Saul Schleimer Mark Bell ECM, 2024-07-16

The word problem in the mapping class group is quasi-linear

Suppose that *S* is a compact surface.

Let MCG(*S*) be the mapping class of *S* (equipped with a finite generating set).

Theorem [Bell-Schleimer 2024]: There is a sub-quadratic time algorithm to solve the word problem in MCG(*S*).

The mapping class group

Suppose that *S* is a compact surface.

Suppose that $g, h \in \text{Homeo}(S)$.

We write $g \cong h$ if g and h are *isotopic*.

The mapping class group

We write $g \cong h$ if g and h are *isotopic*.

Dehn [1922] defines the *mapping class group* to be $MCG(S) =$

Homeo(*S*) \approx

Dehn [1922] also

- proves $MCG(S)$ is finitely generated and
- gives two solutions for the *word problem* in $MCG(S)$.

A group G is *finitely generated* if there is a finite subset $X\subset G$ so that every f element $g\in G$ can be realised as a finite product of elements from $X\cup X^{-1}.$ $g\in G$ can be realised as a finite product of elements from $X\cup X^{-1}$

Example: \mathbb{Z}^2 is finitely generated by $\{x, y\}$, the standard basis vectors.

A finite list of elements from $X\cup X^{-1}$ is called a *word* over X . The length of the list is the *length* of the word. For example, $yxyx^{-1}y^{-1}y^{-1}$ has length six. $X \cup X^{-1}$ is called a *word* over X *yxyx*−¹ *y*−¹ *y*−¹

Example: ℚ is *not* finitely generated.

Suppose that w is a word over X. The *word problem* [Dehn 1912] asks if the group element of G represented by w is the trivial element of G .

Example: the word $yxyx^{-1}y^{-1}y^{-1}$ represents the trivial element in \mathbb{Z}^2 .

To solve the word problem, we need an *algorithm* that, given a word w over X , determines if $w =_G 1$.

The word problem is the "first" problem in theory of finitely generated groups.

It is needed to build the Cayley graph (the first step in understanding the geometry of a group).

As an example, we can solve the word problem in \mathbb{Z}^2 by maintaining a pair of stacks (one for each generator).

\mathbb{Z}^2

We measure the *time complexity* of our algorithm in terms of the length n of the given word w.

Example: the pair-of-stacks algorithm for the word problem in \mathbb{Z}^2 takes time $O(n)$ – that is, linear in n with constants depending only on G and X .

the word problem. Now bound the time complexity of your algorithm.

 \mathbb{Z}^2

Exercise: Fix $d > 2$ and generate $SL(d, \mathbb{Z})$ by elementary matrices. Now solve

The mapping class group

Dehn [1922] gives two solutions to the word problem in MCG(*S*).

Solution (B), via the action of $\mathrm{MCG}(S)$ on $\mathscr{C}(S)$, has time complexity $O(n^2).$

Solution (A), via the "action" of $MCG(S)$ on $\pi_1(S)$, has time complexity $2^{O(n)}$.

2)

Multi-curves

Suppose that *S* is a compact surface.

Suppose that *α* and *β* are curves in *S*.

We write $\alpha \cong \beta$ if α and β are *isotopic.*

A *multi-curve* in *S* is a finite disjoint union of curves.

We can simplify the figures by using *weights*.

We define $\mathscr{C}(S)$ to be the set of multi-curves in *S*, considered up to isotopy.

Multi-curves (with weights)

The mapping class group

(A) via action on $\pi_1(S)$ has time complexity $2^{O(n)}$. (B) via action on $\mathscr{C}(S)$ has time complexity $O(n^2)$. Other quadratic time algorithms include the following. (*S*) has time complexity $O(n^2)$ Penner [1982] implements Thurston's action of $MCG(S)$ on $\mathrm{PML}(S)$ Mosher [1995] gives an automatic structure on $MCG(S)$ for $\partial S\neq\varnothing$ Takarajima [1999] gives an automatic structure on $\mathrm{MCG}(S)$ for $\partial S = \varnothing$ Hamidi-Tehrani [2000] gives an action on $\mathrm{PML}(S)$ using Birman-Series $\pi_1(S)$ -tracks S- [2008] accelerates to poly-time using *straight-line programs.*

-
-
-
-
-
-
-
- D.Thurston [2008] computes the geometric intersection number using smoothing lemma
- Dynnikov [2022] computes the geometric intersection number using *curve shortening*

Theorem [Bell-Schleimer 2024]: There is an algorithm to solve the word problem in MCG(*S*) in time *O*(*n*…

Theorem [Bell-Schleimer 2024]: There is an algorithm to solve the word problem in MCG(*S*) in time *O*(*n* log(*n*)…

Theorem [Bell-Schleimer 2024]: There is an algorithm to solve the word problem in MCG(*S*) in time *O*(*n* log(*n*) log(*n*)…

Theorem [Bell-Schleimer 2024]: There is an algorithm to solve the word problem in $MCG(S)$ in time $O(n \log(n) \log(n) \log(n)...$

Theorem [Bell-Schleimer 2024]: There is an algorithm to solve the word problem in $MCG(S)$ in time $O(n \log(n) \log(n) \log(n))$.

Theorem [Bell-Schleimer 2024]: There is an algorithm to solve the word problem in $MCG(S)$ in time $O(n \log^3(n))$. 3

(*n*))

Theorem [Bell-Schleimer 2024]: There is an algorithm that, given *weighted standard tracks carrying multi-curves* α *and* β *, computes the geometric intersection number* $\iota(\alpha,\beta)$ in time $O(n\log^2(n))$. $\iota(\alpha, \beta)$ in time $O(n \log^2(n))$

Theorem [Bell-Schleimer 2024]: There is an algorithm to solve the word problem in $MCG(S)$ in time $O(n \log^3(n))$. 3

- (*n*))
	-

Theorem [Bell-Schleimer 2024]: There is an algorithm that, given a *weighted train track carrying a multi-curve α, performs curve shortening in time* . $O(n \log^2(n))$

Theorem [Bell-Schleimer 2024]: There is an algorithm to solve the word problem in $MCG(S)$ in time $O(M(n)log^2(n))$.

Theorem [Bell-Schleimer 2024]: There is an algorithm that, given *weighted standard tracks carrying multi-curves* α *and* β *, computes the geometric* $\mathit{intersection}\; n$ umber $\iota(\alpha,\beta)$ in time $O(M(n)\log(n)).$

2 (*n*))

Theorem [Bell-Schleimer 2024]: There is an algorithm that, given a *weighted train track carrying a multi-curve α, performs curve shortening in time* $O(M(n)\log(n)).$

Here is a multi-curve. It has six components.

A more complicated multi-curve*.* **Exercise**: Count the components!

We can represent complicated multi-curves using *weighted train tracks.*

A *train track τ* ⊂ *S* is a closed subset with the following local models.

We define $S(\tau)$ to be the set of *switches* in τ . We define $B(\tau)$ to be the set of *branches* in τ : that is, the connected components of $S-S(\tau).$

A *weighting* $\mu: B(\tau) \to \mathbb{N}$ is any function satisfying the *switch equalities*.

That is, for each switch $s \in S(\tau)$ we have $\mu(a) = \mu(b) + \mu(c)$.

By taking parallel strands we can build a multi curve $\alpha_{\mu} \in \mathscr{C}(S)$.

$$
we \mu(a) = \mu(b) + \mu(c).
$$

Suppose that $\alpha = \alpha_{\mu}$ and $\beta = \alpha_{\nu}$ are the resulting multi-curves.

There are various questions we can ask:

Suppose that $\alpha = \alpha_{\mu}$ and $\beta = \alpha_{\nu}$ are the resulting multi-curves.

There are various questions we can ask:

Count the number of components of *α*.

Suppose that $\alpha = \alpha_{\mu}$ and $\beta = \alpha_{\nu}$ are the resulting multi-curves.

There are various questions we can ask:

Count the number of components of α . Decide if there is a mapping class $f \in \mathrm{MCG}(S)$ so that $f(\alpha) = \beta$.

Suppose that $\alpha = \alpha_{\mu}$ and $\beta = \alpha_{\nu}$ are the resulting multi-curves.

There are various questions we can ask:

Count the number of components of α . Decide if there is a mapping class $f \in \mathrm{MCG}(S)$ so that $f(\alpha) = \beta$. Compute $[\alpha] \in H_1(S, \mathbb{Z})$.

Suppose that $\alpha = \alpha_{\mu}$ and $\beta = \alpha_{\nu}$ are the resulting multi-curves.

There are various questions we can ask:

Count the number of components of α . Decide if there is a mapping class $f \in \mathrm{MCG}(S)$ so that $f(\alpha) = \beta$. Compute $[\alpha] \in H_1(S, \mathbb{Z})$. Compute $[α] · [β]$ (algebraic intersection number).

Suppose that $\alpha = \alpha_{\mu}$ and $\beta = \alpha_{\nu}$ are the resulting multi-curves.

There are various questions we can ask:

Count the number of components of α . Decide if there is a mapping class $f \in \mathrm{MCG}(S)$ so that $f(\alpha) = \beta$. Compute $[\alpha] \in H_1(S, \mathbb{Z})$. Compute $[α] · [β]$ (algebraic intersection number). Compute $\iota(\alpha, \beta)$ (geometric intersection number).

- Suppose that τ is a train track. Suppose that μ and ν are given weightings on τ .
	-
	-
	-

-
-

Curve shortening

obtain a new track τ' equipped with the induced weighting μ' .

Suppose that (τ, μ) is a track and weighting. We may split τ according to μ to

Curve shortening

Suppose that (τ, μ) is a train track with weights. Suppose that $\gamma \subset \tau$ is a *combed train loop*. Then we may untwist τ according to μ , say k times, to obtain the same track τ equipped with the induced weighting μ' .

 $\mu'(a) = \mu(a) - k \cdot \mu(b)$ $\mu'(c) = \mu(c) - k \cdot \mu(b)$

Curve shortening versus euclidean algorithm

Euclidean algorithm subtraction division with remainder $(u, v) \in \mathbb{N}^2$ $gcd(a, b)$

 $GL(2,\mathbb{Z})$

Curve shortening split untwist # of components of α_μ (τ, μ) MCG(*S*)

Curve shortening

Theorem: There is a constant $k = k(S)$ with the following property. Suppose the bit-size of μ_{i+k} at least one less than that of μ_i .

This (modulo subtle details) gives us an $O(n^2)$ algorithm.

This version of curve shortening, and the usual euclidean algorithm, are both $O(n^2)$ for essentially the same reasons.

- that (τ, μ) is a train track with weights. Then there is a splitting and untwisting $\mathsf{sequence}\left(\tau_{i}, \mu_{i}\right)$ starting at (τ, μ) , ending at a track without switches, and with
	-

Half-GCD algorithm

a = 8345399854518752, b = 5743132135431331 # full $A = 83453998$, $B = 57431321$ # partial

 $cf(A, B) = [1, 2, 4, 1, 4, 1, 14, 1, 11, 1, 1, 3, 1, 13, 1, 1, 1, 2, 4]$

This leads to a recursive algorithm, called the *half-GCD*, which computes continued fraction expansions in time $O(M(n) \log(n))$.

 $cf(a,b)=[1,2,4,1,4,1,14,1,11,1,1,1,1,3,1,3,4,1,11,1,6,1,5, \dots$

That is, the continued fractions of (a, b) and of (A, B) have a common prefix.

Half-GCD algorithm Full

Partial

Accelerated curve shortening

(Again, ignore untwisting in order to simplify the discussion.)

split. Similarly, we only need $O(\ell')$ significant bits of μ in order to determine the first ℓ splits.

This idea leads to a recursive curve shortening algorithm, modelled on the half-GCD, which finds the splitting sequence τ_i – the weights μ_i are only needed to full precision along the rightmost branch of the call tree.

We only need the "most significant bits" of $\mu\colon B(\tau)\to \mathbb{N}$ to determine the first

Saul Schleimer Mark Bell ECM, 2024-07-16

