Please let me know if any of the problems are unclear, have typos, or have any other mistakes.

Exercise 3.1. Suppose that F is a vector space over \mathbb{R}. Suppose that $\pi: E \rightarrow B$ is a vector bundle with fibre F. Compute the homology groups $H_{*}(E)$ in terms of $H_{*}(B)$.

Exercise 3.2. [Challenge] Here is a hands-on definition of $\operatorname{UT}\left(S^{n}\right)$, the unit tangent bundle to the n-sphere.

$$
\operatorname{UT}\left(S^{n}\right)=\left\{(u, v) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1}:|u|=|v|=1,\langle u, v\rangle=0\right\}
$$

Here $\langle\cdot, \cdot\rangle$ is the usual inner product on \mathbb{R}^{n+1}. Compute the homology groups $H_{*}\left(\operatorname{UT}\left(S^{n}\right)\right)$.
Exercise 3.3. Suppose that (X, Y) is a pair of spaces and G is an abelian group. Show that there is an natural isomorphism between

$$
C^{k}(X, Y ; G)=\operatorname{Hom}\left(C_{k}(X, Y) ; G\right) \quad \text { and } \quad D^{k}(X, Y ; G)=\operatorname{ker}\left(C^{k}(X ; G) \rightarrow C^{k}(Y ; G)\right)
$$

Here naturality means that if $f:(X, Y) \rightarrow(Z, W)$ is a map of pairs, then the resulting square commutes.

Exercise 3.4. Suppose that $(A, C),(B, D) \subset(X, Y)$ are pairs of spaces. Suppose that X is contained in the union of the interiors of A and B; similarly suppose that Y is contained in the union of the interiors of C and D. Fix G an abelian group.

We define $C_{k}(A+B, C+D)$ to be the cokernel of the inclusion $C_{k}(C+D) \rightarrow C_{k}(A+B)$. As usual we define $C^{k}(A+B, C+D ; G)=\operatorname{Hom}\left(C_{k}(A+B, C+D) ; G\right)$.

- Show that $C^{k}(A+B, C+D ; G)$ is naturally isomorphic to $D^{k}(A+B, C+D ; G)=$ $\operatorname{ker}\left(C^{k}(A+B ; G) \rightarrow C^{k}(C+D ; G)\right)$.
- Show that $H^{*}(A+B, C+D ; G) \cong H^{*}(X, Y ; G)$.
- Prove the relative version of Meyer-Vietoris; that is, the following sequence of cohomology groups is exact:
$\ldots H^{k}(X, Y ; G) \rightarrow H^{k}(A, C ; G) \oplus H^{k}(B, D ; G) \rightarrow H^{k}(A \cap B, C \cap D ; G) \rightarrow H^{k+1}(X, Y ; G) \ldots$
Exercise 3.5. Suppose that X is a space and R is a ring. Prove that the cup product on cochains is:
- R-linear in the first and second coordinates,
- associative, and
- has the constant function $1 \in C^{0}(X, R)$ as its identity element.

Show, by means of an example, that the cup product at the level of cochains is not skew-commutative.

