Please let me know if any of the problems are unclear or have typos. Please let me know if you have suggestions for exercises. Each problem is followed by a number in brackets - this is the number of marks the question is worth. Please turn in at least 10 marks worth of answers. You should feel free to work with others; if you do so, please say whom you collaborate with (and acknowledge other sources as necessary).

Exercise 3.1. Suppose that p and q are positive integers which are greater than one and which are coprime. Determine which pairs of the eight oriented torus knots, with coefficients $(\pm p, \pm q)$ and $(\pm q, \pm p)$, are isotopic. [3]

Exercise 3.2. Suppose that p and q are as in the previous problem. Consider the action of S^{1} on S^{3} where

$$
e^{i \theta} \cdot(z, w)=\left(e^{q i \theta} z, e^{p i \theta} w\right)
$$

Show that the critical orbits (that is, those not isotopic to nearby orbits) of the action are exactly the circles C_{z} and C_{w} : the intersection of S^{3} with the planes $w=0$ and $z=0$. Show that the generic orbits of the action are isotopic to the (p, q)-torus knot. [3]

Exercise 3.3. Suppose that p and q, and the action of S^{1} on S^{3}, are as in the previous problem. Show that the quotient S^{3} / S^{1} is a two-sphere. Show that the quotient has a natural spherical metric away from the points $\left[C_{z}\right]$ and $\left[C_{w}\right]$. Show that these points are cone points with angles $2 \pi / q$ and $2 \pi / p$ respectively. [4]

Exercise 3.4. Make explicit the isomorphism $S^{3} \cong \mathrm{SU}(2)$. We now use the action of Exercise 3.2, but with $p=q=1$. Express this action as that of a subgroup acting on $\mathrm{SU}(2)$ (say, by right multiplication). Deduce that the orbits of the action are cosets of this subgroup. [3]

Exercise 3.5. Let UQ be the unit quaternions. Let $\widetilde{\mathrm{SO}}(3)$ be the universal cover of $\mathrm{SO}(3)$. Prove that these are both isomorphic to $\mathrm{SU}(2)$ (as Lie groups). [3]

Exercise 3.6. Suppose that K and K^{\prime} are knots. Prove that the connect sum $K \# K^{\prime}$ is a satellite knot. [2]

Exercise 3.7. Suppose that M is a manifold equipped with a Riemannian metric. We define $\mathrm{UT}(M)$ to be its unit tangent bundle. Prove the following pairs of spaces are homeomorphic.

- $\operatorname{UT}\left(S^{1}\right) \cong S^{0} \times S^{1}$
- $\mathrm{UT}\left(S^{2}\right) \cong \mathrm{SO}(3)$
- $\mathrm{UT}\left(T^{2}\right) \cong S^{1} \times T^{2}$
- $\mathrm{UT}\left(S^{3}\right) \cong S^{2} \times S^{3}$

Using the above, or otherwise, prove that $\mathrm{UT}\left(S^{2}\right)$ is not homeomorphic to $S^{1} \times S^{2}$. [3]

Exercise 3.8. Suppose that $M=\mathbb{R}^{2}-\{(0,0)\}$. Suppose that A is the diagonal matrix with non-zero entries 2 and $1 / 2$, in that order. We define an action $\rho: \mathbb{Z} \times M \rightarrow M$ by taking $\rho(n,(x, y))=A^{n}(x, y)$.

- Prove that ρ is smooth and free.
- Prove that ρ is not properly discontinuous.
- Prove that M / ρ is not Hausdorff.

More generally, describe the quotient M / ρ. [5]
Exercise 3.9. Suppose that D is a regular dodecahedron. Form P, the dodecahedral space, by identifying opposite faces of D with a one-tenth right-handed twist.

- Show that P is an oriented three-manifold.
- Give a presentation of $\pi_{1}(P)$.

Using this, or otherwise, prove that P is a integral homology three-sphere. (That is, for all k we have $H_{k}(P, \mathbb{Z}) \cong H_{k}\left(S^{3}, \mathbb{Z}\right)$.) [3]

Exercise 3.10. Suppose that D is a regular dodecahedron. Let $\Gamma<\mathrm{SO}(3)$ be the group of orientation-preserving symmetries of D. Let $\Gamma *$ be the preimage of Γ in $\widetilde{\mathrm{SO}}(3)$. This is called the binary dodecahedral group. Using the identification of $\widetilde{\mathrm{SO}}(3)$, show that the Voronoi cells about $\Gamma *$ gives the 120 -cell. [3]

Exercise 3.11. Prove that $\widetilde{\mathrm{SO}}(3) / \Gamma *$ (as given in Exercise 3.10) is homeomorphic to P, (as given in Exercise 3.9). [2]

Exercise 3.12. Suppose that p, q, p^{\prime}, and q^{\prime} are non-zero integers with $\operatorname{gcd}(p, q)=$ $\operatorname{gcd}\left(p^{\prime}, q^{\prime}\right)=1$. Prove the following: if $p^{\prime}=p$ and $q^{\prime}= \pm q^{ \pm 1}(\bmod p)$ then $L(p, q)$ is homeomorphic to $L\left(p^{\prime}, q^{\prime}\right)$. [3]

Exercise 3.13. Suppose that $M=L(p, q)$ is a lens space. Show that the Clifford torus T in S^{3} descends to give a torus T^{\prime} in M which bounds solid tori U^{\prime} and V^{\prime} on both sides. Suppose that D^{\prime} and E^{\prime} are meridian disks for U^{\prime} and V^{\prime}, respectively. Describe (up to isotopy) how ∂D^{\prime} and ∂E^{\prime} lie in T^{\prime}. [2]

Exercise 3.14. Prove the following homeomorphisms.

- $L(1,1) \cong S^{3} \cong \mathrm{SU}(2) \cong \widetilde{\mathrm{SO}}(3) \cong \mathrm{UQ}$
- $L(2,1) \cong \mathbb{R P}^{3} \cong \operatorname{PSU}(2) \cong \mathrm{SO}(3) \cong \mathrm{UT}\left(S^{2}\right)$
- $L(4,1) \cong \mathrm{UT}\left(\mathbb{R P}^{2}\right)$.

You may (and should) freely use the results claimed in Exercises 3.5 and 3.7. [4]

