‘Jﬂ (¢'(W)VP"u—-Ve(u"),V6,),dr

where £ > 0.
We will need the following inequalities that may be verified by a straightforward
calculation. Recall that |A|; ,,, = 0 for all A € S”. Using the differentiability of ¢, we have

(3.8) Hd)(,u.) - ¢(/\)"3,2;h = C"ﬂ- -A ”2,2;h Vu, Ae s"
WhCI'C C = C(“M”Z,Oo;h’ “)\ ” l,w;h);

(392) S (=P =Cllplaantlpilazn)
2,2;h
and
2 ()= b(P" <oy (I(2Y LAY
(3.9) llat (&)= (Pw)) 3,2;h=Cj§0< <3t> p 2,2;h+ '(31) ! 3,2;;.)

where

>
2,00;h

a\’ 3\’
ot at Leoth

Since (3.2¢) holds, (3.8) and (3.9) can be used appropriately so that the constants
C are independent of h.
We first estimate the more difficult term I,:

L= J’ ((¢'(w)VP"u~V(uy)),,V6), dt'+(¢'(u)VP'u=V¢(u,), V),

= L ((¢'(w)V(P"u—u)),, VO),dt'— L ((¢(u) = p(un)),, AO), dr’

(3.10) ,
+J > J (¢(u)-¢(uh)),§§dt'+(¢'(u)VP"u—V<b(uh),VO);.

0 T€Ty
=Ji+L+J+J,

where first we integrated by parts with respect to t. Again we handle the most difficult
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term first:

n=['(z ([ [ww-swn ]2+ ] @w-swn[2])

+ ¥ I (¢(u>—¢(uh)),j—f) dr

esQ) JT
=A1+A2+A3.

We estimate A;:

(3.11) A1=J ( » J[(¢<u>—¢<Phu)),]— j[(qb(P"u) ¢<uh))])—dt

0 \I'esQ JT

Taking w =9/dt(¢(u) — ¢(P"u)) and x = 0 in (2.14), we have from (3.9) that the first
term in (3.11) is bounded as follows:

a6
Y j[W] =Ch Y {h|W|3,2,r+|W|2,2,1}|0|1,2,1
r v regh

resQ
a\’ a\’
— +6
(6t> p (at) u } | ||12h

To bound the second term in (3.11), let v =($(P"u)—¢(u,)) and integrate by
parts in time to- obtain

J' Y j[u,]"—"’dr'= Y {jj [v]a—”—’dt'—j [v]a—”}
0 reaq Jr v resa LJo Jr v r v

where we recall that 6(-, 0)=0. Applying Lemma 2.6 and (3.8) we obtain

t 60 t
[ 2 [ tmZar=cnf [ 10hamldian de+10l2zal o) 0]
r 4 o

0 I'esQd

(3.12)

2 2

+h?

,2;h

<Ch22{

J 3,2,Q

(3.13) ,
=C ” [01l2.2:10cll 02,0 dt’+ 6] 2,2;h||0||0,2,n}
(1]

where an inverse norm inequality was used on the last step.

Combining (3.12) and (3.13), applying Lemma 2.4 to |6|, ., terms, and noting
(3.2), we obtain

. t
(3.14) |Aj|= Ch*+£|0|3 .0+ C.|6]3 2.0+ J {e]6/3 2.0+ C.|0|32.4} dt’

0

where £ >0 is to be chosen later in this section. (We assume &> h.)

For both A, and A; a result identical to that of Lemma 2.1 can be proved, since
the argument holds on each 7€ *. hence
J
( ) (u—uy) } dr’
1,2;h

where C is independent of h by (3.3). It follows that
a\’ a\/
+ —
GEW OF

=Ch*+e J 16,12 2.0 dt'+ C, J (16122.0+16122.4) dt".
0 0

|A2+A3|<Chj {||0||22,, )

) dt’
1,2;h

t
(3.15) |A2+A3|§Chj (16l2,2,5+ 101l 0.2.0) Z (

1,2;h
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Combining our results for A;, A,, and Az, we have
t
|13| = 8|0|§,2;;. +C, "0"(2)’2’04-4" (e " 0, "(2),2,Q+ C£|0|§,2;h) dr'+ Ch*.
1]

The remaining terms in (3.10) are less complicated to estimate. J; and J, can be treated
using arguments similar to those above:

t

|[h=C J | el1,2;n| 0] 1,2, dt’

0

t

§Ch4+j

0

(101320 + Cc 1015 2,0) dt',
t

|J|2§J (@ (u)— & (un))illozallA0]020 dt’
0

t
=C J (h>+16]02,0+10:02,0)|0]22.4 dt’
0

t

écwj (Cl0Ran+ el OulEan+ [ 6]220) d.

0
For J, we have by Lemma 2.4 that
|J4| = Ch4+ 8|0|§’2;,, + C'e " 0”%’2’0.

Using these results in (3.7) we have

t 1 t
J' ”01”3’2,0 dt'+§|0|§,2;h§Ch4+ s|0|§,2;,,+£ J. Ho,”g’z,g dt’
0 0

t

+C,||0]|3 20+ C. J 16132, dt',

0

and hence, choosing & =}, we have

t t

611520 dt'= C(h“+ ||0||3,2,Q+I 1613.2.2:n dt').

[

(3.16) |0|§,2;,,+J
(V]
Combining (3.2a,b), (3.6), and (3.16) gives the desired error bounds of Theorem
1.1. 0
We turn to justifying (3.3). The preceding argument has shown that if

(3.17) lun(-, Ol =M for0st=r=T,
then
(3.18a) luC-, )=un(-, Ol n=Ch?,  O0st=7

and by an inverse inequality
(3.18b) luC-, )= (-, 1)l 100 = C(M, T,
Suppose that

(3.19) K= sup [lu(-, )|

0=t=T
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and that M > K. Choose hy>0 so that hy<(M — K)/C(M, T). Suppose that there
exists t, < T such that
(3.20a) lun(-s ) 100 <M, 0=t<ty,

(3.20b) llun (-5 )] 1,000 = M.
It follows from (3.18b) and (3.19) that
lun(:, )|l 1on=K+C(M, T)h, 0=t=t,

and if h < h, then |u,(-, t) 1,00, < M. Hence for each T>0 we can choose h, so that
(3.3) holds for all h < h,.

4. L™ convergence. In this section, we show that an “almost” optimal-order error
bound holds for our method. Our result is not optimal due to a (In 1/h)"? factor. The
key to the proof is a subspace Sobolev inequality for the Morley elements.

LEMMA 4.1. If ye S then

1 1/2
(&) loras € () Ixlhzs.

Proof. If 7€ I then

xllo.c0,+ = lx“Nloo,r+ 1x = X" Nlo,00,r
1 1/2 L
=c(1ny) ¥l t Chikdaces
where x" is the piecewise linear interpolant of y and the subspace Sobolev inequality

for piecewise linear functions is applied to the first term (see Schatz and Wahlbin
[10]). Applying inverse inequalities, we finish the verification of (4.1):

1 1/2
o= € (105) " etz +lx=x T2+ Clixl s

1\ 12
c(n3) " (xlhza+ Chllxlaz

=
h
1 1/2
=C <ln ;) X1l 1,25 - -

We now present the short statement and proof of the L™ convergence.
THEOREM 4.1. Suppose u is sufficiently smooth and (1.14) holds; then

1/2
(42 =), Dllamas ()

where t€ [0, T] and C depends on u, T, and the mesh parameters.
Proof. We use I,u, the interpolant in S”. Then for fixed. t [0, T]

[|u— u” llo,c0,0 = ||t — Tte ||o,<=o,d+ (| Znt = tan || 00,2 -

From (4.1) and (1.7), we have

1 1/2
= oS Wit € () W=l
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or
1 1/2
[l = unllo00= Ch*uls 00+ C (111 ;) (llu— Lull s 200+ |4 = g ]| 1,2;)
1 1/2
= C(u)(ln —) h?
h
where the result of Theorem 1.1 was used on the last step. 0

5. Error bounds for the elliptic projection. In this section we prove Proposition
1.1. For each t€[0, T] recall that

(5.1)  bu(w, ) =an(w, )+ (' (W)VwW, V) ta(w, ¢),  w,ye H*"(Q),
and using the definition of P"u, we find v

(5.2a) by(P"u, x) = (A’u—Ad(u)+au, x) VyxeSh,

(5.2b) by(u, ) =(A*u—A¢(u)+au,n) VneHE,

(5.2¢) bu(P"u,, x) = (A%, — Ad,(u)+au,, x)+(¢"(u)u, VP "u, Vx), VxeSht,
(5.2d)  by(u, n)=(A%u,— A, (u)+ au,, n)+(¢"(W)u,Vu,Vy) Vne HE(Q).

As noted in § 1, choosing a sufficiently large makes b, (-, - ) coercive on S% and H%(Q).
To obtain bounds for p and p, we study the following problems:

(5.3a) ve HE(Q): by(v,m) = F,(n) Vne HE(Q),
(5.3b) vy € Sh: by (vp, x) = Fu(x) VxeSk

where F, and F, are continuous linear functionals on H""(Q). Note that (H""(Q))' <
(H'(Q))'. We use the notation

M= sup —
ye H(Q) "4’"1,2,0

P#0
1(y)

7| -1,n=sup .
M et 112
)

The regularity result, Theorem A.2, implies that

(5.4) lolls20= CllFull-1= CllFall -1
For we H?(Q) integrating by parts gives us
(5.5) a,(w, ) = (=VAW, V), + By(w, ¢) Vye H"(Q)

where By, (-, ) is defined in (2.12).
Also, by noting that H%(Q) is dense in H'(Q2) we have

(5.6) (=VAu, Vn)+(¢'(w)Vy,Vn)+a(v, n)=F.(n) VneH'(Q).

On J" we may define a piecewise linear interpolant y“e C(Q) of y € H*"(Q) with
the approximation property

(5.7) | = ¢ i pr = CR*X|Ylp .k =0,1 V7T
LEMMA 5.1. For v and v, defined by (5.3) we have that
(5.8) 0= vnll1.2:n + Bl — Okl 220 = C(B?|| Byl -on+ | Fa — F, | -1,n)-
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Proof. Let ¢ € HZ"(Q) so that y*e H'(Q) and
bu(v, )~ Fu(9) = (=VA0, Vi), + Bi(v, ) + (' () Vo, V)i + (av, §) — Fi(9)
=(=VAr, V(¢ = ¢ )n+(¢'(w)Vo, V(g —¢"))
+(av, — ¢+ B(v, )~ Fu (¥~ ¢ + Fu() ~ Fu(y)
where we have used (5.5) and (5.6). Hence, using (5.4), (5.7), and Lemma 2.5 we obtain
(5.9) |bw (v, &) — ﬁh(¢)| = C[h| F, "—1,h|l//|2,2;h+ (| F —ﬁh "—l,h I 1.2;h]-
Using (5.3b) and (5.9) we obtain
by (v — vy, v—03) = by (v —vp, v — L) + b, (v, Iiv — v,) — F (I,v — v,)
= b, (v—v, v— L)+ Ch| Fy|| -y .ul Inv — vi| 22
+C||F, - ﬁh =1l Tn0 = vnl1,2;

and the coercivity of b,(-, ) (i.e., (1.11)), together with the approximation property
(1.7), yields

(5.10) o = vall22i8 = CLRI Fyll -0+ | Fio = Bl -1.61.
Let L,(¢) be defined by

(5.11) Li(¥)=(VIie, V) +(Le, ) Ve H'"(Q)

where e = v —uv,. It follows that

(5.12) ) (1 Lall -1, =l Tnell 1,2;n -

Hence, defining z and z, by

(5.13a) bu(z,m)=Ly(n) VYme HE(Q),

(5.13b) bw(zw, x) = Ln(x) VxeSEg,

we have by the previous discussion that

(5.14) h||z|ls2.0%F |12 = 24l 22. = Ch|| Ine]| 1 2.1 -

Using the definitions (5.2) and (5.13), we have
"Ihe"iz;h = Ly, (Iye) = by(zp, I1e)
=b,(z—z,, v —L,v)+ b, (z,— 2z, )
+by(z, v) — by(zp, V) — bu(z, v— L)
= by(z~ 2, v=L,v) +[bu(v, 24~ 2) = Fy (2~ 2)]
+[Fy(2) = Fu(2)1+ (VAz V(0 ~ L,v))s
—(¢'(u)Vz, V(v— L)) —(az, v — L,v) — By(z, v— Lv).
It follows from (5.14), (1.7), (5.9), and Lemma 2.5 that
I uell3 20 = CLR? | Tuell s zonl| Full 1o+ BIL o = Fill o wll Tull s 2o+ | Fo = Bl 1l Tue ] 250,
and since
lellson=lle = Tuells2n+ | Tnell1,2:n
= Chlel 2,4+ CLR|| Full -0+ | By = Fill1.6]

we obtain the desired bound (5.8) of the lemma.. 0O
Choosing

v=u, v,=P",
Fu(y)=FE,(y) = (A’u—Ad(u)+au, ¢),
| Full -1n = |A%u— Adp(u) + aullop0= C(u),
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we obtain from (5.8) the bound (1.12) for p. The bound for p, (1.13) follows by choosing
v=1u, v, =(Pyu),,
Fu(¢) = (8%u,— A (u) + au,, ) = (¢"(w)u, Y, VX)),
Fu(9) = (8%u,— Ag,(u) + auy, §) = (¢"(u)u, Y P'u, Vi),
IFa = Eull 1.0 = Cllulloo0lltello0,0)|u — P"ul 1,2;h
= C(u, u,)h*
This completes the proof of Proposition 1.1. 0

Appendix. In the following, Q) =(0, a) x (0, b).
THEOREM A.l. If fe H*(Q) and [o f(x) =0, then the boundary value problem

(A.1a) Au=f inQ, J‘ u=0,
Q
[¢] d
(A.1b) oo, ZAu=0 ono0
v av
has a unique solution u € H***(Q) and
(A.1¢c) : lull craz.0=Clf k20
for k=-1,0.
Proof. Consider the boundary value problem
(A.2a) Aw=g inQ, J' w=0,
Q
d
(A.2b) 2%_0 onoQ, J g=0.
ov Q

There exists a unique solution and by Grisvard [4, p. 149] we H?*(Q) if ge L*(Q);
furthermore, it also holds that

(A.2¢c) Iwl220=Clgloza-
See Grisvard [4, p. 199]. Consider the following problem. Find z = z(x, y) such that

og

Az=— inQ, z(+,0)=z(:,b)=0,
oy

0z 0z
—(0,:)=— -)=0.
ax( ,*) ax(a, )

By a reflection argument we can show that if 9g/dy e L*(Q), then z=9w/dy is the
unique solution and ze H*(Q). Also, from Grisvard [4, p. 199] we have the estimate

98
ay
Letting z =9w/dx, we can obtain results similar to the above. Thus we conclude that
if ge H'(Q), then

(A3) Iwls20=Clglza-

lzll220= C”

0,2,
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Continuing in this manner, we observe that z =4>w/dx dy solves
2

Az= g inQ) and z=0 ondQ.
dx dy
If 6°g/dx 9y € L*(Q), then z€ H*(Q) and
o’g
=C .
EINPEL e I

If we add the hypothesis that 9g/9v =0 on 9Q, then z =*w/ay* is the unique solution
of

Furthermore, again from results in Grisvard [4], if 9°g/dy*e L*(Q), then 8°w/ay’e
H*(Q) and
3w 8?
3 =clE .
3y 22,0 9y“llo2,0
If 9°g/ax* e L*(Q), then 8*°w/ax*e H*(Q) and
o’g ~c *w
ax2 2,2,n= 3x2 0,2,0’
We conclude that if g € H*(Q), then we H*(Q) and

(A4) Wllaze=Clgll2za-

Now we consider problem (A.la,b). By energy arguments there exists a unique
solution u € H%(Q). Set g =Au. From (A.3) with w=u it follows that if fe H™'(Q),
then g e H'(Q) is the unique weak solution of

lIA

Az=f in Q, J z=0,
Q

0z
—=0 on i,
14

and u e H*(Q). Furthermore, it holds that
(A.5) lulls20=Cllglize=Clfll-i20-
If fe L*(Q), then from (A.4), ge H*(Q), ue H*Q), and

(A.6) lullszo=Cligl22a=Cllflloza-
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THEOREM A.2. Let u,e H5(Q) and T>0. There exists a unique uc
L*0, T; R)N C(0, T; H:(Q)) with du/ote L*(0, T; L*(Q)) such that u(-,0)=u, and

a—l-‘—A¢(u)—yA2u a.e. te(0, T).

(A7) 3

Furthermore, |u(-,t)||,20=C for each t€[0, T], where C is independent of T. If
—A%uy+ A (up) € H%(Q), then it holds that du/dte L*(0, T; ®)N C[0, T; H:(Q)].

Proof. The proofis based on the methods of compactness and Galerkin approxima-
tion (Lions [6]). Let {z;} be the orthogonal basis for H'(Q) defined by

(A.8a) zie Hx(Q), —Azi+z= Az

and normalized so that

(A.8b) (z;,z)=1.

(Note that A™ze H:(Q) for m=1,2,-.) Let P™ be the projection defined by

(A9) P™v =3}, (v, z)z
j=1
so that
(A.10a) (P"v—v,n™)=(VP"v—-Vu,Vn™)=0 VYy"eV",
(A.10b) I1P™| ectrr.vm = I1P™ | 2z vm =1,

(A.10c) lirrololP'"v—v|0=0 Yve L} (Q), lim IP"v—v|,=0 Vve H(Q)

where V™ is the finite-dimensional subspace of H'(Q) spanned by {z;}/%1.
Consider the following initial value problem. Find {u#™, w™} such that

(A.11a) w(0=1% 60z, w'(,0= ¥ 4(1)z,
Jj= Jj=
du™
(A.11b) <7,n'")+(w'",vn'")=o Vyme V™
(A.11¢) (w"=¢(u™),n™)=y(Vu™, Vn™) Vn"e V",
(A.11d) u™(+,0)=P"u,.

Clearly, (A.11a-d) can be rewritten as an initial value problem for a finite-dimensional
system of ordinary differential equations for the variables ¢(t) = (¢,(t), ¢5(t) - - - ¢, (1))
and d(t)=(d(t), -, d.(t)). Since ¢(-) is continuously differentiable, there exists a
positive t,, such that (A.11) has a unique solution with ¢(¢) and d(¢) being absolutely
continuous on [0, ¢,,] and differentiable on (0, ¢,,).

Let us define an energy functional (-) by

(A.12) 9"(77)=I [%anlerllf(n)].

Q

Differentiating (A.12) with respect to ¢t we obtain

R my du”
Z;f?(u )—(Vu v dt)+(¢(u ) dt)
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and taking ™ =u™ in (A.11c¢) and ™ =w™ in (A.11b) we obtain

4 Fum)= (w"' du"')

dt dt
= —IWmﬁ,z,n-
Integrating with respect to ¢ yields
!
(A13) F(um (1)) + J W™ (72 2.0 d7 = F(P™uy).
0

Since () is a quartic polynomial, it follows from (A.10c) and the compact embedding
of H'(Q) into L*(Q) that

lim g(Pmuo) = g(uo)

and the right-hand side of (A.13) is bounded independently of m.
Taking n™ =|Q|"?z, =1 in (A.11b, c) yields

(A.14a) (w™(-,1),1)=(P™uy, 1) = (uy, 1),
(A.14b) (w™(-, 1), 1) =(d(u™(, 1), 1).
Since

F(m)zinli2e,
it follows from the Poincaré inequality that

(A.15) I7ll120= CQ)Unli20t|(n, 1] Vne H(Q)
and from (A.12) and (A.14a, b) that for each t=0
(A.16a) "u"'(*, t)”l,2,Q§ C,
t
(A.16b) J' w™(, ) 20 dr=CQ+1)
0

where C is independent of t and m. The estimate (A.16a) implies an a priori bound

for ||c(#)]l, and hence by the classical theory of ordinary differential equations there

exists a solution to (A.11a-d) for all ¢. Thus we have global existence of {u™, w™}.
Since V" < H%(Q) and Ap™e V™, it follows that

du™
. —=Aw™
(A.17a) & w”,
(A.17b) (w"—d(u™)—yAu™, n™)=0 VpmeV™
(A.17¢) (Aw™ —Agp(u™)—yA*u™ n™)=0 Vyp"eV™

Taking »™ = A*u™ in (A.17¢) and using (A.17a) yields

d m m m
18U a0+ 1877 20 = (MG (™), 8%™)

N =

(A.18) ;
55 ("A¢(um)"<2),2,a+ |A2u'"|(2,,2’0),

Since
Ap(u™) =" (u™)|Vu™+¢'(u™)Au",
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we have that
Ad(u™)5=2[ll"(u™) 5 s.allVu" 560+ @' (™55 0llAu™|I360l;

" recalling that ¢"(-) is linear and ¢'(-) is quadratic and noting that (A.16b) holds, we
have from the embedding

""7 "0,6,Q§ C""I I 120 YME Hz(ﬂ)
that
(A19) "A(ﬁ(um)"g,z,a = C["V"m "3,6,0, + "Aum "(2),6,0.]

where C is independent of m and t.
It follows from the Gagliardo-Nirenberg interpolation inequalities that

(A.20a) IVu"llosa=ClIVu™|3ZallVu™ 320,
(A.20b) lau"llosa=ClIVu" |20l V™20
and by the elliptic regularity theorem, Theorem A.1, that
(A.20c) 4™ ls20= ClA*u"]loz0-
Applying (A.20a-c) to (A.19) we obtain
lag ™5 20= ClA% ™[0

and by Young’s inequality,

lag(u™ |5 20=elld’u™ 520+ C.,

which implies upon substituting in (A.18) that
d
. 18U loz,0 U flo2o==C.
(A21) AU a0+ 184%™ a0 C

Since there exists ¢, such that

Co""] "0,2,95 "A"l"o,z,n for(n,1)=0, ne H2E(Q)
it follows that

d
(A.22) E; lau™ "(2),2,n+ collAu™ "(2>,2,0§ G

which implies
(A.23) "Aum(‘, t)"o,2,0§.C VtE[O, T).
It follows immediately from (A.23) and (A.21) that ™ is uniformly bounded in
L0, T; H%(Q))N L*(0,T; R). Recalling the estimate for [[A¢(u™)|lo,.q it follows
from (A.14a,b) that w™ and du™/dt are uniformly bounded, respectively, in
L*0, T; H*(Q)) and L*(0, T; L*(Q)). By interpolation (Lions and Magenes [7]), u™
is uniformly bounded in C[0,T; H:(Q)]. Therefore there exists ue
L*0, T; R)N C(0, T; H%(Q)) with du/dte L*(0, T; L*(Q)) and a subsequence {u™}
such that
du™ du
a &

dt dt’
Ap(u™)->A¢(u) and A’u™->A%u weakly in L*(0, T; L*(Q));

u™->u weakly in L*(0, T; R),
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and passing to the limit in (A.17a, c) we obtain

du 2.
ar Ap(u)—A%u=0.

This completes the proof of the first statement of the theorem. It remains to prove

further regularity in the case where v,= —A%u,+ Ad(u,) € HE(Q). Consider the linear
evolution equation: find v(-, t) € H%(Q) such that

dv

i n) +(Av,An) =(A(¢'(w)v),n) Vve HE(Q), v(-,0)=1,

(A.24) (

and its Galerkin approximation, v™(-, t)€ V™ such that

d m
(% n'")+(Av'",A17'")=(A(¢'(u)v'"), a™) V¥n"e V™
(A.25)
v™(-,0)=P"v,.

When we take ™ =0v™ and n™ =dv™/dt in (A.25), it is straightforward to obtain a
priori bounds and thus to pass to the limit and obtain the existence of

ve L¥0, T; HX(Q)), A(¢'(u)v)e L*0, T; L*(Q))

and dv/dte L*(0, T; L*(Q))), where v solves (A.24). The elliptic regularity result
Theorem A.1 yields that ve L*0, T; ®) (hence ve C[0, T; H:(Q)]) and clearly
v=u,. 0
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