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Burr puzzles

The goal of a burr puzzle is to assemble a number of “notched
sticks” into a single object.

In this talk, I will describe Quintessence, a family of burr puzzles
based on the 120–cell.



Platonic solids

The platonic solids probably predate civilization, probably predate
mathematics, and certainly predate Plato.



Platonic solids

These are all of the regular polytopes in dimension three. In
general, the boundary of a regular polytope is tiled by identical
regular polytopes of one dimension lower. So the platonic solids are
tiled by regular polygons.



Platonic solids

There are four infinite families of regular polytopes. The first family
lives in dimension two: the triangle, the square, the pentagon, the
hexagon, the septagon, and so on.



Regular polytopes

The other three families stretch across the dimensions. Here we see
the simplices, the cubes, and the cross-polytopes. Again, notice
that the bounary of the n–dimensional cube is tiled by copies of the
(n − 1)–dimensional cube.



Regular polytopes

After the polygons, simplices, cubes, and cross-polytopes, there are
only five regular polytopes left. The isocahedron and dodecahedron
in dimension three, and the 24–cell, 120–cell, and 600–cell in
dimension four.



Hypercube

Here is the 4–cube again, variously called the 8–cell, hypercube, or
tesseract. It has 16 vertices, 32 edges, 24 squares, and, as
advertised, 8 cubes.



Hypercube

Actually, this is not the hypercube. This is the boundary of the
hypercube.



Hypercube

Actually, it isn’t all of the boundary of the hypercube — we had to
remove a point.



Hypercube

To explain why this hypercube is “curvy”, we first drop down a
dimension.



Stereographic projection

DEMONSTRATION



Stereographic projection



Stereographic projection



Stereographic projection



Projecting a cube from R3 to S2 to R2

Radial projection Stereographic projection

R3 ∖ {0} → S2

(x , y , z) 7→ (x , y , z)

|(x , y , z)|

S2 ∖ {N} → R2

(x , y , z) 7→
(

x
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y
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Stereographic projection

In general, stereographic projection maps from Sn ∖ {N} to Rn.

For n = 1, we define ρ : S1 ∖ {N} → R1 by ρ(x , y) = x
1−y .

N

R1

S  1

This is also a cross-section of stereographic projection for n > 1.
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Thickening the edges
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Hypercube, redux



120–cell

Here is the
(cell-centered)
projection of the
120-cell; it has
dodecahedral symmetry
in R3.



Half 120–cell

Here is a cut-away
version – we cut along
the unit sphere to show
the inner half of the
120–cell. Again it has
dodecahedral symmetry
in R3.



Half 120–cell
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Spherical layers in the 120–cell

A first way to understand the 120–cell is
to look at layers of dodecahedra at a
fixed distance from the central
dodecahedron.

▶ 1 central dodecahedron
▶ 12 dodecahedra at distance π/5
▶ 20 dodecahedra at distance π/3
▶ 12 dodecahedra at distance 2π/5
▶ 30 dodecahedra at distance π/2

The pattern is mirrored in the last four
layers.

1+12+20+12+30+12+20+12+1 = 120
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Hopf fibers in the 120–cell
A second way to
understand the 120–cell is
via a combinatorial version
of the Hopf fibration.

Each fiber is a “ring” of 10
dodecahedra.

The rings wrap around
each other.

Each ring is surrounded by
five others.

These six rings make up half of the 120–cell. The other half
consists of five more rings that wrap around these, and one more
ring “dual” to the original grey one.

1 + 5 + 5 + 1 = 12 = 120/10
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We wanted to 3D print all six of the inner rings together; it seems
this cannot be done without them touching each other. (Parts
intended to move must not touch during the printing process.)







To print all five we use a trick...

don’t print the whole ring. We call
part of a ring a rib.
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Dc30 Ring puzzle



Another decomposition, with even shorter ribs.
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Dc45 Meteor puzzle



Six kinds of ribs

spine

inner 6 outer 6

inner 4 outer 4 equator



These make many puzzles, which we collectively call Quintessence.



Six kinds of ribs

spine

inner 6 outer 6

inner 4 outer 4 equator



Theorem
▶ At most six inner ribs are used in any puzzle.
▶ At most six outer ribs are used in any puzzle.
▶ At most ten inner and outer ribs are used in any puzzle.

Proof.
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Links

https://www.ams.org/notices/201511/rnoti-p1309.pdf (Paper)
https://www.youtube.com/watch?v=c6U2_bwAcHM (Video)
https://homepages.warwick.ac.uk/~masgar (Webpage)
https://segerman.org (Webpage)

https://www.ams.org/notices/201511/rnoti-p1309.pdf
https://www.youtube.com/watch?v=c6U2_bwAcHM
https://homepages.warwick.ac.uk/~masgar
https://segerman.org

