There were 93 scripts in total. As usual, marks were out of 100; before scaling (and which I will not be told about) the highest and lowest marks were 98 and 17 respectively. The median mark was 66 ; the mean was 65.6 with a standard deviation of 15.0.

In the comments below, when I write "many students..." usually what happened is that I gave partial marks due to the more-or-less subtle error described.
$1 \mathrm{a}(\mathrm{i})$: "Bijective" is a necessary axiom. As an example, consider $\mathbb{Q}\left(x_{i} \mid i \in \mathbb{N}\right)$: that is, \mathbb{Q} adjoin a countable collection of independant transcendentals.

1a(iii): The proof simplifies if we recall that $\operatorname{Aut}(L / K)$ is a subset of $\operatorname{Aut}(L)$.
1 b : Before dividing both sides of an equation by a number α, we must check that α is non-zero.

1e(ii): Many students wrote a version of "An element $\alpha \in L$ is algebraic over K if the degree $[K(\alpha): K]$ is finite." This was said in class but it is not the definition (according to Samir!). Anyway it still received full marks.

1 g (ii): Many students wrote a version of "Let $\alpha_{1}, \ldots, \alpha_{n}$ be the roots of f, taken with multiplicity. Then $L=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is the splitting field of f." This is morally correct but mathematically wrong.

1h: Most students forgot the hypothesis that L / K must be an algebraic extension. (For example, consider $\mathbb{Q}(x)$.)

2b: Starting the proof by asserting that $[\mathbb{Q}(\alpha): \mathbb{Q}]=3$ is circular.
2 e : There is a computation-free proof.
3e: Many students found this question difficult.
4a: Several students wrote some version of "Since $5=a^{2}+b^{2} D+2 a b \sqrt{D}$, by equating coefficients we have $2 a b=0$." This does not make sense, as \sqrt{D} is not a variable. Instead we need to appeal to the fact that 1 and \sqrt{D} are linearly independent (when thought of as vectors in $\mathbb{Q}(\sqrt{D}) / \mathbb{Q}$).

4c: Many students wrote some verion of "Clearly $\sqrt{5}$ does not lie in K." However, a proof is needed; there is a proof which does not require any computation.

4d: Many students found this question difficult.
5d: Only a few students attempted this question.

