Please let me know if any of the problems are unclear, have typos, or have mistakes.
Exercise 1.1. Suppose that $X=S^{2} \times S^{4}$ and $Y=\mathbb{C P}^{3}$.

1. Check that X and Y are compact, connected, oriented manifolds without boundary (of the same dimension).
2. Prove that $\pi_{1}(X)$ and $\pi_{1}(Y)$ are both trivial.
3. Give a CW-complex structure on each of X and Y.
4. Using this, or otherwise, compute the homology groups of X and of Y.

Exercise 1.2. [Harder.] Repeat Exercise 1.1 with $X=S^{2} \times S^{2}$ and $Y=\mathbb{C P}^{2} \# \overline{\mathbb{C P}}^{2}$. Here \# is the oriented connect sum operation.

Exercise 1.3. For each of the following chain complexes C_{*} : decide if it is exact, compute the homology groups $H_{*}(C)$, and compute the cohomology groups $H^{*}(C ; \mathbb{Z})$. If it is short exact, decide if it splits.

1. $0 \rightarrow \mathbb{Z} \rightarrow 0$
2. $0 \rightarrow \mathbb{Z} \xrightarrow{1} \mathbb{Z} \rightarrow 0$
3. $0 \rightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{1} \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0$
4. $0 \rightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0$
5. $0 \rightarrow \mathbb{Z} \xrightarrow{u} \mathbb{Z}^{2} \xrightarrow{v} \mathbb{Z} \rightarrow 0-$ where u is the column vector $\binom{p}{q}$, where v is the row vector $(q,-p)$, and where $\operatorname{gcd}(p, q)=1$.

For the next two problems we fix an abelian group G and we define $A^{*}=\operatorname{Hom}(A, G)$.
Exercise 1.4. Suppose that $A \rightarrow B \rightarrow C \rightarrow 0$ is an exact sequence of abelian groups. Prove that $A^{*} \leftarrow B^{*} \leftarrow C^{*} \leftarrow 0$ is also exact. [Thus we say that the functor $\operatorname{Hom}(\cdot, G)$ is right exact.]

Exercise 1.5. Suppose that $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is a split short exact sequence of abelian groups. Prove that $0 \leftarrow A^{*} \leftarrow B^{*} \leftarrow C^{*} \leftarrow 0$ is again a split short exact sequence.

