
Saul Schleimer
Mark Bell

ECM, 2024-07-16

The word problem in the
mapping class group is
quasi-linear

Quasi-linear time

Suppose that is a compact surface. S

Let be the mapping class of (equipped with a finite generating set).MCG(S) S

Theorem [Bell-Schleimer 2024]: There is a sub-quadratic time algorithm to
solve the word problem in .MCG(S)

The mapping class group

Suppose that is a compact surface. S

Suppose that .g, h ∈ Homeo(S)

We write if and are isotopic.g ≅ h g h

The mapping class group

We write if and are isotopic.g ≅ h g h

Dehn [1922] defines the mapping class group to be MCG(S) =

• proves is finitely generated and

• gives two solutions for the word problem in .

MCG(S)

MCG(S)

Dehn [1922] also

Homeo(S)
≅

The word problem

A group is finitely generated if there is a finite subset so that every
element can be realised as a finite product of elements from .

G X ⊂ G
g ∈ G X ∪ X−1

Example: is finitely generated by , the standard basis vectors.ℤ2 {x, y}

Example: is not finitely generated.ℚ

A finite list of elements from is called a word over . The length of the
list is the length of the word. For example, has length six.

X ∪ X−1 X
yxyx−1y−1y−1

The word problem

Suppose that is a word over . The word problem [Dehn 1912] asks if the
group element of represented by is the trivial element of .

w X
G w G

Example: the word represents the trivial element in .yxyx−1y−1y−1 ℤ2

To solve the word problem, we need an algorithm that, given a word over ,
determines if .

w X
w =G 1

The word problem

The word problem is the “first” problem in theory of finitely generated groups.

It is needed to build the Cayley graph (the first step in understanding the
geometry of a group).

As an example, we can solve the word problem in by maintaining a pair of
stacks (one for each generator).

ℤ2

The word problem

We measure the time complexity of our algorithm in terms of the length of the
given word .

n
w

Example: the pair-of-stacks algorithm for the word problem in takes time
 — that is, linear in with constants depending only on and .

ℤ2

O(n) n G X

Exercise: Fix and generate by elementary matrices. Now solve
the word problem. Now bound the time complexity of your algorithm.

d > 2 SL(d, ℤ)

The mapping class group

Dehn [1922] gives two solutions to the word problem in .MCG(S)

Solution (A), via the “action” of on , has time complexity .MCG(S) π1(S) 2O(n)

Solution (B), via the action of on , has time complexity .MCG(S) 𝒞(S) O(n2)

Multi-curves

Suppose that is a compact surface. S

Suppose that and are curves in .α β S

We write if and are isotopic.α ≅ β α β

A multi-curve in is a finite disjoint union of curves. S

We can simplify the figures by using weights.

We define to be the set of multi-curves in , considered up to isotopy. 𝒞(S) S

2

13

Multi-curves (with weights)

The mapping class group

(A) via action on has time complexity . π1(S) 2O(n)

(B) via action on has time complexity . Other quadratic time
algorithms include the following.

𝒞(S) O(n2)

Penner [1982] implements Thurston’s action of on

Mosher [1995] gives an automatic structure on for

Takarajima [1999] gives an automatic structure on for

Hamidi-Tehrani [2000] gives an action on using Birman-Series -tracks

D.Thurston [2008] computes the geometric intersection number using smoothing lemma

Dynnikov [2022] computes the geometric intersection number using curve shortening

MCG(S) PML(S)

MCG(S) ∂S ≠ ∅

MCG(S) ∂S = ∅

PML(S) π1(S)

S- [2008] accelerates to poly-time using straight-line programs.

Quasi-linear time

Theorem [Bell-Schleimer 2024]: There is an algorithm to solve the word
problem in in time MCG(S) O(n…

Quasi-linear time

Theorem [Bell-Schleimer 2024]: There is an algorithm to solve the word
problem in in time MCG(S) O(n log(n)…

Quasi-linear time

Theorem [Bell-Schleimer 2024]: There is an algorithm to solve the word
problem in in time MCG(S) O(n log(n) log(n)…

Quasi-linear time

Theorem [Bell-Schleimer 2024]: There is an algorithm to solve the word
problem in in time MCG(S) O(n log(n) log(n) log(n)…

Quasi-linear time

Theorem [Bell-Schleimer 2024]: There is an algorithm to solve the word
problem in in time . MCG(S) O(n log(n) log(n) log(n))

Quasi-linear time

Theorem [Bell-Schleimer 2024]: There is an algorithm to solve the word
problem in in time . MCG(S) O(n log3(n))

Quasi-linear time

Theorem [Bell-Schleimer 2024]: There is an algorithm to solve the word
problem in in time . MCG(S) O(n log3(n))

Theorem [Bell-Schleimer 2024]: There is an algorithm that, given weighted
standard tracks carrying multi-curves and , computes the geometric
intersection number in time .

α β
ι(α, β) O(n log2(n))

Theorem [Bell-Schleimer 2024]: There is an algorithm that, given a weighted
train track carrying a multi-curve , performs curve shortening in time

.
α

O(n log2(n))

Quasi-linear time

Theorem [Bell-Schleimer 2024]: There is an algorithm to solve the word
problem in in time . MCG(S) O(M(n) log2(n))

Theorem [Bell-Schleimer 2024]: There is an algorithm that, given weighted
standard tracks carrying multi-curves and , computes the geometric
intersection number in time .

α β
ι(α, β) O(M(n) log(n))

Theorem [Bell-Schleimer 2024]: There is an algorithm that, given a weighted
train track carrying a multi-curve , performs curve shortening in time

.
α

O(M(n) log(n))

Weighted train tracks

Here is a multi-curve. It has six components.

Weighted train tracks

A more complicated multi-curve. Exercise: Count the components!

Weighted train tracks

We can represent complicated multi-curves using weighted train tracks.

2

2

5 3

4
2

Weighted train tracks

A train track is a closed subset with the following local models. τ ⊂ S

We define to be the set of switches in . We define to be the set of
branches in : that is, the connected components of .

S(τ) τ B(τ)
τ S − S(τ)

branch point switch

Weighted train tracks

A weighting is any function satisfying the switch equalities.μ : B(τ) → ℕ

That is, for each switch we have .

By taking parallel strands we can build a multi curve .

s ∈ S(τ) μ(a) = μ(b) + μ(c)

αμ ∈ 𝒞(S)

a
b

c αμ

Weighted train tracks

Suppose that is a train track. Suppose that and are given weightings on .
Suppose that and are the resulting multi-curves.

τ μ ν τ
α = αμ β = αν

There are various questions we can ask:

Weighted train tracks

Suppose that is a train track. Suppose that and are given weightings on .
Suppose that and are the resulting multi-curves.

τ μ ν τ
α = αμ β = αν

There are various questions we can ask:

Count the number of components of .
α

Weighted train tracks

Suppose that is a train track. Suppose that and are given weightings on .
Suppose that and are the resulting multi-curves.

τ μ ν τ
α = αμ β = αν

There are various questions we can ask:

Count the number of components of .

Decide if there is a mapping class so that .

α

f ∈ MCG(S) f(α) = β

Weighted train tracks

Suppose that is a train track. Suppose that and are given weightings on .
Suppose that and are the resulting multi-curves.

τ μ ν τ
α = αμ β = αν

There are various questions we can ask:

Count the number of components of .

Decide if there is a mapping class so that .

Compute .

α

f ∈ MCG(S) f(α) = β

[α] ∈ H1(S, ℤ)

Weighted train tracks

Suppose that is a train track. Suppose that and are given weightings on .
Suppose that and are the resulting multi-curves.

τ μ ν τ
α = αμ β = αν

There are various questions we can ask:

Count the number of components of .

Decide if there is a mapping class so that .

Compute .

Compute (algebraic intersection number).

α

f ∈ MCG(S) f(α) = β

[α] ∈ H1(S, ℤ)

[α] ⋅ [β]

Weighted train tracks

Suppose that is a train track. Suppose that and are given weightings on .
Suppose that and are the resulting multi-curves.

τ μ ν τ
α = αμ β = αν

There are various questions we can ask:

Count the number of components of .

Decide if there is a mapping class so that .

Compute .

Compute (algebraic intersection number).

Compute (geometric intersection number).

α

f ∈ MCG(S) f(α) = β

[α] ∈ H1(S, ℤ)

[α] ⋅ [β]

ι(α, β)

Curve shortening

Suppose that is a track and weighting. We may split according to to
obtain a new track equipped with the induced weighting .

(τ, μ) τ μ
τ′ μ′

μ(d) > μ(a) μ(d) = μ(a) μ(d) < μ(a)

μ′ (e′) = μ(e) − μ(a) − μ(c) μ′ (e′) = μ(e) − μ(b) − μ(d)

e
ad

bc

e′ e′

Left split Right splitCentral split

Curve shortening

Suppose that is a train track with weights. Suppose that is a
combed train loop. Then we may untwist according to , say times, to
obtain the same track equipped with the induced weighting .

(τ, μ) γ ⊂ τ
τ μ k

τ μ′

μ′ (a) = μ(a) − k ⋅ μ(b)

a

d

b

c

μ′ (c) = μ(c) − k ⋅ μ(b)

Curve shortening versus euclidean algorithm

Curve shortening

split

untwist

of components of

Euclidean algorithm

subtraction

division with remainder

(τ, μ)

αμ

MCG(S)

(u, v) ∈ ℕ2

gcd(a, b)

GL(2,ℤ)

Curve shortening

Theorem: There is a constant with the following property. Suppose
that is a train track with weights. Then there is a splitting and untwisting
sequence starting at , ending at a track without switches, and with
the bit-size of at least one less than that of .

k = k(S)
(τ, μ)

(τi, μi) (τ, μ)
μi+k μi

This (modulo subtle details) gives us an algorithm.O(n2)

This version of curve shortening, and the usual euclidean algorithm, are both
 for essentially the same reasons.O(n2)

Half-GCD algorithm

a = 8345399854518752, b = 5743132135431331 # full
A = 83453998 , B = 57431321 # partial

cf(a,b)=[1,2,4,1,4,1,14,1,11,1,1,1,3,1,3,4,1,11,1,6,1,5, …
cf(A,B)=[1,2,4,1,4,1,14,1,11,1,1,3,1,13,1,1,1,2,4]

That is, the continued fractions of (a, b) and of (A, B) have a common prefix.

This leads to a recursive algorithm, called the half-GCD, which computes
continued fraction expansions in time . O(M(n) log(n))

Half-GCD algorithm Full
Partial

Half-GCD algorithm Full
Partial

0 1/2

1/8 5/8

0 1

M0

M1

M1 ∘ M0
0 1

11/4

M

0 1/2

Accelerated curve shortening

(Again, ignore untwisting in order to simplify the discussion.)

We only need the “most significant bits” of to determine the first
split. Similarly, we only need significant bits of in order to determine the
first splits.

This idea leads to a recursive curve shortening algorithm, modelled on the half-
GCD, which finds the splitting sequence — the weights are only needed to
full precision along the rightmost branch of the call tree.

μ : B(τ) → ℕ
O(ℓ) μ

ℓ

τi μi

Saul Schleimer
Mark Bell

ECM, 2024-07-16

Thank you!

