Please turn in Exercises 5.2 and 5.3 before 2pm, on 7 December (Friday), in the slot near the front office. Please let me know if any of the problems are unclear, have typos, or have mistakes.

Exercise 5.1. Let $\sigma \colon \mathbb{C} \to \mathbb{C}$ be complex conjugation. Give an example of a field $L \subset \mathbb{C}$ so that $\sigma(L) \neq L$.

Exercise 5.2. Let $\sigma \colon \mathbb{C} \to \mathbb{C}$ be complex conjugation. Suppose that $L \subset \mathbb{C}$ is a subfield, and suppose that L/\mathbb{Q} is a finite Galois extension.

- 1. Show that $\sigma(L) = L$.
- 2. We define $\sigma_L = \sigma | L$. Show that $\sigma_L \in \operatorname{Gal}(L/\mathbb{Q})$. Show that σ_L has order one or two.
- 3. Show that σ_L has order one if and only if $L \subset \mathbb{R}$.
- 4. Let $F = L^{\langle \sigma_L \rangle}$. Show that the degree [L : F] is one or two exactly as L is or is not contained in \mathbb{R} .

Exercise 5.3. Consider the polynomial $f(x) = x^4 - 2 \in \mathbb{Q}[x]$.

- 1. Show that $L = \mathbb{Q}(i, \sqrt[4]{2})$ is a splitting field for f. Deduce that L/\mathbb{Q} is Galois.
- 2. Compute $[L : \mathbb{Q}]$ and $\operatorname{Gal}(L/\mathbb{Q})$. Express all elements of the latter in terms of their action on the roots of f.
- 3. Let $K = \mathbb{Q}(\sqrt{2})$. Give a basis $\{\alpha_i\}$ for K/\mathbb{Q} . Give a basis $\{\beta_i\}$ for L/K.
- 4. Let τ be the non-identity element of $\operatorname{Gal}(K/\mathbb{Q})$. Show that, for any $\sigma \in \operatorname{Aut}(L/\mathbb{Q})$, if $\sigma | K = \tau$ then $\sigma | \{\beta_j\}$ is not the identity.

Exercise 5.4. Prove that $\alpha = 3 + 4i$ is a square in $\mathbb{Q}(i)$, but $\beta = 2 + i$ is not.

Exercise 5.5. Suppose that L/K is a finite Galois extension. For any $\alpha \in L$ we define its *norm* to be

$$\operatorname{Norm}_{L/K}(\alpha) = \prod_{\sigma \in \operatorname{Gal}(L/K)} \sigma(\alpha)$$

- 1. Show that $\operatorname{Norm}_{L/K}(\alpha)$ lies in K.
- 2. Show that $\operatorname{Norm}_{L/K}(\alpha\beta) = \operatorname{Norm}_{L/K}(\alpha) \cdot \operatorname{Norm}_{L/K}(\beta)$.
- 3. Suppose that $L = K(\alpha_1, \ldots, \alpha_n)$. Show that $L = K[\alpha_1, \ldots, \alpha_n]$. (That is, the ring generated by the α_i equals the field generated by the α_i ; division is unnecessary!)