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We consider a fully discrete implicit finite-element approximation of a model for
the phase separation of a multi-component alloy. We prove existence,
uniqueness and stability of the numerical solution for a sufficiently small time
step. We prove convergence to the solution of the associated continuous problem.
We perform a linear stability analysis of the equation and describe some
numerical experiments.

1. Introduction

The purpose of this work is to consider a finite-element approximation of the
model studied in Elliott & Luckhaus (1991) for isothermal phase separation of a
multi-component ideal mixture with JV>2 components, occupying an isolated
domain Q <z R^ (d = 1,2,3). It is concerned with finding the vector pair
{u(x, t), w(x, t)} e \RN X RN for x s Q and t > 0 solving the system of non-linear
diffusion equations given by

u,-LAw = 0, (l.la)

w = -yAu + 6(t>(u)-Au - 1 ]£ [6<f>(u) - Au), (1.16)

^ = ̂  = 0 ondfl, (lie)

dv dv

u(x,0) = u°(x). (1.W)

Here 8 and y are positive constants, v is the normal unit vector pointing out of
O Oriord Univenity Pren 1W6
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112 J. F. BLOWEY, M. I. M. COPETT1 AND C M. ELLIOTT

Q and A and L are symmetric N xN matrices. We use the notation TJ, to be the
/th component of 17 e R" and for / = 1,..., N set

a«l du, IT7 , _ v 1 ^

1 ;:=1 ( {*(«)}, :=*(«/).

where 0(r) = lnr. The concentration of the component / is denoted by ut so that
the constraints

are satisfied. The non-negativity of U; is a consequence of the fact that <£(•) is
infinite at 0. That (1.26) is satisfied is a consequence of assuming L has a
one-dimensional kernel such that LI = 0 and N £ u°(x) = 1. We also assume
that L is positive semi-definite. It then easily follows by summation from
(l.la-d) that (1.26) holds and that

H- = 0, I" «(*) dr = f u°(x) dx = m, Vf.
•In JQ

(1.3)

Here we take initial values such that 0< m < 1 \£2\; the notation 17 5* (>)0 means
that the inequality holds component by component.

The collection of equations (l.la-d) is a system of Cahn-Hilliard equations,
see De Fontaine (1972, 1973), Hoyt (1989, 1990) and Eyre (1993).

REMARK 1.1 In the case N = 2, assuming that Au — A.-n, Lu = L-& = i, defining
u:= u2 — U\, w:= w2 — Wj and 6C = {AU - A-^12 we obtain that {u, w} satisfies the
equations

u,-Aw = 0, w = -yAu+2i{/'(u), (1.4)
where

Hu) = I ((1 + u) log. (1 + u) + (1 - u) log. (1 - «)) - 1 w2.

This is the Cahn-Hilliard equation, with logarithmic free energy, whose numeri-
cal analysis has been studied by Copetti & Elliott (1992).

It is convenient to introduce the homogeneous free-energy functional

V{u) = eJJu,\nul-WAu, (1.5)
/ - 1

so that 6<t>(u,) = {D*P(u))i + {Au},- 0 = 01nu, (1 =£/=£#). From physical con-
siderations, that being V should have more than one local minimum, we shall
assume that A is not negative definite, i.e. it has at least one positive eigenvalue.

From the properties of L, all of its eigenvalues are non-negative, the
eigenvectors form a basis and there exists /0 (the smallest positive eigenvalue)
such that

VTLv^dv-llv\2- (1-6)
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PHASE SEPARATION OF A MULTI-COMPONENT ALLOY 113

Here we take || • || to be the usual 2-norm for vectors. We take the matrix norm to
be that induced by the vector 2-norm; for symmetric matrices, the value of the
matrix norm is given by the spectral radius.

Throughout this paper we assume that Q is a convex polygonal bounded
domain in R2; however results also hold in convex domains in R* [d = 1, 2, 3)
where dQ is sufficiently smooth. We denote the norm of the Sobolev space W^Q)
(ps»0) by || • ||p, the semi-norm ||Z)PTJ||O by |TJ|P. We introduce the spaces
L\Q) = {L\Q)}N and H\Q) = {H\Q)}N.

The layout of the paper is as follows: in Section 2 we consider a fully discrete
implicit finite-element approximation proving existence and uniqueness of the
numerical solution. In Section 3 we obtain sufficient stability estimates which
enable us to show that the approximation converges to the solution of (l.la-d).
In Section 4 we perform a linear stability analysis of the equations. Further, we
describe the iterative method and perform some numerical experiments; the two
are compared.

2. A finite-element approximation

Let 3* be a regular family of triangulations of Q, see Ciarlet (1978), so that
£2 = {JTmf** with mesh size h. Associated with 9* is the finite-element space
Sh czH1^) of continuous functions on Q which are linear on each I E J * . Let
M?-i be the set of nodes of 3* and {XiW-i be the cardinal basis for Sh. For our
discrete inner product on C(Q) we choose

Jo

where I* : C(Q)^>Sh is the interpolant defined by /*/(*,) = /(x,) (i = 1 ,...,£>). The
norm \-\h := [(•, •)ll]m on 5" is an equivalent norm to |-|o := [(•, -)]m ((•, •) is the
usual L2 inner product) satisfying Vjf, TJ e Sh

x\o and |0f, T , ) - fr, r,)h\^Ch1+r \\x\\, ||T,||, (r = 0,l)

(2.1)

see Ciavaldini (1975). We also define M and K to be the usual mass and stiffness
matrices

where M is a diagonal matrix, Mu > 0. Further, we assume that our triangulation
is acute so that A^eO (i*j), see Ciarlet & Raviart (1973). We shall make
reference t o v e S * to mean V , E S * ( 1 « / « N).

Given

eSh
0:= {* eS* : (x,, 1? =0(1 * / * # ) , EX =
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1 1 4 J. F. BLOWEY, M. I. M. COPETTI AND C. M. ELUOTT

we define the Green operator *§% to be the unique solution of the problem: find
# £ / e 5S such that

(LV«*/ Vi|) = ( / if)* Vi, E S\ (22)
where

Or. V)" := 2 Of/, i?/)* and (V* Vr,) := £ (V*,, Vi,,).

Existence of # £ / satisfying (22) follows from the Lax-Milgram theorem, by
using (1.6) and the discrete Poincar6 inequality

l/U^CpOtfin + l/l,) V/eS*. (2.3)

Notice that, from the Poincar6 inequality and (2.1), (23) holds for h sufficiently
small. It is convenient to define a norm on So to be

l , := \LmV<Sh
Nf\l = (LVVM Wlf) = ( / <Sh

Nf)h. (24)

Using the discrete Poincare" inequality and (1.6) a calculation reveals

|iy VNJn ** l/l/i I°/V/U *= *-p l/l/i I«N/ |1 ^ ,]/2 I/I* I-*-1 °NJ\\
«0

to yield

> * ,\a\J\h- (*"->)

Finally, it is necessary to introduce the following notation. Fix 5 to be a
non-negative number and define the sets A^ and Jh

e as follows:

Jh
e := {* e Sh : S «*,(*) ( 1 « / « N) and N 2 ^(*) = 1 for all * e

where

0 « 5 « 5 * = min ^ .

We note that Jh
t and Aj are both non-empty as they contain the trivial element

The problem we wish to solve is the following: given U° e KQ, for 1 =s n =s M
find {V, W] eK^xS" such that

(BIT, Xf + (LVW, VX) = 0 V* e S*, (26a)

r(VtT, Vif) + (0^(fT) - i4lT, i|)* - ( l £ [00(tT) - AIT], r,)

= (»Vn, i|)* VTJES", (266)

where dfT := (If - IT'^/At and 4/ = T/M Due to the use of the discrete L2
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PHASE SEPARATION OF A MULTI-COMPONENT ALLOY 115

inner product, implicit in (266) is the inequality lT(x)>0, x e Q, n>0, in
order for 4>(#") to be well defined at the nodes of the triangulation. Notice that
the sequence {IT, W} inherits the properties

E^=0, (IT, 1)* = [V°, 1)* and N £ U" = 1, (2.7)

where {Or, 1)"}, := (j,, 1)" (1 =s / « AQ. Using (2.2) and (2.6a,b) we see that

wn = -% w + j^f (e<Hir) - Air, 1)" - ^ j ( E [B<KU") - Air], if.

Furthermore, using (2.4) and (2.6a), with x = W", we find

\\dir f_h = (air, %dir)h = -(air, wf = (LVW, VW). (2.8)

REMARK 2.1 The numerical analysis of (1.4) has been studied by Copetti &
Elliott (1992) in the form of the fully implicit finite-element approximation: find
{[/", W} eShxSh such that for all x, V e Sh

0, (2.9)

= y(VUn, VT,) + (il>-(Un), r,)h. (2.10)

They proved existence, uniqueness and convergence of the numerical solution to
the solution of the continuous problem. Some numerical experiments were
performed.

If we attempt to prove existence to (2.6a,b) using the fact that these equations
can be rewritten as the Euler-Lagrange equation of a minimization problem
over the set KQ then, in calculating the Euler-Lagrange equation, we will need to
know in advance that the minimizer is strictly positive. To avoid this problem, we
will consider the same minimization over the set Kh

6 where 5 > 0 and sufficiently
small. Thus, for n fixed it is convenient to consider the following constrained
problems which are Euler-Lagrange equations:

(£>5) Given I/""1 E Kh
0 and 0 < 8 =s 8*, find V s K"6 such that for all x e HCg

^ (VttU8 - ir~l), x - UBf + y(VU°, VX ~ VIIs)

+ 6(<HUS), x - Ua)h - (AUa, x ~ Ua)h > 0. (2.11)

(P5) Given IT'1 e Kh
Q and 0 < 8 « 8*, find {Ua, W*} E J\ x S* such that for all

ij E S* and x e A

^ (V - ir~\ if + (LVW6, vt») = o,

y(yUa, VX - Vt/a) + (0 W ) - AUa, x - U't •» (Wa, x - Ua)h. (112)
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116 J. F. BLOWEY, M. 1. M. COPETTI AND C M. ELLIOTT

LEMMA 2.2 Let \A be the largest positive eigenvalue of the matrix A. For
0 < At <4y/(\2

A \\L\\) there exist unique solutions to (Qh
8) and (Pi), where W8 is

unique up to the addition of a constant vector.

Proof. First we prove existence to ((23). Consider the minimization problem

min || y ~ #"" ' II2-* + %h(x) =-^(x), (2-13)
xeK\2At

where

.)"+?W2. (2-14)

We now prove a useful inequality. Using matrix properties, (2.2) and Young's
inequality, a calculation yields for ij e SQ and a > 0

(At,, 7,)" ^ XA \r,\l =

I2-*. (2.15)
t U ill

Setting a = 1 + e and 17 = * - m/|i3| e So, where £ > 0 and x e ^5 . we see that

" |X3| (l + e)At\r |fl|ll_*

Since

we obtain from (2.16)

Using the inequality 0>x\nx^-e \ where 0«x«£ 1, we obtain

1
. ? ( * ) ^ { y - - " " ~ 4 " ' " " " J M 2 - c ( « , tr-1,e, A, A ,̂ e).

It follows from the Poincar6 inequality that for e > 0 sufficiently small, we can
extract a minimizing subsequence {**}<=/C« converging to f/'eA'S which
minimizes $(•). We note that a minimizer of ^(-) satisfies the variational
inequality (2.11), thus proving existence.

We now turn to the proof of uniqueness for solutions of (2.11). Let £/?, f/* be
two different solutions to (2.11) and &u:- U* - Ui In the usual way, we obtain

— (%&&", &v)h + y \OU\] + d(<f>(Ul) - «/»(f/f), e17)* - (ASU, &u)h *; 0.
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PHASE SEPARATION OF A MULTI-COMPONENT ALLOY 117

Using the monotonicity of <f>, setting 17 = 8U and a = 1 in (2.15) yields the
inequality

Uniqueness follows immediately from the Poincar6 inequality. Applying the
Kuhn-Tucker conditions, we obtain a Lagrange multiplier, Aa, for the mass
constraint, so that setting

1 u , ,
At

existence for (7*3) is proved. •

A consequence of this lemma is that (Qs) and (Pfy are equivalent in the sense
that they have the same solution.

In the next lemma, we obtain bounds on {I/*} which are independent of 5. If
we can prove that Uminf8_+omin1«:/«;Vinfr.nC/f(x)>0, then we may extract a
convergent subsequence and pass to the limit in 5.

LEMMA 2.3 The following stability estimate holds:

H ill II |A4| || —/f x> (M

where the constant C is independent of S.

Proof. Setting x = (l/|^2|)m in (2.11) we obtain

ma - IT"), i | | - Us) - y \U°\1 ( jfi )

(2-18)

Noting the definition of V and using the trivial inequality Vx =5 0, y > 0

x log* zsy logy + (1 + \ogy)(x-y), (2.19)

it follows that

T(S- " H (£- "MS-u ')- (220)

Substitution into (2.18) and the identity 2a(a - b) = a2 + (a - b)2 - b2 yields

24/1 | | * W | | | |
(2.21)
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1 1 8 J. F. BLOWEY, M. I. M. COPETTI AND C M. ELLIOTT

Noting that

(V(l/*),1)** f rt-NOe^-^-JtiUDAdx^-Ue^+

and setting 17 = (m/\£2\) - Us, a =2 in (2.15), substitution into (2.21) and
rearrangement yields (2.17) where

From the stability results obtained, we may extract a subsequence of
denoted by the same sequence, with the property that UB—* U e KQ. TO pass to
the limit in (2.11), we need only prove that U,>0 and we do so using a
finite-dimensional argument. Assume that Ufa) = 0 at some node of the
triangulation. Note that

A-i y-i

so when ;' = i and k = /

-lira ?(Jt/))A/fl(^- l/f(*/)) = +°°-
\|"l '

Rewriting (2.11) with x = m/\Q\, using (2.17) and letting 5 ^ 0 , we obtain a
contradiction due to the fact

C.

We deduce that there exists 0 < 8° such that U e Kh
s for all S «£ 8° and hence that

U is the solution to (Qh
B) for all 8 =£ 5°.

For 5 «s 5°, we wish to pass to the limit in (2.11), however for technical reasons
it is easier to pass to the limit in (2.12) where the problem is written with
Lagrange multipliers. Our goal is to prove that all \ e •'o

\ 1), x-uy + y(vu, vx-vu) + (9<HU)-AU, x - u)h

> AT(1, x-V) (2-22)

for some A e UN. There are two mutually exclusive cases to consider.
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PHASE SEPARATION OF A MULTI-COMPONENT ALLOY 119

• If x e A for 8 sufficiently small, then (2.22) is automatically satisfied.
• If Xi(xi) = 0 f° r Nt components then for 8 sufficiently small define a new

sequence x8 by

if / = min {/': Xj\xi) = max, xAxi))>
otherwise.

So XB—*X a°d passage to the limit is immediate.

For At <4y/(\2
A \\L\\) uniqueness follows in a similar fashion to that shown for

(2.11). Obviously, since KQCJQ it follows that for all x e #3

^ (<Sh
N(U - IP-'), X-U)h + y(VU, VX-VU) + (9<f>(U) - AU, X ~ V)h * 0.

(2.23)

Let x ~ U ± at\ where r\ e SQ and |a| is sufficiently small so that ^eJfS. From
(2.23) we obtain

j { (<Sh
N(U - IT-'), V)h + y(VU, VT,) + (6<HU) - AU, V)h = 0. (2.24)

Let £ E Sh be arbitrary. Then defining

substitution into (224), noting U e KQ, yields the equation

(»jj(l/ IT'') £f + y(VU, V£) + (e<f>(U)-AU,

( f (125)

where

A, = j^j (00(t/,) ~ (AU),, 1)" ~ (ĵ f 2 [WU) -AU], if.

Setting U" = U and W = -yfrdU" + A we have proven the following theorem.

THEOREM 2.4 Let U° e Kg. Then for 4/<4y/(A3, ||L||), there exists a unique
sequence {£/", W1} satisfying (Z6a,6) with properties

(2.26)
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120 J. F. BLOWEY, M. I. M. COPETTI AND C M. ELLIOTT

REMARK 2.5 In an analogous manner to Theorem 2.4, given U° e KQ and At > 0
there exists a unique sequence {V, W"}^ e AQ x S* such that

f)* + (LVW, VX) = 0 V* e S\ (2.27a)

7(VfT, VT,) + (6<HU") -AU»-\ r,)" - (l £ [0*(£/") - ^fT], 7,) = (H^1, T,)A

VTJ e Sh, (2.27b)
where (2.26) holds for each n.

3. Stability and convergence

In this section we follow Copetti & Elliott (1992) and prove convergence of the
fully discrete numerical solution to the solution {«, w} satisfying the following
theorem proved in Elliott & Luckhaus (1991):

Let T > 0 and

«° e K := I TJ e 7/1 (Q) : N £ TJ = 1, TJ S* 0, \Q\ j -q = m

where

and |fl| ITJ = J 7j(jc)dx.

Then there exists a unique pair {«, w} such that

u e C[0, T; (H\Q))']nL'(0, T;

^ E L2(0, 7; (If (fi))'), VT ̂  e L2(0, 7; Jf(12)),

H - E L 2 ( 0 , T;

VmeL'(0,T;H1(a))t

VJetf>(u)eL"(0,T;L2(ii)),

and for all j * E C[0, 7] and TJ e ^ (

j%(0{^<«. »?> + aVn-, VT,)} dr = 0, (3.1a)

J /i(o{(ii'-e*(ii)+^B + iE^(«)-^«.»i)-'y(v«,Vi|)}d/ = o, (3.16)

where <•, •) is the duality pairing between (^'(X2))' and Hl(i2).
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PHASE SEPARATION OF A MULTI-COMPONENT ALLOY 121

3.1 Stability

First we prove stability estimates which will enable us to pass to the limit in h and
At.

LEMMA 3.1 Let 0<At<4y/(\2
A \\L\\) and t" := n At (0=sn=sM). Then for all

m e [1, M)

n - l ^

— 2 (LVW, VW") =s C, (3.3)
2 n-l

^ 2 l|W"lli«C, (3.4)
2 n-l

SC, (3.5)

(3.6)

where each constant C is independent of /i and At.

Proof. Set tj = BIT in (2.66). Using (2.19) and (2.6a) with x = VfaV") we
obtain

^ (|tr If +1^ - ir-'if - IIT-'I?) + ̂  ( ( n ^ ) , i)* - (nu"'1), i)")

y ^ o . (3.8)

Setting ri = dt/" and o = 1 in (2.15) we obtain

+

+ i || aî 1 IIi*«0, (3.9)

and we see that £* is a Lyapunov functional. Hence, multiplying (3.9) by At and
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122 J. F. BLOWEY, M. I. M. COPETT1 AND C M. ELLIOTT

summing from n=\,...,m we obtain (3.2) where C = S*(L'0). (3.3) follows
immediately from (2.8).

We wish to show that W" is bounded in Hx(i2). Clearly by the equivalence of
norms (2.1), the discrete Poincarfi inequality (2.3) and (1.6)

w-iw-iw

[ +^(LVW, VW).
II <o

Recalling (3.3), it is enough to bound |f W"k\ for all k. Since '£W" = 0, if
max* (Wk> \)h = 0, then there is nothing to prove. Let 0 < (WJ, l)h =
max* (Wk, l)\ Setting q = e'-U", where e{:= SJk, in (2.66) and using (2.19) so
that

) , 1)" + (DV(U"), e1 - U")h - \(A(c! -W),e!- U")h,

it follows

- y \W\\ - ( W(JU*), l)h + ^(A(el-ir),el-Un)h^ (W, e>-

(3.10)
By definition

(\vn, e1 - irf = (w;, if - f
we estimate (W, Iff. Using (2.2)

(w, ir? = f (wj, i)"^;
|"l

2 S

Hence
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PHASE SEPARATION OF A MULTI-COMPONENT ALLOY 123

so that substituting into (3.10) and using (2.5) we obtain

M . ii A ii m i

),1)"

Noting the uniform boundedness, (3.2), we have proved the inequality

- IT), e> - U")h + - i | \LmW"U

where C3 and C4 are independent of h and 4t Let (W7, 1)* = min* (Wn
k, 1)", then

-(W7,l)*«- 2 (WJ,1)*= 2 (Wn
biy

{k:(W"k,\?<0}

«(

Hence for all k

(A/ - 1) max (Wn
k, 1)" =e (N - 1)(C3 + C4 |L

1/2W"|j).

and (3.4) follows from (33).
From (3.2) and (3.3), (3.5) clearly holds for m = 1. For m ^ n ^ 2 , from (2.6b)

with TJ = BIT and from the monotonicity of <f>, it follows that

> y(v at/", v air) - (i4 ai/", at/")*. (3.ii)

Using (26a) with * = dW" we see that

-(aw, dirf = (Lvwn, v air)

= •£- (\LmVW"\l + \LmV(W" - W'%~ IL^VW"'^

Taking 17 = dlT and a = 2y/(At\2
A \\L\\) in (2.15), a calculation yields that

\LmVWn\2
0-\L

mVW-i\2
0 + Aly |

Multiplying by /" it results that

f \LmVW\l - f1 \Lll2VW"-% + Atyf \dW\2

\\L\\
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124 J. F. BLOWEY, M. I. M. COPETTI AND C M. ELUOTT

Summing from n=2,...,m, noting that r" =£ 7, W~l = - ^
using (32), (3.3) we obtain

1 + A""1 and

n-\

/rA*||I|| + \ | ,
* "Y ' n—1

It remains to prove (3.6), (3.7). Setting

17 =

in (266) where {Z^}/ = / ^ / and noting the inequality

0 « ( V * V/*0Cr)) V0 < ^ e Sh,

see Lemma 3.2 at the end of this subsection, we obtain

fi )"i, |TIU + ii^ ii \ i r u ii

(3.12)

so that using a kick-back argument, the Poincar6 inequality, (1.6) and (3J5), we
have proven

2̂
(3.13)

c

(3.14)

It is a simple calculation to show that

so given the bounds (3.13-3.14), it is sufficient to estimate

appropriately. However, noting

-AIT, 1)*-
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PHASE SEPARATION OF A MULTI-COMPONENT ALLOY 125

(3.2) and that (W1, \)h has already been bounded, we-are through. Hence

and we have the stability estimates

c

-12 • c.

(3.15)

(3.16)

Noting the equality

in order to obtain (3.6) and (3.7), it is enough to bound 11 £ In (U")\l where
{In (u)}; = In (v,). Let us define

and

/* = ji e [1, D]: I/Jftr,) = max U] (*,) where UJ(x,) < U"k(xt), for j < k\\

note that Ix UI2U ••• U 7W = {«: / e [1, 7)]}. From the monotonicity of In, for i e 7*

1
lN-

Also, as Syii UJ(x,) = 1 it follows that

Combining these inequalities

where [•]+ = max {•, 0}. Thus, for k fixed

f AW*)2;* 2 Mu(g'k)
2> 2 A/Jln

L

i-^-i In
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so that summing over A:

£ £ Kig'kf^'Z
* = 1 /-I /-I y_i

(3-17)

Next we prove a similar inequality in reverse. We claim that

max g'k s* - [in max U] (x,) - In - j .

There are two cases to consider. If max, U"(Xi) = 1//V = miny U"(*,) then the
result is trivial. If max, U"(*,) >l/N> miny U"ix,) then

1 N 1 / \
max g'k = max In Un

k(xt) - - X m ^K*/) > TT l n m a x ^y (*') " l n m i n Uj(xt)
k k NJmi N \ i i J

Hence

2^ 2 In I/; (x,) - ln ^
/V

Afimax ln ) - ln -
N

N2

Combining (3.17-3.18) yields

(3.18)

k-\

= N(N2 + 1) In (£/") - 1 2 ln (£/")

Implementing the inequality (a - 6)2 - b2, it results that

and (3.3), (3.5) yield (3.6-3.7). •

LEMMA 3.2 Let &* be an acute regular family of triangulation of Q. For f/> 0

Proof. It is sufficient to prove the result for one component of the vector U
which we denote U. Since the triangulation is acute K,j^0 when i¥>j. From the
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definition of the stiffness matrix K, it follows that

2 KV = 2 (V*,, v*,) = (v*,, v 2 *,) = (v*,, vi) = o
IS X i '

and /C is symmetric. Defining t/(jry) = \Jt and ay = <f>(Uj) by monotonicity

y-i w-i

= J 2 -(«/ - «,)*#(£// - t/y) > 0. •
Zy-i

3.2 Convergence

We will find it useful to define the following discrete operators. Let Pj be the
discrete L2 projection onto Sh: given 17 e L2(i2), PSTJ is the unique solution of

Given TJ E H\£2), P\ri is the Z/1 projection onto 5" such that (PJTJ, 1) = (17,1)
and

Notice that due to the nature of projections, it follows that

P?7j-»T7 \nH\i2) and l ^ l i ^ h h -

Given u° e H\Q) satisfying

N 2 «V) = 1, «V) > 0, m = f «°(x) dr,

we take t/$ = Pou°k (k = l,...,N). Automatically, (l/°, 1)* = m and since

where ^ is an element of the cardinal basis for Sh, it follows that l/°>0,
N 2 L/° = 1. Hence V° satisfies the assumptions of Theorem 2.4. Let {IT, W}^
be the sequence resulting from (Z6a,b). For t e (/""', f), n e [1, M], define the
piecewise constant sequences in time

and the piecewise linear sequences in time, such that for n = 0,..., M,
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From Lemma 3.1, these sequences satisfy

\\uAt\\L-%O,T-Mi(n)) + \\uAi\\Lr(0,T.H>(n))+ \\W 4t\\ LHP.TMHO)) "*"

+ W

where C is independent of h and 4/; we have used (2.1) so that

Let | , f e J/^fl) be arbitrary. Setting %i = ̂ if/ and 7̂/ = ^i^/ in (2.6a) and (2.66)
respectively, multiplying each equation by Atti{t"~l) and summing over n yields

0 =

where {./^TJ}, = /^7j/. By compactness we can extract subsequences such that

< - « in L2{Q,T;H\a)),

< - * > in L2(0, T;H\Q)),

4»1— v in L2(0, T;L\Q)),

as /i, 4/->0. Furthermore, «2, is bounded in H\K,T\H\Q)) for 0< K < T,
hence the compact injection into L2(K, T; L2(Q)) guarantees the existence of a
subsequence such that

5i-»« in L2(K, T;L\Q)).

From (3.2) we conclude that | | « £ - u ^ l L ^ . r ^ a ) ) - ^ and it follows that

uh*->u in L2(K, 7;L2(I3)).

Note that since 4>)u =s 0 for all h and 4(, it follows that v «£ 0 a.e. We remark that
{u, M>} satisfy the same regularity as proved in Elliott & Luckhaus (1991).
Applying (2.1) we find that

rT AIf
d/

C/i ll^^llz-Ho.T^fl)) \\PiiIIH
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Using the convergence properties of the sequences above, we find that passing to
the limit

0 = jT [-(«, f) ̂  + (LVw, Vf )M(r)] dr - («°, £ MO), (3.19)

o = J [r(Vn, v#) + (av - A u - 1 2 (0v - ^o) - w, ^)]/*(0 a, (3.20)

which implies that

0 = <«„ 0 + (LVw, Vf ) a.e. in (0, T),

y(Vu, V|) + (flv - Au - 1 2 (0v - >1«) - H-, f ) = 0 a.e. in (0, T).

Also from (3.20), we deduce that u(t) e H2(£2) for a.e. f e (0, T). And integration
by parts of (3.19) gives

and therefore «(0) = u°. It remains to prove

v = *(«).

Here we use a different proof than that of Elliott & Luckhaus (1991). In fact we
show that u/ = ^i~1(v/) where <f>~*(vt) = ev', which exists a.e. since V/«0 so that
e*1 e (0,1). Notice that

\<j>-\x) - <t>~\y)\ ^ <f>-l(max {x, y}) \x - y\. (3.21)

We will show that for all 0 < K < T

f<
where we assume that v is smooth, otherwise we approximate it by a smooth
sequence and prove these results for the subsequent sequence. If the above
inequality holds, then using Minty's lemma will yield the result; in fact the
following argument is used. Setting v = Az + (1 — A)v; (A e (0,1)) so that

f (Ml-^-I(Az + (l-A)v,),vl-z)>0

taking z = v7 ±y, letting A-»0 and noting (321), we have that

f (U/-<^-1(v/),>')dr = 0

i.e. U/ = 4>~x(vi). For the rest of the proof we identify u, v with uh v, and % %
with {«!},, {0l}/. For t e (f1, f), let us define
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Note that

J
'T V rf

luUOIodT'5 2 |/*v(r )|g d/ =s C |v|i-{0 7-u--(r»»
K n-n. J«—>

where t"'**K< r"*+1 and

f |wKO-w(0lod/« 2 f \l"v(n-v(t)\Ut
JK n-n. Jf--'

M rt"

n— n . ^i*"1

* 2 2 r (I f «,(*) d5 2 + |7*w(0 - v(f)|20) d/

as h, id/-»0, since the inequality \Ihv - u | 0 « Ch2
 \\V\\HHO) holds. Also, using

(3.21), it follows that

Hence,

f
It is obvious that

[T ( h _ M - 1 / h) h _ h\h^O
J ^ V. 4» ai > to tu)

since for each / e {t"~\ f)

))-v(xhn)

Finally
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where we have used the facts

^ * ) ) = 2 4>-\v{xt))Xiix) former,

and the mean value theorem.
Now, assembling all of these pieces together and using (2.1)

f7"
C/I0 1(||l4lli-(aT;I.-(fl)))

and the result is proven.

REMARK 3.3 Convergence of the sequence {IT, W"} satisfying (2.27a,b) to the
continuous problem holds.

4. Numerical simulation

We consider a ternary system in one space dimension where Q = (0,1)

/ \ -\ - 1 \ / I 0 0 \ / I 1 1'
L - - J 5 - 1 - 0 1 0 - 1

\-\ - J 5 / \ o 0 1 / J \ i
and

'0 1 l '
0

J 1 0/
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Note that ||L|| = 1 and the largest positive eigenvalue of A is given by A,, = 6C. It
follows that

¥(u) = 0(ui \nul + u2In u2 + u3\nu3) + 6c(uiu2 + u2u3 + UiU3).

With L and A taken as above, noting that u1 + u2 + u3 = 1, the partial differential
equations (l.la,b) we wish to solve may be written as

u, + r « w + ecUxx - 0{L<K«)L, = o. (4. i)

4.1 Linear stability analysis

Let the mean concentration take the form m = (mu m2, m2) where m, > 0 Vi and
m3 = 1 - mi ~ "»2- We seek a solution of the form

u,(x, t) = mt+ 2 c"(t) co:

where |c?(OI«l (/ = 1,2,3; n = 1, 2,...); note that c1(t) + c^(t) + c"3{t) = 0.
Linearizing 4>{u,) about m, and substituting into (4.1), up to first order we find
that d{ and c2 must satisfy the ordinary differential equations

dcj / 2c" c2 c" + c2 \
—- + n ^ ( n Try - dc)c" + 9n nrl 1- — 1 = 0
at \3nii 3m2 3 (1-m 1 -m 2 ) /

and

In vector form we have

— + n V y c " + n VBc" = 0
df

where

B =

20/J_ 1 \ _2e/J 1
3 Vmj 2(l-m1-m2)/ c 3 \2m2 2 ( l - m , -

2 0 / 1 1 \ 2 ^ 1 , 1 ) Q
3 V2m! 2(1 -m1-m2)J 3 \m2 2Q-mx-m2))

 c
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Here Hv is the Hessian of the free energy V, with respect to the two
independent concentrations, evaluated at m i.e.

'e(±+n
 1 )-29c

\rtii (1 — m\ — tn2)l
c

_ J dc 0(_L + _ J \2dc

The solution to the system of ODES is given by

For interesting behaviour, i.e. growth of one or more of the components uu u2,
we want c"(t) -t*0 as t increases. A necessary condition is that at least one of the
eigenvalues of B is smaller than - y ^ 2 < 0 . If At and A2 are the eigenvalues of B
then from the identities

j X A2 = det B and j + A2 = trace B

it is easy to find regions where both eigenvalues of B are positive and negative, in
fact all we need do is solve the equation det B = 0 = det H^, this curve will
obviously be 9 dependent.

In the case where m2 = m\, a calculation reveals that

e + 6m j - 2m,){eiec -
(4.2)

The two curves 6/9c = mx and 9/6c = 3m1 - 6m\ (see Fig. 1) defines four regions
in which B is positive definite, negative definite or indefinite. It is easy to see that
for 9I9C<\ we will have a negative definite region in which growth of phases
may take place. For 9 sufficiently small, the free energy V has three equal
minima; for 9 < 9c/3 a local maximum at (i, $, i). We notice that Vis defined on

0.5
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1 1 1 1
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/ / ^
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i i i i
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3m^?
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\

\
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\
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"1 + "2 + ti3 = 1

, U 3 JJ0

FIG. 2. Gibbs triangle.

the surface Uj + u2 + u3 — 1 of the 3-simplex, known as the Gibbs triangle (see
Fig. 2). For example, if we take 6 = 0-3 and 6C = 1 then to calculate the regions
where B is negative definite, positive definite and indefinite we solve det 5 = 0
along the lines (m,, amlt \-mx — amx) of the Gibbs triangle, see Fig. 3. The
black dots indicate the mean concentration used in the numerical experiments. To
help explain this figure, given a point (MJ, U2, U3) on the Gibbs triangle, we define
the affine mapping onto the x-y plane where

Defining the origin on the Gibbs triangle to be ($, \, i) and the origin in the x-y
plane to be (0,0) we notice that the Gibbs origin gets mapped to the x-y origin
and the mapping preserves the distance from the relative origin.

N/273-

det B = 0

(1.0-0) (0,1,0)

- l / v /2 x l/\/2

FIG. 3. Isothermal section of the phase diagram where 9 = 0-3, Be=\.
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FIG. 4. Contour plot of the free energy V on the Gibbs triangle.

From Fig. 3, it can be seen that if the mean concentration is near the middle of
the Gibbs triangle, inside the negative definite region, then three phases may
separate and if the mean concentration is near the edge of the Gibbs triangle, in
the semi-definite region, then only two phases may separate. When the
concentration is near a corner, in the positive definite region, then the
homogeneous system is stable.

A contour of the free energy V is shown in Fig. 4. The three minima of V are
approximately at (0-0551,00551,0-8898), the other two values being permuta-
tions. Also, Vhas saddle points at approximately (0-3861,0-3861,0-2278) and two
other points having permuted values.

The points where the line 6 = 0-3 intersects the two graphs in Fig. 1 correspond
to the three points intersecting det B = 0 on the line x = 0, see Fig. 3. On Fig. 3,
we also draw the direction of the eigenvectors associated with the eigenvalues.
These give an indication of the directions in which we expect growth will take
place.

4.2 An iterative method

Representing the solution of (2.6a,b) as a linear combination of the basis
functions of 5*, i.e. for / = 1, 2, 3

{!/"}, = ! / ; = £ euXl, {W"}j = WJ = £ fljXl,

it follows that the discretized version of solving (4.1) is equivalent to solving

(/ + AtyM^KM^K - AtOcM^Kfo - e"^ + eAtM^K^e)^ = 0, (4.3a)

e3 = l - « 2 - « i , (4-36)

where {</}/:= eit and {<£(<)L}y = 2/<£(e()L/y. To numerically find the solution to
the above set of non-linear equations, we use the following iterative technique:
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given {«?, e% an initial guess to {ex, e^, we use the non-linear Gauss-Seidel-type
iteration: for k > 1

(/ + AtyM^KM^K - AtOcM~1K)ek
1 - eT1

K)ek
2 -

= 0,

= 0,

where ef denotes the kth iterate (J = 1, 2) approximating fy. For At < 4y/(9*) =
4y/(A3i ||L||) the matrix multiplying ef (y = l, 2) in the above equations is
symmetric positive definite, hence the iterative sequence is uniquely defined.
Provided that At was sufficiently small and {ef} (J = 1, 2) were greater than zero
and less than one, the iterative sequence was found to converge in each
experiment.

4.3 Numerical experiments

We take 0 = 0-3 and 6C = 1, corresponding to the choices of Section 4.1, see
Figures 3 and 4. In each experiment, unless otherwise stated, we chose /i = tfe,
y = 5 X 1(T3 and At = 10~4. The initial conditions were random perturbations of
the uniform state m and the simulations were stopped when profiles were
obtained which did not change for a long time.

In Fig. 5, we show the evolution where m = (i, \, \) (m^ = $ corresponds to

-

i =

i

0

u2

t= 1-5

0.25 0.5
x
1 = 2

0.75

y

\ i

N s

Ul

u, .^,

1

0.25 0.5
x

0.75 1

FIG. 5. m
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1 = 0 t
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\ / • ' ~ N

/ \

- y >_

\A

U 3

\

0 25 0.5 0.75 1 0 0.25
z

Fio. 6. Experiment 1: mi = 1/4.

0.75

point (a) in Fig. 3, inside the negative definite region). We observed three phases
in the early stages of spinodal decomposition.

We performed three experiments with initial data inside the indefinite region,
respectively taking m, = 1/4, 2/5, 12/25 (points (b), (c) and (d) in Fig. 3
respectively). In the first experiment with n\\ = i, initially the third phase M3

dominates. Moreover, for some time the evolution is in the direction of Ui = u2

with a two-phase structure (see Fig. 6, t - 1,2). However, at a time shortly after
t = 2, the composition takes the value of a critical point of the free energy which
is unstable to perturbations in the direction u, = u2, and by t = 3 we see growth in
the phases ut and u2-

In the second experiment mx = \ and the evolution, after the quench, shows
two phases with either ux or u2 dominating (see Fig. 7, t = 0-5, 1-5; decomposition
proceeds like a binary alloy).
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( = 0 ( = 0 - 5
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FIG. 7. Experiment 7:mx°= 2/5.

0.5
i

0.75

In each of the above experiments, the system evolved into a three-phase
structure with the concentration of the peaks, for some of the phases, very close
to the value 0-89.

Figure 8 shows the time evolution of an almost binary system (m, = 12/25). As
expected there are no spatial variations where u3 is dominant; only phases Uj and
u2 separated. We also set At = 10~5.

We remark that in all experiments, the directions of decomposition observed at
short times after the quench are in agreement with the direction of the
eigenvectors for the negative eigenvalues. The results are consistent with
numerical calculations performed by Eyre (1993) who investigated the evolution
of ternary systems during spinodal decomposition using a finite-difference
scheme.
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